Statistics Preliminary Examination: August 2011

Instructions:

- Work all 6 problems. Begin each problem on a new sheet of paper, and do not use both sides of the paper (continue on a new sheet of paper if the solution will not fit on a single sheet). Neither calculators nor electronic devices of any kind are allowed. Clearly state any theorem or fact that you use. The 23 parts are approximately equally weighted.

- Abbreviations/Acronyms.
 - pmf (probability mass function); pdf (probability density function); cdf (cumulative distribution function); mgf (moment generating function);
 - MOME (method of moments estimator); MLE (maximum likelihood estimator); UMVUE (uniform minimum variance unbiased estimator); UMP (uniformly most powerful test); LRT (likelihood ratio test); MLR (monotone likelihood ratio).

- Notation.
 - $I(x \in A)$ or $I_A(x)$: indicator function for set A; takes on value 1 if $x \in A$ and 0 otherwise.
 - $E(X)$: expectation of random variable X.
 - $V(X)$: variance of random variable X.
 - $X \sim N(a, b)$: X has a normal distribution with mean a and variance b.

- Common distributions and other results.

Poisson(λ): $E(X) = \lambda$, $V(X) = \lambda$, and pmf

\[
f(x) = \frac{e^{-\lambda} \lambda^x}{x!} I(x \in \{0, 1, \cdots\})
\]

Exponential(λ): $E(X) = \lambda$, $V(X) = \lambda^2$, and pdf

\[
f(x) = \frac{1}{\lambda} e^{-x/\lambda} I(x > 0)
\]

Beta(α, β): $E(X) = \alpha/(\alpha + \beta)$, $V(X) = \alpha\beta/[(\alpha + \beta)^2(\alpha + \beta + 1)]$, and pdf

\[
f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} I(0 < x < 1)
\]

Gamma(α, β): $E(X) = \alpha\beta$, $V(X) = \alpha\beta^2$, and pdf

\[
f(x) = \frac{1}{\Gamma(\alpha)\beta^\alpha} x^{\alpha-1}e^{-x/\beta} I(x > 0)
\]

Order Statistics: Let $X_{(1)} \leq \cdots \leq X_{(n)}$ denote the order statistics from a random sample X_1, \ldots, X_n. If X_1 is continuous with pdf $f(x)$ and cdf $F(x)$, the pdf of $X_{(j)}$ and of $X_{(1)} \leq \cdots \leq X_{(n)}$ is given by:

\[
f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} [F(x)]^{j-1}[1-F(x)]^{n-j} f(x) I(-\infty < x < \infty)
\]

\[
f_{X_{(1)}, \ldots, X_{(n)}}(x_1, \ldots, x_n) = n! f(x_1) \cdots f(x_n) I(-\infty < x_1 \leq \cdots \leq x_n < \infty)
\]
1. Suppose that each of N men at a party throws his hat into the center of the room. The hats are first mixed up, and then each man randomly selects a hat. Let H_i be the event that the ith man selects his own hat.

(a) Show that $P(H_{i_1} \cap H_{i_2} \cap \cdots \cap H_{i_n}) = (N - n)!/N!$. (Note that this is the probability that each of the n men, i_1, i_2, \ldots, i_n, selects his own hat.)

(b) Compute $P(\bigcup_{i=1}^N H_i)$.

(c) Hence, or otherwise, show that for large N the probability that none of the men selects his own hat is approximately equal to e^{-1}. [Hint: recall that $e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!}$.]

2. A penny and a dime are tossed. Let X denote the total number of heads up. Then the penny is tossed again. Let Y denote the total number of heads up on the dime (from the first toss) plus the penny from the second toss.

(a) Find the joint pmf of X and Y, and hence compute the marginal pmf’s of X and Y.

(b) Find the conditional distribution of Y given $X = 1$.

(c) Show that X and Y are not independent. Compute the correlation between X and Y.

