Solve eight of the twelve problems below. If you provide solutions (full or partial) to more than eight problems, clearly mark which eight should be graded.

Group theory.

1. Let G be a finite Abelian group. A group character of G is a homomorphism χ from G to the multiplicative group of non-zero complex numbers \mathbb{C}^*. Let \hat{G} denote the set of group characters of G.

 (i) Show that \hat{G} is a group with the operation of point-wise multiplication, i.e., $\chi_1 \chi_2$ is the map sending g to $\chi_1(g)\chi_2(g)$.

 (ii) Prove that if G is cyclic, then $G \cong \hat{G}$.

2. Prove that a group of order 255 is Abelian. Then use this to determine how many groups there are of order 255 (up to isomorphism).

3. Let G be a finite group, and let N be a normal subgroup of G. Let p be a prime, and let P denote a p-Sylow subgroup of N. Assume P is normal in N. Show that P is normal in G.

4. An automorphism φ on a group G is called inner, if it has the form $\varphi(g) = aga^{-1}$ for some fixed $a \in G$. Show that all automorphisms on the symmetric group S_4 are inner.

Ring theory and modules. All rings are assumed to be commutative, and to have an identity element 1.

5. Let F be a field, and let $F[x, 1/x]$ be the ring of Laurent polynomials over F, i.e., polynomials in x and $1/x = x^{-1}$. Show that $F[x, 1/x]$ is a principal ideal domain.

6. Let R be a ring, and let a and b be ideals in R with $a + b = R$ and $a \cap b = \{0\}$. Show that there exists an element $e \in R$ with $a = Re$, $b = R(1 - e)$, and $e^2 = e$.

7. Show that \mathbb{Q} is not a projective \mathbb{Z}-module.

8. Let R be a ring. The annihilator of an R-module M is the set

 $$\text{Ann}(M) = \{ r \in R \mid rm = 0 \text{ for all } m \in M \}.$$

 (i) Show that $\text{Ann}(M)$ is an ideal in R.

 (ii) Assume that $\text{Ann}(M) + \text{Ann}(N) = R$ for two modules M and N. Show that $M \otimes_R N = 0$.

Cont. on p. 2
Fields and Galois theory.

(9) Let F be a field and let $E = F(x)$ be a purely transcendental extension of F. Let $u \in E \setminus F$. Prove that $[F(u) : F] = \infty$.

(10) Let $p(x) = x^4 + ax^2 + 1 \in \mathbb{Q}[x]$ and assume that $p(x)$ is irreducible over \mathbb{Q}. Let θ be a root of $p(x)$. Show that $\mathbb{Q}(\theta)$ is the splitting field of $p(x)$, and that both $\left(\theta + \frac{1}{\theta}\right)^2$ and $\left(\theta - \frac{1}{\theta}\right)^2$ are in \mathbb{Q}. Compute the Galois group of $\mathbb{Q}(\theta)/\mathbb{Q}$.

(11) Prove that an algebraically closed field must be infinite.

(12) Let E/F be a Galois extension of fields with $[E : F] = 2$, where F has characteristic $\neq 2$. Prove that there exists an $\alpha \in E \setminus F$ with $\alpha^2 \in F$.