1. Let \(x \in \mathbb{R}^n \) with \(x = [x_1, x_2, x_3, \ldots, x_n]^T \) and \(x_1 \neq 0 \). Let \(u = x + \sigma e_1 \), where \(\sigma = \text{sign}(x_1)\|x\|_2 \), and let \(\theta = \frac{1}{2}\|u\|_2^2 \). Finally, let \(U = I - \frac{1}{\theta}uu^T \). Prove that \(U \) is unitary and that \(Ux = -\sigma e_1 \).

2. Let \(A \in \mathbb{R}^{n \times n} \).
 (a) Prove that the trace of \(A \) equals the sum of its eigenvalues.
 (b) Prove that if the eigenvalues of \(A \) satisfy \(|\lambda_1| > |\lambda_i|\) for \(i = 2, 3, \ldots, n \), then
 \[
 \lambda_1 = \lim_{m \to \infty} \frac{\text{tr}(A^{m+1})}{\text{tr}(A^m)}.
 \]

3. Let \(A \) be an \(n \times n \) matrix and let \(Q = L + D \) be the lower triangular part of \(A \), including the diagonal. Prove that if \(A \) is strictly diagonally dominant, the Gauss-Seidel method
 \[
 Qx^{(k+1)} = (Q - A)x^{(k)} + b, \quad k = 0, 1, 2, \ldots
 \]
 converges to the solution of \(Ax = b \) for any starting vector \(x^{(0)} \).

4. Consider the equation \(x^3 - x - 1 = 0 \) which has a root \(\xi \) between 1 and 2.
 (a) Determine a suitable iteration function \(T(x) \) such that \(\xi \) is a solution of \(x = T(x) \) and \(T(x) \) is a contraction over \([1, 2] \).
 (b) Find \(k \) such that the \(n^{th} \) iterate \(x_n \) generated by the equation \(x_n = T(x_{n-1}) \) for \(n \geq 1 \), satisfies \(|x_n - \xi| \leq k^n|x_0 - \xi| \).

5. Let \(f(x) \) be the circular quarter arc given by \(f(x) = \sqrt{1 - x^2}, 0 \leq x \leq 1 \). Approximate \(f(x) \) by a straight line \(p_1(x) \) in the least squares sense using the weight function \(\rho(x) = (1 - x^2)^{-1/2}, 0 \leq x \leq 1 \). That is, using the inner product
 \[
 (u, v) = \int_0^1 u(x)v(x) \sqrt{1 - x^2} \, dx.
 \]

6. Let \(f \in C[1, 2] \) and let \(P^n \) be the set of polynomials of degree \(\leq n \). Define an inner product on \(C[1, 2] \) as \((f, g) = \int_1^2 x^2f(x)g(x) \, dx \) and norm \(\|f\| = (f, f)^{1/2} \). Let \(\phi_k(x) \) be orthonormal polynomials with respect to this inner product. The least squares approximation \(p_n \) to \(f \in C[1, 2] \) is given by \(p_n(x) = \sum_{k=0}^n (f, \phi_k)\phi_k(x) \). Prove that \((f - p_n, q_n) = 0 \) for any \(q_n \in P^n \).
7. Let $Q(f)$ be the $(N + 1)$-point Gaussian quadrature rule over the interval $[a, b]$ such that

$$Q(f) = \sum_{i=0}^{N} w_i f(x_i) \approx I(f) = \int_{a}^{b} \rho(x)f(x)dx,$$

where $\rho(x)$ is a real, positive weight function on (a, b). Show that if a and b are finite and f is continuous, then $Q(f) \to I(f)$ as $N \to \infty$.

8. Consider the following two-step method,

$$y_{k+1} + \alpha_0 y_k = h (\beta_1 f(t_k, y_k) + \beta_0 f(t_{k-1}, y_{k-1})),$$

for solving the initial value problem $y'(t) = f(t, y)$.

(a) Find $\alpha_0, \beta_0, \beta_1$ such that the method is second order.

(b) Clearly define consistent, absolutely stable, region of absolute stability, and A-stable.

(c) Is the given two-step method consistent? Why or why not?

9. Consider the nonlinear boundary value problem,

$$-u'' = \cos(u),$$

posed on $(0, 1)$ with boundary conditions $u(0) = u(1) = 0$.

(a) Write down the nonlinear algebraic system of equations resulting from the finite difference method with N internal nodes.

(b) Consider the iterative strategy of solving the nonlinear system from (a) with an initial solution vector $u^{(0)}$ and iterating $A u^{(n+1)} = F(u^{(n)})$, where A is the finite difference matrix obtained by discretizing $-u''$ and $F(u^{(n)})_i = \cos u_i^{(n)}$. Show that this iteration converges to the solution of the algebraic equation for any initial input. (Hint: the fact that the eigenvalues of A are known to be $\{2N^2 \left(1 - \cos \left(\frac{\pi j}{N+1}\right)\right)\}_{j=1}^{N}$ may be helpful in determining the norm of A^{-1} and/or A.)