Directions: Do all of the following eight problems. Show all your work and justify your answers. Each problem is worth 10 points.

Notation: \(\mathbb{C} \) — the complex plane; \(\mathbb{Z} \) — the set of integers; \(\mathbb{D} := \{ z : |z| < 1 \} \) — the unit disk; \(\Re(z) \) and \(\Im(z) \) denote the real part of \(z \) and the imaginary part of \(z \), respectively.

1. Let \(f(z) = e^z \).
 (a) Use the Cauchy-Riemann Equations to prove that \(f(z) \) is analytic on \(\mathbb{C} \).
 (b) Prove that \(f(z) \) is conformal at every point \(z \in \mathbb{C} \).
 (c) Prove that \(f(z) \) is one-to-one on the domain \(D \), where

 \[
 D := \{ z = x + iy : -\infty < x < \infty, x < y < x + 2\pi \}.
 \]

2. (a) State Liouville’s Theorem.
 (b) Show that there is no non-constant bounded analytic function on \(\mathbb{C} \setminus \mathbb{Z} \).
 (c) Give an example of a function \(f(z) \) which is analytic on \(\mathbb{C} \setminus \mathbb{Z} \) but is not entire.

3. Let

 \[
 f(z) = \cot z + \cos \left(\frac{1}{1-z} \right) - \frac{1}{z}.
 \]

 Locate and classify all the singularities of \(f(z) \) (including any singularity at \(z = \infty \)) as isolated or non-isolated. Further, classify the isolated singularities by type (removable, pole, essential). Calculate the residues of \(f(z) \) at its poles.

4. Let

 \[
 f(z) = \frac{cz^2 - cz + 1}{z^2(z-1)},
 \]

 where \(c \in \mathbb{C} \) is constant.
 (a) Find the principal part of the Laurent expansion of \(f(z) \) convergent in the domain

 \[
 D := \{ z : 0 < |z| < 1 \}.
 \]
 (b) Find all values of \(c \) for which \(f(z) \) has a primitive in \(D \).

5. Let

 \[
 f(z) = \begin{cases}
 \sin z & \text{if } \Im(z) \geq 0 \\
 1/\sin z & \text{if } \Im(z) < 0.
 \end{cases}
 \]

 Prove that there is a sequence of polynomials \(p_n(z) \), \(n = 1, 2, 3, \ldots \) such that \(p_n(z) \) converges to \(f(z) \) point-wise on \(\mathbb{C} \).

6. Use the Residue Theorem to evaluate the integral

 \[
 \int_{-\infty}^{\infty} \frac{x \sin x}{x^2 - 2x + 10} \, dx.
 \]

7. Let \(g(z) \) be analytic on the disk \(\{ z : |z| < 2 \} \). Suppose that \(g(z) \neq 0 \) for all \(z \) such that \(|z| = 1 \) and \(\Re \left(\frac{\sin(z^2)}{g(z)} \right) > 0 \) for all \(z \) such that \(|z| = 1 \). Find the number of zeros (counting multiplicity) of \(g(z) \) in the unit disk \(\mathbb{D} \).

8. Let \(\mathcal{A}(\mathbb{D}) \) be the set of analytic functions on the unit disk. Let \(F \) be the set of all functions \(f \in \mathcal{A}(\mathbb{D}) \) such that \(f(0) = 1 \) and \(|\arg(f(z))| < \pi/4 \) for all \(z \in \mathbb{D} \). Use Schwarz’s lemma to find

 \[
 \max_{f \in F} |f(1/2)|.
 \]