3. Assume X_1, \ldots, X_n is a random sample from a Poisson(λ) distribution, and let \overline{X} and S_n^2 denote the usual sample mean and variance. In addition, suppose that W, Y, Z are independent random variables, with both W and $Y \sim N(\mu, \sigma^2)$, but $Z \sim N(0, \sigma^2)$.

(a) Show that both $\sqrt{n}(\overline{X} - \lambda)/\sqrt{X}$ and $\sqrt{n}(\overline{X} - \lambda)/S_n$ have a limiting standard normal distribution.

(b) Find the limiting distribution of $n(\overline{X} - \lambda)^2$.

(c) Find the limiting distribution of $\sqrt{n}(\overline{X}^2 - \lambda^2)$.

(d) Find the (exact) distribution of $\sqrt{2}(W + Y - 2\mu)/\sqrt{2\sigma^2 + (W - Y)^2}$.
4. Let X_1, \ldots, X_n be a random sample from a uniform distribution over the interval $[\theta - 1/2, \theta + 1/2]$, where $\theta \in \mathbb{R}$ is unknown. Denote the order statistics by $X_{(1)} \leq \cdots \leq X_{(n)}$.

(a) Recall that if $Z_{(r)}$ is the r-th order statistic, $1 \leq r \leq n$, in a random sample of size n from a uniform on $[0, 1]$, then $\mathbb{E}Z_{(r)} = r/(n + 1)$. Using this fact, show that if $Y_{(r)}$ is the r-th order statistic in a random sample of size n from a uniform on $[a, b]$, then $\mathbb{E}Y_{(r)} = a + r(b - a)/(n + 1)$. Produce an expression for $\mathbb{E}X_{(r)}$.

(b) Can a sufficient statistic of dimension 1 for θ be found? If so find it; if not find one of the smallest possible dimension.

(c) Is the sufficient statistic found in (b) complete? Justify.

(d) Find the Method of Moments estimator of θ. Is it unbiased?

(e) Is the MLE of θ unique? If so find its bias; if not produce an unbiased MLE.

5. Suppose that we have two independent random samples: X_1, \ldots, X_n are Exponential(θ), and Y_1, \ldots, Y_m are Exponential(μ).

(a) Show that the LRT of $H_0 : \theta = \mu$ vs. $H_1 : \theta \neq \mu$ can be based on the statistic
\[
T = \frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} X_i + \sum_{j=1}^{m} Y_j}.
\]

(b) When H_0 is true, find the distribution of T and show that it is independent of the distribution of $S = \sum_{i=1}^{n} X_i + \sum_{j=1}^{m} Y_j$.

(c) Construct the size α LRT in (a) by using the large sample distribution of $-2 \log \lambda$, where λ is the LRT statistic.

(d) Based only on the sample X_1, \ldots, X_n, describe an exact (non-asymptotic) procedure to determine a $(1 - \alpha)$ confidence interval for θ.

6. Suppose X_1, \ldots, X_n is a random sample from the pdf
\[
f(x|\theta) = (1/\theta)x^{(1-\theta)/\theta}I(0 < x < 1),
\]
where $\theta > 0$ is unknown.

(a) Show that this family of distributions has MLR in some sufficient statistic T.

(b) Derive the size α UMP test of $H_0 : \theta \leq \theta_0$ vs. $H_1 : \theta > \theta_0$. Give reasons for any claims that you make.

(c) Derive an expression for the power function $\beta(\theta)$ of the above UMP test, that can be evaluated by using χ^2 tables.

(d) Derive a $(1 - \alpha)$ confidence interval for θ obtained by inverting the asymptotic distribution of the score statistic, $Z_S = S(\theta_0)/\sqrt{I_n(\theta_0)}$, where
\[
S(\theta) = \frac{\partial \log L(\theta|x)}{\partial \theta}, \quad \text{and} \quad I_n(\theta) = -\mathbb{E} \left[\frac{\partial^2 \log L(\theta|x)}{\partial \theta^2} \right],
\]
is the expected (Fisher) Information Number.