Instructions:

\(\mathbb{C} \) denotes the complex plane. \(\mathbb{C}_\infty \) denotes the extended complex plane, i.e., \(\mathbb{C}_\infty = \mathbb{C} \cup \{\infty\} \).

For \(z \in \mathbb{C} \), \(\Re z \) and \(\Im z \) denote the real and imaginary parts of \(z \), respectively.

\(\mathbb{D} \) denotes the open unit disk in \(\mathbb{C} \), i.e., \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \).

\(B(a, r) \) denotes the open disk in \(\mathbb{C} \) centered at \(a \) of radius \(r \), i.e., \(B(a, r) = \{ z \in \mathbb{C} : |z - a| < r \} \).

\(\mathbb{U} \) denotes the upper half-plane in \(\mathbb{C} \), i.e., \(\mathbb{U} = \{ z \in \mathbb{C} : \Im z > 0 \} \).

For a region \(\mathcal{G} \subset \mathbb{C} \), let \(\mathcal{A}(\mathcal{G}) = \{ f : f \text{ is analytic on } \mathcal{G} \} \).

1. Find the Laurent expansion of \(f(z) = \frac{1}{z^2(1-z)^2} \) on the annulus
 a. \(0 < |z| < 1 \)
 b. \(1 < |z| < \infty \)

2. Use the residue theorem to evaluate
 a. \(\int_{\gamma} \frac{z(z+1)}{\sin(z+1)} \, dz \) where \(\gamma(t) = 3e^{it}, 0 \leq t \leq 2\pi \)
 b. \(\int_{\gamma} \frac{z(z+1)}{\sin(z+1)} \, dz \) where \(\gamma(t) = 5e^{it}, 0 \leq t \leq 2\pi \)

3. Prove that if \(\mathcal{G} \) is a simply connected region in \(\mathbb{C} \) and if \(f \in \mathcal{A}(\mathcal{G}) \) such that \(f \) has no zeros on \(\mathcal{G} \), then there exists a \(g \in \mathcal{A}(\mathcal{G}) \) such that \(g \) is a branch of logarithm for \(f \).

4. Find the image of the quarter disk, \(\Omega = \{ z \in \mathbb{D} : \Re z > 0, \Im z > 0 \} \) under the map \(w = g(z) = \frac{1}{2i} \left(z - \frac{1}{z} \right) \).
 Prove that \(g \) is one-to-one on \(\Omega \).

5. Let \(f, g \in \mathcal{A}(\mathbb{D}) \). Suppose that \(\frac{f(z)}{g(z)} > 0 \) for \(z \in \partial \mathbb{D} \). Show that \(f, g \) have the same number of zeros in \(\mathbb{D} \).

6. Suppose that \(f \in \mathcal{A}(\mathcal{G}) \), where \(\mathcal{G} \) is a region which contains 0. Suppose that \(\left| f(\frac{1}{n}) \right| \leq e^{-n} \) for all positive integers \(n \). Prove that \(f \equiv 0 \) on \(\mathcal{G} \).

7. Give an explicit example of a function \(f \in \mathcal{A}(\mathbb{D}) \) which is one-to-one on \(\mathbb{D} \) such that the range \(f(\mathbb{D}) \) is dense in \(\mathbb{C} \).

8. Consider the function \(f(z) = \sqrt{1 - z^2} \), where the branch of square root is chosen so that \(f(1) > 0 \). Determine the radius of convergence of the MacLauren series for \(f \).

9. Let \(f \in \mathcal{A}(\mathbb{C}) \). For any point \(\zeta \in \mathbb{C} \), let \(\sum_{n=0}^{\infty} a_n(\zeta)(z - \zeta)^n \) denote the Taylor’s series representation for \(f \) centered at \(\zeta \). Suppose for each such \(\zeta \) that \(a_0(\zeta) = 0 \). Prove that \(f \) is a polynomial.

10. The operators \(\frac{\partial}{\partial z} \) and \(\frac{\partial}{\partial \bar{z}} \) are defined as follows:
 \[
 \frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \quad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).
 \]
 Let \(f(z) \) be a nonzero analytic function in a domain \(D \subset \mathbb{C} \). Find \(\frac{\partial}{\partial \bar{z}} f(z) \). Then prove the following:
 \[
 \frac{\partial}{\partial \bar{z}} |f(z)| = \frac{1}{2} |f(z)| \frac{f'(z)}{f(z)},
 \]