Do all problems. Present adequate work to justify your answers.

Notation: \(B(0; r) = \{ z \in \mathbb{C} : |z| < r \} \), \(\mathbb{D} = B(0; 1) \), \(\text{ann}(a; \alpha, \beta) = \{ z \in \mathbb{C} : \alpha < |z-a| < \beta \} \)

1. Let \(G \) be the region in the first quadrant bounded by the line segment \([0, 1]\) and the arc of the circle which passes through 0 and 1 and which is tangent to the line \(\text{Re} z = \text{Im} z \) at \(z = 0 \). Construct a one-to-one, conformal map of \(G \) onto \(\mathbb{D} \).

2. Consider the rational function \(f(z) = \frac{z^2 - 2z}{z(1-z)(2-z)^2} \).

 a) Classify all of the singularities of \(f \), including the singularity at \(\infty \).

 b) Classify all of the singularities of \(f(z^2) \), including the singularity at \(\infty \).

 c) Find the Laurent expansion of \(f \) on the annulus \(\text{ann}(0; 1, 2) \).

3. State and prove Louiville’s Theorem.

4. Let \(\mathbb{D}' = \mathbb{D} \setminus \{0\} \) and let \(\mathcal{A}(\mathbb{D}') \) denote the set of analytic functions on \(\mathbb{D}' \). Let \(\{ f_n \} \subset \mathcal{A}(\mathbb{D}') \) and \(f \in \mathcal{A}(\mathbb{D}') \) such that \(f_n \) converges to \(f \) in the topology of local uniform convergence on compacta. Let \(\sum_{k=-\infty}^{\infty} a_k^{(n)} z^k \) be the Laurent series expansion of \(f_n \) on \(\mathbb{D}' \) and \(\sum_{k=-\infty}^{\infty} a_k z^k \) be the Laurent series expansion of \(f \) on \(\mathbb{D}' \). Prove for each \(k \) that the sequence \(\{ a_k^{(n)} \} \) converges to \(a_k \) as \(n \to \infty \).

5. Let \(f \) be analytic on \(B(0; 10) \) such that for \(z \in \partial B(0; 1) \) that \(\text{Im} f(z) = \text{Im} z \). Find a representation for \(f \) if \(f(0) = 1 \).

6. Show for \(\alpha > 1 \) that \(\alpha z^3 e^z = 1 \) has exactly three roots in \(B(0; 2) \).

7. For \(f \) analytic on \(\mathbb{C} \) we say that \(\zeta \) is an attractive fixed point of \(f \) if \(\zeta \) is a fixed point of \(f \) and if there exists a \(\delta > 0 \) such that \(|f(z) - \zeta| < |z - \zeta| \) for \(0 < |z - \zeta| < \delta \). Let \(f(z) = z^2 - (2 - \frac{1}{2}i)z \). Find the attractive fixed points of \(f \).

8. Let \(G \) be a region in \(\mathbb{C} \) and let \(f \) be analytic on \(G \). Suppose there exists \(\overline{B(a; r)} \subset G \) such that for \(z \in \partial B(a; r) \), \(|f(z)| = 1 \). If \(\inf_{z \in G} |f(z)| > 0 \), show that \(f \) is constant.

9. Prove that the function \(f(z) = \frac{1}{z^2} \) cannot be uniformly approximated by polynomials on the annulus \(\text{ann}(0; 1, 2) \).

10. Let \(G \) be a region in \(\mathbb{C} \) and let \(\mathcal{A}(G) \) denote the set of analytic functions on \(G \). For any subset \(\mathcal{F} \) of \(\mathcal{A}(G) \) let \(\mathcal{F}' = \{ f' : f \in \mathcal{F} \} \). If \(\mathcal{F} \) is a normal subset of \(\mathcal{A}(G) \), prove that \(\mathcal{F}' \) is also normal.