The Theory of Linear Statistical Models

1. Review of Some Linear Algebra
 The fundamental theorem of algebra
 Basic notions for real matrices such as range and null space
 Projections
 Diagonalization of symmetric matrices
 Partitioned matrices
 Generalized inverses
 Direct sums
 Tensor Products
 Mean and covariance matrix of a random vector
 Some distribution theory for normal random vectors

2. The Structure of the Linear Model
 The coordinate-free formulation of the model with normal errors
 Estimation
 Testing linear hypotheses, confidence regions, and simultaneous confidence intervals

3. Models Defined by a Design Matrix
 The model with a design matrix which is not necessarily of full rank
 Identifiability
 Estimation
 Estimable linear functions
 A general test
 Tests, confidence regions, and simultaneous confidence intervals involving estimable functions

4. Regression
 Full rank design matrices
 The standard and canonical model
 Estimation, testing, confidence intervals
 Residuals and lack of fit
 Coefficient of determination
 Subset selection
 Ridge regression
 Prediction
 Multiple correlation coefficient

5. The One-Way Layout
 The one sample model: estimation, testing, and confidence intervals
The multiple sample model: estimation, testing, and (simultaneous) confidence intervals

6. The Two-Way Layout
Without interaction and one observation per cell: tensor notation, estimation, testing hypotheses, confidence intervals for contrasts
With interactions and the same number of observations for each cell: tensor notation, basic tests

7. Analysis of Covariance
Partitioned models
An example of an ANCOVA model, using tensor notation

8. Abandoning Normality and Some Asymptotics
The model when errors are not necessarily normal
Asymptotic normality of the least squares estimator of the model parameter

Design of Experiments

After completing this course the student should be able to implement, formulate, and analyze the resulting data for:
- Completely randomized design
- Randomized blocks and related designs
- Factorial design (fixed, random, and mixed effects models)
- Nested design
- Split-Plot design
- Response surface methods
- Unbalanced Factorial design
- Factorial designs with covariates
- Use Multiple comparison techniques to draw simultaneous inference about parameters
- Use residual analysis to check for violation of the model assumptions
- Perform power analysis and calculate the sample size required for a design