Do eight of the following ten problems. Clearly indicate which eight are to be graded. Calculators are not allowed.

1. Let A be the 2×2 matrix \[
\begin{pmatrix}
a & -b \\
-2a & a
\end{pmatrix}
\] where a and b are real positive numbers.
 a) Find all values of b/a such that the Jacobi iteration is convergent.
 b) Find all values of b/a such that the Gauss-Seidel iteration is convergent.

2. Let $f \in C^{n+2}[0,1]$ and let $p(x) = \sum_{k=0}^{n} f(x_k) L_k(x)$ where $L_k(x) = \prod_{i=0, i \neq k}^{n} \frac{x - x_i}{x_k - x_i}$. Assume that $x_k = \frac{k}{n}$ for $k = 0, 1, 2, \ldots, n$. Prove that $|p'(0) - f'(0)| \leq \frac{1}{(n+1)!} \max_{0 \leq x \leq 1} |f^{(n+1)}(x)| \prod_{k=1}^{n} \frac{k}{n}$.

3. Let A be a symmetric positive definite $n \times n$ matrix. For any $x \in \mathbb{R}^n$, define $\|x\| = \sqrt{x^T A x}$. Prove that this defines a norm on \mathbb{R}^n. (Hint: To show the triangle inequality, use the Cholesky decomposition.)

4. Let $f \in C^\infty[0,1]$. Let S_n be the composite trapezoidal rule approximation to $\int_0^1 f(x) \, dx$ with n intervals, that is, $S_n = \frac{1}{2n} \sum_{k=0}^{n-1} (f\left(\frac{k}{n}\right) + f\left(\frac{k+1}{n}\right))$. Let $h = \frac{1}{m}$ and let S_m, S_{2m}, and S_{4m} be the values obtained using $n = m, 2m$, and $4m$. Using only the three values S_m, S_{2m}, and S_{4m}, find an $O(h^6)$ approximation to $\int_0^1 f(x) \, dx$.

5. Consider the iterative method $x_{n+1} = F(x_n) = x_n + f(x_n)/g(x_n)$. Assume that the method converges to a point r which is a simple zero of the function $f(x)$ but not a zero of the function $g(x)$. Find $g(r)$ and $g'(r)$ in terms of $f(r)$, $f'(r)$, and $f''(r)$ so that the method has a cubic convergence rate.

6. Consider the approximation $\int_{-1}^{1} f(x) \, dx \approx f(a) + f(b)$ where a and b are real numbers.
 (a) Find a and b so that the approximation is exact for any cubic polynomial. Prove, for your choice of a and b, that the approximation is exact for any cubic polynomial.
 (b) Use your approximation to estimate $\int_{0}^{1} \frac{1}{\sqrt{x}} \, dx$ noticing that a change of variables must first be made.
7. Let $\vec{f} : \mathbb{R}^n \to \mathbb{R}^n$ and consider the initial-value system $\frac{d}{dt} \vec{y}(t) = \vec{f}(\vec{y}(t))$ with $\vec{y}(0) = \vec{a}$. Assume that there is a constant $\lambda > 0$ such that $\|\vec{f}(\vec{u}) - \vec{f}(\vec{v})\|_\infty \leq \lambda \|\vec{u} - \vec{v}\|_\infty$ for all $\vec{u}, \vec{v} \in \mathbb{R}^n$. For approximately solving this initial-value system, consider using the implicit trapezoidal method

$$\vec{y}_{k+1} = \vec{y}_k + \frac{h}{2} \vec{f}(\vec{y}_k) + \frac{h}{2} \vec{f}(\vec{y}_{k+1})$$

for $k = 0, 1, 2, \ldots$, (1)

with $\vec{y}_0 = \vec{a}$. To compute \vec{y}_{k+1}, the following iterative scheme is employed:

$$\vec{y}_{k+1}^{(m+1)} = \vec{y}_k + \frac{h}{2} \vec{f}(\vec{y}_k) + \frac{h}{2} \vec{f}(\vec{y}_{k+1}^{(m)})$$

for $m = 0, 1, 2, \ldots$, with $\vec{y}_{k+1}^{(0)} = \vec{y}_k$.

Assume that $\frac{\lambda h}{2} \leq \frac{1}{3}$. Prove that $\vec{y}_{k+1}^{(m)} \to \vec{y}_{k+1}$ as $m \to \infty$ where \vec{y}_{k+1} is the solution to (1).

8. Let $F : \mathbb{R}^n \to \mathbb{R}^n$ where

$$F(\vec{x}) = [f_1(x_1, x_2, x_3, \ldots, x_n), f_2(x_1, x_2, x_3, \ldots, x_n), \ldots, f_n(x_1, x_2, x_3, \ldots, x_n)]^T.$$

Assume that $f_i \in C^2(\mathbb{R}^n)$ for $i = 1, 2, \ldots, n$. Consider the problem of finding $\vec{x}^* \in \mathbb{R}^n$ such that $F(\vec{x}^*) = \vec{0}$. Describe thoroughly and clearly Newton’s method for solving this problem. Explain one difficulty in implementing Newton’s method for a large number of equations n, say $n = 100$.

9. Consider the multistep method for the initial-value problem $y'(t) = f(y(t))$ of the form:

$$y_n + (A - 1)y_{n-1} - Ay_{n-2} = \frac{h}{12}((5 - A)f(y_n) + 8(1 + A)f(y_{n-1}) + (5A - 1)f(y_{n-2})).$$

For any $A \in \mathbb{R}$, this formula is exact for all cubic polynomial solutions $y(t) = a + bt + ct^2 + dt^3$. That is,

$$y(t_n) + (A - 1)y(t_{n-1}) - Ay(t_{n-2}) = \frac{h}{12}((5 - A)y'(t_n) + 8(1 + A)y'(t_{n-1}) + (5A - 1)y'(t_{n-2}))$$

for all cubic polynomials where $t_n = nh$ and h is step length.

(a) Determine the value of A so that the method is exact for all polynomials of degree 4.

(b) Analyze stability and consistency of the multistep method using the value of A found in part (a).

10. Assume that $n \times n$ matrix A is nonsingular. Show that if $\|AB - I\| = \epsilon < 1$, then

$$\|A^{-1} - B\| \leq \|B\| \left(\frac{\epsilon}{1 - \epsilon}\right)$$