Directions: Do all of the following ten problems. Show all your work and justify your answers. Each problem is worth 10 points.

Notation: \(\mathbb{C} \) — the complex plane; \(D := \{ z : |z| < 1 \} \) — the unit disk; \(\Re(z) \) and \(\Im(z) \) denote the real part of \(z \) and the imaginary part of \(z \), respectively; \(\text{Log} \ z \) denotes the principal branch of the logarithm.

1. Compute all values of the following multi-valued expression: \((e^i)^i \).

2. Let \(u(x, y) \) be harmonic on a domain \(D \subset \mathbb{C} \) and let \(v(x, y) \) be a harmonic conjugate of \(u(x, y) \) on \(D \).
 (a) Prove that \(u(x, y) v(x, y) \) is harmonic on \(D \).
 (b) Prove that if \(x \ u(x, y) \) is harmonic on \(D \) then \(u(x, y) = ay + b \), where \(a \) and \(b \) are constants.

3. Let \(G \) be a domain in \(\mathbb{C} \), \(a \in G \), and let \(G_a = G \setminus \{a\} \). Suppose that \(f \) is a bounded analytic function on \(G_a \). Prove that an isolated singularity of \(f \) at \(z = a \) is removable.

4. Let \(f \) be an entire function. Suppose that there is a polynomial \(p \) such that for each \(z \in \mathbb{C} \), \(|f(z)| \leq |p(z)| \). Show that \(f \) is also a polynomial.

5. (a) State any version of Runge’s approximation theorem.
 (b) Prove that there is a sequence of polynomials \(p_n \) such that \(p_n(z) \to \sin z \) pointwise if \(\Re z > 0 \), \(p_n(z) \to \cos z \) pointwise if \(\Re(z) < 0 \), and \(p_n(z) \to 0 \) pointwise if \(\Re z = 0 \).

6. Locate and classify for each of the functions all the singularities (including any singularity at \(z = \infty \)) as isolated or non-isolated. Further, classify the isolated singularities by type (removable, pole, essential):
 (a) \(\frac{1}{e^z - 1} - \frac{1}{z} \)
 (b) \(\frac{1}{\text{Log} z} \)
 (c) \(z^2 \sin(1/z) \)

7. Use the Residue Calculus to evaluate the integral
 \[\int_0^\infty \frac{x^2 \, dx}{x^4 + x^2 + 1}. \]

8. Let \(A(\mathbb{D}) \) be the set of analytic functions on the unit disk. Let \(F = \{ f \in A(\mathbb{D}) : f(0) = 1, \ f(\mathbb{D}) \subset \mathbb{C} \setminus (-\infty, 0] \} \). Use Schwarz’s lemma to find
 \[\max_{f \in F} |f'(0)|. \]

9. Find a conformal mapping \(w = f(z) \) from the semi-disk \(\mathbb{D}^+ := \{ z \in \mathbb{D} : \Im(z) > 0 \} \) onto itself with continuous extension to the boundary of \(\mathbb{D}^+ \) such that \(f(-1) = 1, \ f(0) = i, \ f(1) = -1 \).

10. Let \(f \) be a holomorphic function defined in a neighborhood of the closed disk \(\overline{\mathbb{D}} = \{ z : |z| \leq 1 \} \) such that \(f(0) = 1 \) and \(|f(z)| > 1 \) if \(|z| = 1 \). Prove that \(f \) has at least one zero in the unit disk \(\mathbb{D} \).