Preliminary Examination 2000
Complex Analysis

Do all problems.

Notation.

\[\mathbb{C} = \{ z : z \text{ is a complex number} \} \quad \mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \]

1. Show that if \(u \) is a real-valued harmonic function in a domain \(\Omega \subset \mathbb{C} \) such that \(u^2 \) is harmonic in \(\Omega \), then \(u \) is constant.

2. For \(|z| < 1\) let \(f(z) = \frac{1}{1-z} \exp \left[- \frac{1}{1-z} \right] \), and for \(0 \leq \theta < 2\pi \) let \(\ell_\theta = \{ z : z = re^{i\theta}, 0 \leq r < 1 \} \).
 Show that \(f \) is bounded on each set \(\ell_\theta \). Is \(f \) bounded on \(\mathbb{D} \)? Explain.

3. Let \(\Omega \subset \mathbb{C} \) be the intersection of the two disks of radius 2 whose centers are at \(z = 1 \) and \(z = -1 \). Find an explicit conformal mapping of \(\Omega \) onto the upper-half plane.

4. Does there exist a function \(f \) that is analytic in a neighborhood of \(z = 0 \), for which
 (a) \(f(1/n) = f(-1/n) = 1/n^2 \) for all sufficiently large integers \(n \)?
 (b) \(f(1/n) = f(-1/n) = 1/n^3 \) for all sufficiently large integers \(n \)?
 In each case, either give an example or prove that no such function exists.

5. (a) Let \(f \) be analytic on \(\mathbb{D} \) with \(\lim_{|z| \to 1^-} f(z) = 0 \).
 Prove \(f \equiv 0 \).
 (b) Let \(g \) be analytic on \(\mathbb{D} \).
 Prove that the statement \(\lim_{|z| \to 1^-} g(z) = \infty \) is impossible.

6. Let \(f : \mathbb{D} \to \mathbb{D} \) be analytic. Suppose there exists \(z_0 \in \mathbb{D} \) with \(f(z_0) = z_0 \) and \(f'(z_0) = 1 \).
 Prove that \(f(z) \equiv z \).

7. Find all Laurent expansions of \(\frac{1}{(z-2)(z-3)} \) in powers of \(z \) and state where they converge.

8. Use the Theorem of Residues and an appropriate contour to evaluate
 \[
 \int_{-\infty}^{\infty} \frac{\sqrt{x + i}}{1 + x^2} \, dx ,
 \]
 where on \(\{ \text{Im } z > 0 \} \), we choose the branch of \(\sqrt{z + i} \) whose value at 0 is \(e^{\pi i/4} \). Describe your method carefully, and include verification of all relevant limit statements.

9. Show that there exists an unbounded analytic function \(f \) on \(\mathbb{D} \) such that
 \[
 \int_{\mathbb{D}} |f'(z)|^2 \, dA(z) < +\infty ,
 \]
 where \(dA \) is area measure on \(\mathbb{D} \).

10. Show that every function that is meromorphic on the extended complex plane is rational.