Preliminary Exam: Algebra
May 1999

Work any 3 problems from each part.

Part I. - Groups

1. Suppose there is only one group (up to isomorphism) of order n. Show that $(n, \phi(n)) = 1$ where $\phi(n) =$ Euler phi function.

3. If a finite group is nilpotent, show that each of its Sylow subgroups is normal.

4. Let G be a group, $Aut\ G$ the group of automorphisms of G.
 For $a \in G$, define $f_a : G \to G$ by $f_a(x) = axa^{-1}$ for all $x \in G$, and $Inn\ G = \{f_a : a \in G\}$.
 a. Show that $f_a \in Aut\ G$.
 b. Show that $Inn\ G \triangleleft Aut\ G$ and $Inn\ G \cong G/C(G)$ where $C(G)$ is the center of G.

Part II - Rings and Modules

1. Let R be a commutative ring with the property that every prime ideal is maximal. Let $R[x]$ be the polynomial ring over R.
 Show that if P is a prime ideal of R, then $P[x]$ is a prime ideal of $R[x]$. Also, show that no prime ideal of $R[x]$ is properly contained in $P[x]$.
2. A commutative domain R is called a Dedekind ring if all ideals I of R are projective as R-modules.

Assume R is a Dedekind ring. Let A and B be R-modules such that $A = B \oplus R$ as R-modules. Let M be a submodule of A.
Show that there is an exact sequence
$$0 \to M \cap B \to M \to J \to 0$$
where J is an ideal of R.

3. Let R be a commutative ring with identity. If I and J are ideals, define
$$(I : J) = \{r \in R : rJ \subseteq I\}.$$

Show that $(I : J)$ is an ideal.

4. Prove that if R is a simple ring with identity, then $M_n(R)$ is also a simple ring.

Part III - Fields and linear algebra

1. Suppose $K \subseteq L$ is a Galois field extension with $[L : K] = 20$.
Show that there exists an irreducible polynomial $f(x) \in K[x]$ of degree 5 such that L contains a root of f.

2. Find the rational and Jordan canonical forms of the complex matrix
$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-6 & 1 & 0 & 1 \\
-3 & 0 & 1 & 0
\end{pmatrix}.$$