Real Analysis Preliminary Examination

2001

Do 7 of the following 10 problems. You must clearly indicate which 7 are to be graded. Notations: \(\mathbb{C} \) = the set of complex numbers, \(\mathbb{R} \) = the set of real numbers.

1. Let \(S = \{E_1, E_2, \ldots, E_n\} \) be a collection of nonempty subsets of \(X \) such that

\[
\bigcup_{i=1}^{n} E_i = X \text{ and } E_i \cap E_j = \emptyset \text{ for } i \neq j.
\]

Find the \(\sigma \)-algebra generated by \(S \).

2. For \(x \in \mathbb{R} \), let \(\lfloor x \rfloor \) be the largest integer less than or equal to \(x \). Let

\[
F(x) = \begin{cases}
0, & \text{if } x \leq 0 \\
\lfloor x \rfloor, & \text{if } x > 0
\end{cases},
\]

and let \(\mu_F \) be the Lebesgue-Stieltjes measure associated to \(F \). Compute

\[
\int 3^{-x} \, d\mu_F.
\]

3. Let \(B_\mathbb{R} \) be the Borel \(\sigma \)-algebra on \(\mathbb{R} \), and \(\mu \) be a measure on \(B_\mathbb{R} \) which is finite on every bounded set in \(B_\mathbb{R} \). Define

\[
F(x) = \begin{cases}
\mu((0, x]), & \text{if } x \geq 0 \\
-\mu((x, 0]), & \text{if } x < 0
\end{cases}
\]

Show that

a. \(F \) is increasing,

b. \(F \) is right continuous,

c. \(\mu \) is the Lebesgue-Stieltjes measure associated to \(F \).

4. Let \(f \) be a nonnegative measurable function on a measure space \((X, \mathcal{M}, \mu) \), and \(E_1 \subset E_2 \subset \cdots \) be measurable subsets of \(X \). Prove that

\[
\int_{\bigcup_{n=1}^{\infty} E_n} f \, d\mu = \lim_{n \to \infty} \int_{E_n} f \, d\mu.
\]
5. Let \(f_n, n = 1, 2, \ldots, \) be a sequence of integrable functions on a measure space \((X, \mathcal{M}, \mu) \) such that
\[
\int |f_n| \, d\mu \leq M < \infty \text{ for all } n
\]
and \(f_n \rightarrow f \) in measure. Prove that \(f \) is integrable and
\[
\int |f| \, d\mu \leq M.
\]

6. Show that if a real series \(\sum_{i,j=1}^{\infty} a_{ij} \) converges absolutely, then
\[
\sum_{i,j=1}^{\infty} a_{ij} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}.
\]

7. Let \(\nu \) be a signed measure on a measurable space \((X, \mathcal{M}) \), and \(X = P \cup N \) be a Hahn decomposition for \(\nu \). Prove that
 a. \(|\nu(E)| \leq |\nu|(E) \) for all \(E \) in \(\mathcal{M} \),
 b. \(|\nu(E)| = |\nu|(E) \) if and only if either \(\nu(E \cap P) = 0 \) or \(\nu(E \cap N) = 0 \).

8. Let \(\mathcal{X} \) and \(\mathcal{Y} \) be Banach spaces, \(T : \mathcal{X} \rightarrow \mathcal{Y} \) be an injective bounded linear map, and \(\mathcal{M} \) be the range of \(T \). Prove that \(T : \mathcal{X} \rightarrow \mathcal{M} \) is an isomorphism if and only if \(\mathcal{M} \) is closed.

9. Show that in an inner product space over \(\mathbb{C} \),
\[
\langle x, y \rangle = \frac{1}{4} (||x+y||^2 - ||x-y||^2 + i||x+iy||^2 - i||x-iy||^2)
\]
and use it to prove that there is at most one inner product which generates the same induced norm, namely \(||x|| = \sqrt{\langle x, x \rangle} \).

10. Let \(k(x, t) \) be a Lebesgue measurable function on \(\mathbb{R}^2 \) such that
\[
(\int \int |k(x, t)|^q \, dt \, dx)^{1/q} < \infty, \text{ for } 1 < q < \infty
\]
and let \(p \) satisfy
\[
\frac{1}{p} + \frac{1}{q} = 1.
\]
Define
\[
T(f)(x) = \int k(x, t) f(t) \, dt.
\]
Prove that \(T(f) \) is in \(L^q(\mathbb{R}) \) for every \(f \in L^p(\mathbb{R}) \), \(T \) is a bounded linear operator from \(L^p(\mathbb{R}) \) to \(L^q(\mathbb{R}) \) and
\[
||T|| \leq (\int \int |k(x, t)|^q \, dt \, dx)^{1/q}.
\]