Do 7 of the following 10 problems. You must clearly indicate which 7 are to be graded. Strive for clear and detailed solutions.

1. Let \(\mu^* \) be an outer measure on \(X \). A collection of subsets \(\{E_1, E_2, \ldots\} \) of \(X \) is called a partition of \(X \) if \(E_i \cap E_j = \emptyset \), for any \(i \neq j \), and \(\bigcup_{i=1}^{\infty} E_i = X \). Prove that all the subsets in a partition \(\{E_n\}_{n=1}^{\infty} \) are \(\mu^* \)-measurable if and only if \(\mu^*(A) = \sum_{i=1}^{\infty} \mu^*(A \cap E_i) \) for any subset \(A \) of \(X \).

2. Let \(S \) be a dense subset of \(\mathbb{R} \) and \((X, \mathcal{M}) \) be a measurable space. Prove that a real valued function \(f \) is measurable if and only if \(\{x : f(x) \leq r\} \in \mathcal{M} \) for all \(r \in S \).

3. Let \(E \) be a Lebesgue measurable subset of \(\mathbb{R} \) with \(m(E) < \infty \). Prove that for any \(\epsilon > 0 \), there is a finite disjoint union of open intervals \(A \) such that \(m(E \setminus A) = m((E \setminus A) \cup (A \setminus E)) < \epsilon \).

4. Let \((X, \mathcal{M}, \mu) \) be a measure space, and \(\{f_n, n = 1, 2, \ldots\} \) be a sequence of measurable functions which converges a.e. Prove that if there exists a subsequence \(\{n_k\} \) such that \(\lim_{k \to \infty} \int |f_{n_k}| \, d\mu = 0 \), then \(\lim_{n \to \infty} f_n(x) = 0 \) a.e.

5. Let \(\{f_n\} \) be a sequence of measurable functions over a \(\sigma \)-finite measure space \((X, \mathcal{M}, \mu) \). Prove that if \(\sum_{n=1}^{\infty} |f_n| \) is integrable, then each \(f_n \) is integrable. \(\sum_{n=1}^{\infty} f_n \) converges almost everywhere and is integrable, and

\[
\int \sum_{n=1}^{\infty} f_n \, d\mu = \sum_{n=1}^{\infty} \int f_n \, d\mu.
\]

6. Let \(-\infty < a < b < \infty \) and \(f \) be a function of bounded variation on \([a, b]\). Prove that \(f \) can be written as \(f = g + h \), where \(g \) is absolutely continuous and \(h' = 0 \) a.e. on \([a, b]\).

7. Let \((X, \mathcal{M}) \) be a measurable space, \(\nu \) be a signed measure on \((X, \mathcal{M}) \), \(X = P \cup N \) be a Hahn decomposition for \(\nu \). For any \(E \in \mathcal{M} \), prove that

\[
|\nu(E)| = |\nu|(E) \quad \text{if and only if} \quad |\nu|(E \cap P) = 0 \quad \text{or} \quad |\nu|(E \cap N) = 0.
\]

8. Let \(\| \cdot \|_1 \) and \(\| \cdot \|_2 \) be two norms on a vector space \(X \) over \(\mathbb{R} \). Prove that if there is a \(c > 0 \) such that \(\|x\|_1 \leq c \|x\|_2 \) for all \(x \in X \), and \(X \) is complete with respect to both norms, then the two norms are equivalent.

9. Let \(H \) be an infinite dimensional Hilbert space. Prove that the unit sphere \(S = \{f \in H : \|f\| = 1\} \) contains a sequence that converges to 0 weakly (Simply using the fact that \(S \) is weakly dense in the unit ball is not acceptable).

10. Let \((X, \mathcal{M}, \mu) \) be a measure space, and \(f \in L^p \cap L^\infty \) for some \(1 \leq p < \infty \) with \(\|f\|_\infty > 0 \). For any \(0 < \alpha < 1 \), let

\[
E_\alpha = \{x : |f(x)| > \alpha \|f\|_\infty\}.
\]

Prove that

\[
0 < \mu(E_\alpha) < \infty, \quad \text{and} \quad \|f\|_p \geq \alpha \|f\|_\infty \mu(E_\alpha)^{1/p}.
\]