Statistics Prelim, August 2010

Work all 7 problems. Begin each problem on a new sheet of paper, and do not use both sides of the paper (continue on a new sheet of paper if the solution will not fit on a single sheet). Calculators are not allowed. State any theorem or fact you use. You may need the following probability distributions for problems:

\[\text{Poisson}(\lambda) : f(x) = \frac{e^{-\lambda} \lambda^x}{x!}, \quad x = 0, 1, \ldots, \lambda > 0 \]

\[\text{Exp}(\lambda) : f(x) = \lambda e^{-\lambda x}, \quad x > 0, \quad \lambda > 0 \]

\[b(n, p) : f(x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, \ldots, n, \quad 0 < p < 1 \]

\[N(\mu, \sigma^2) : f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(x-\mu)^2}{2\sigma^2} \right), \quad -\infty < x < \infty, \quad -\infty < \mu < \infty, \quad \sigma^2 > 0 \]

\[\chi^2(d) : f(x) = \frac{1}{\Gamma(d/2)2^{d/2}} x^{d/2-1} e^{-x/2}, \quad x > 0, \quad d > 0 \]

where \(\Gamma(\alpha) = \int_0^{\infty} x^{\alpha-1} e^{-x} \, dx \)

1. (15 points) Let \(Z_1 \) and \(Z_2 \) be independent \(\text{Exp}(\lambda) \) random variables, \(\lambda > 0 \). Define \(X = Z_2 \) and \(Y = Z_1 + Z_1 Z_2 \).

 (a) Find the joint density of \(X \) and \(Y \).

 (b) Find \(E(Y | X = x) \).

 (c) Find \(\text{Var}(E(Y | X)) \).

2. (15 points) Suppose \(X_1, \ldots, X_n \) is a random sample from the probability density function

\[f(x; \theta) = \theta x^{\theta-1}, \quad 0 < x < 1, \quad \theta > 0. \]

Let \(W_i = -\log(X_i) \) and let \(\theta \) be the unknown parameter.

 (a) Show that \(\sum_{i=1}^{n} W_i \) is a complete and sufficient statistic for \(\theta \).

 (b) Show that the distribution of \(2\theta \sum_{i=1}^{n} W_i \) is \(\chi^2(2n) \).

 (c) Find the MVUE of \(\theta \). (Hint: Calculate \(E \left(\left(\sum_{i=1}^{n} W_i \right)^{-1} \right) \).

3. (15 points) Let \((X_1, Y_1), \ldots, (X_n, Y_n) \) be independent copies of \((X, Y) \), whose joint distribution is specified as follows: the marginal distribution of \(X \) is \(\text{Poisson}(\lambda) \), and conditioning on \(X = x \), \(Y \) is distributed as \(b(x+1, p) \).

 (a) Show that the covariance between \(X \) and \(Y \) is \(\alpha = \rho \lambda \).

 (b) Find the maximum likelihood estimator of \(\alpha \), call it \(\hat{\alpha} \).

 (c) Find the asymptotic distribution of \(\sqrt{n}(\hat{\alpha} - \alpha) \).

4. (10 points) If \(X_n \sim b(n, 1/n) \), show that the limiting distribution of \(X_n \) is \(\text{Poisson}(1) \).