Do 7 of the following 10 problems. You must clearly indicate which 7 are to be graded.

1. Let
\[g(x) = \sum_{n=1}^{\infty} \frac{\chi_{[n,n+1)}(x)}{n^2}, \]
and for Lebesgue measurable sets \(E \) define \(\nu E = \int_E g(x) \, dx \). Find \(\int_{\mathbb{R}} 1 \, d\nu \) and \(\int_{\mathbb{R}} x \, d\nu \).

2. Suppose \(f(x) \) is Lebesgue measurable on \([0, 1]\). Show that \(g(x, y) = f(x) - f(y) \) is measurable on \([0, 1] \times [0, 1]\) with respect to the two-dimensional Lebesgue measure.

3. Let \(f \) be a continuous real-valued function on the unit interval \([0, 1]\). Show that for each \(\epsilon > 0 \) there exists a nonnegative integer \(n \) and \(c_0, \ldots, c_n \in \mathbb{R} \) so that
\[|c_0 + c_1 e^{-x} + c_2 e^{-2x} + \cdots + c_n e^{-nx} - f(x)| < \epsilon \]
for all \(x \in [0, 1] \).

4. Consider the function \(h(x) \) defined by
\[h(x) = \begin{cases} -x^2, & \text{if } x = \frac{1}{n} \text{ for some } n \in \mathbb{Z} \setminus \{0\} \\ x^2, & \text{otherwise.} \end{cases} \]
Is \(h(x) \) of bounded variation on \([0, 1]\)? (Prove your answer, of course!)

5. Let \((X, \mathcal{B}, \mu)\) be a finite measure space with \(\mu X = 1 \). If \(E_1, E_2, \ldots, E_{16} \) are measurable sets with \(\mu E_j = 1/3 \) for each \(j \), show that for some \(1 \leq j_1 < j_2 < j_3 < j_4 < j_5 < j_6 \leq 16 \), \(\mu(E_{j_1} \cap \cdots \cap E_{j_6}) > 0 \).

6. For \(f, g \in L^1(\mathbb{R}) \) the convolution \(f * g \) is defined by \((f * g)(x) = \int_{\mathbb{R}} f(x-t)g(t) \, dt \). For \(f \in L^1(\mathbb{R}) \), the Fourier transform \(\hat{f} \) of \(f \) is defined by \(\hat{f}(s) = \int e^{ist} f(t) \, dt \). Show that \(\hat{f} \) is a bounded complex function and \(\hat{f} * g = \hat{f} \hat{g} \).

(Recall: If \(F_1, F_2 \) are integrable real-valued functions, the integral of the complex-valued function \(F = F_1 + iF_2 \) is \(\int F = \int F_1 + i \int F_2 \).)

7. (Riemann-Lebesgue Theorem) If \(f \) is integrable on \(\mathbb{R} \), show that
\[\lim_{k \to \infty} \int_{\mathbb{R}} f(x) \cos(kx) \, dx = 0. \]

8. Find
\[\lim_{n \to \infty} \int_{a}^{\infty} \frac{n}{1 + n^2x^2} \, dx \]
for \(a > 0, a = 0 \) and \(a < 0 \). Justify all of your steps!

9. State and prove Fatou’s Lemma and give an example in which strict inequality occurs.

10. Suppose \(f \) and its derivative \(f' \) are absolutely continuous on \([0, 1]\) with \(f' \) increasing. Set \(g(x, y) = f''(x + y)\chi_{[0,1]}(x+y) \) and show that
\[\int_{[0,1] \times [0,1]} g(x, y) \, d(x \times y) = f'(1) + f(0) - f(1). \]
(Justify your steps.)