Finite Speed of Propagation in One Dimensional Degenerate
Einstein Brownian Motion Model
Zac Bergeron,
Texas Tech REU
Department of Mathematics and Statistics, Texas Tech University, Advisors: A.Ibragimov, Isanka GarliHevage.

Abstract

e use the generalization of Einstein's paradigm of Brownian motion for diffusion the parameter of the time interval of free jump degenerates to derive a system of one dimensional degenerate nonlinear partial differential equations. The solution of the system represents the number of particles per unit volume during the diffusion process as the time interval of free jumps degenerates. Speciically,
 we will We wir demonstrate the inle speed of propagation of the system by using the construcion of Christov-Hevage-1braguimov-slam and the subsequent methods of Kompaneets-Zeldovich-Barenblatt. With the finite speed of propagation(the locailization property) being defined as: If $u\left(x_{0}, 0\right)>0$ on $\left|x+x_{0}\right| \leq \delta=$ constant and $u\left(x_{0}, 0\right) \equiv 0$ for $\left|x+x_{0}\right|>\delta$. Then, $u(s, t)=0$ for $\left|s-x_{0}\right| \gg \delta$ and $0 \leq t \leq T$. Research supported by REU NSF grant \#DMS-2050133.

Einstein's paradigm in one dimension
Let $u(x, t)$ be the observed density function at $x \in \mathbb{R}$ and time t tet τ be the . $\Delta \in \mathbb{R}$. Let us define $\varphi(\Delta)$ as the frequency of "free jumps" with following assumption - Symmetric constraint

$$
\varphi(\Delta)=\varphi(-\Delta)
$$(1)

•" Completeness " of the universe of all possible free jumps:

$$
\int_{\mathbb{R}} \varphi(\Delta) d \Delta=1
$$

- Expectation of free jumps.

- Einstein Conservation Law

$\int_{-\infty}^{\infty} \Delta \varphi(\Delta) d \Delta=0$ $u(x, t+\tau)=\int_{-\infty}^{\infty} u(x+\Delta, t) \varphi(\Delta) d \Delta$
All Resulting in the derivation of the classical heat equation

Here $\quad \epsilon=\frac{\alpha}{1-\alpha}$ and $C(\alpha)=(2 L)^{1-2 \alpha}-\frac{\alpha}{\alpha}$ in case when $\alpha<\frac{1}{2}$
and
$\epsilon=1$ and $C(\alpha)=1$ in case when $\alpha \geq \frac{1}{2}$.

Localization Property
Tally via the Ladyženskiai terative Lemma (see Ladyženskaja Solonion Ual'ceva, 1968, Chap. II \$5), the following theorem is established Theorem 7
Assume the solution $u(x, t)$ is s.
$\tilde{I}_{0} \leq(C(\alpha))^{-\frac{1}{e}} 8^{-\frac{1}{d} T^{-1}}$
Then,
$\tilde{I}_{n}(T) \rightarrow 0$ as $n \rightarrow \infty$
So,
$\tilde{I}_{n}=\max _{0 \lll<} \int_{l_{n}} \int^{1-\alpha(x, \tau) d x \rightarrow 0}$
$\tilde{I}_{u} \rightarrow 0 \Rightarrow u^{1-\alpha}(x, t) \equiv 0 ; t \in[0, T], x \in[L, 2 L]$
Constants above, $\epsilon>0$ and $C(\alpha)$, are the same as in Theorem 7
References
 paradigm of brownian motion and localization property of solutions. Journal of Mathematical physics, 202
[2] A. Einstin. Investigations on the Theory of the Brownian Moverent Dove Publicition
NY, 1956. Edited by R. Fürth, Translated by A. D. Cowper
,
motion model. Nonlinearity, 2021.
. O. A. Ladyżenskaja, V. A. Solomnikov, and N. N. Uralceva. Linear and Quasi-linear Equations of Parabolic Type, volume 23 of Transations of Mathematical Monographs. American Mathemaite Sociey Providence il 1968.

