Let M be an oriented surface in \mathbb{R}^3, let ξ be the unit vector field normal to M:

$$A_p = -d\xi_p : T_p M \to T_{\xi(p)} S^2 \cong T_p M$$

is the shape operator of M.

The trace of A_p is twice the mean curvature $H(p)$ at $p \in M$.
Definition 1

M is an H-surface means that it has constant mean curvature H.

Definition 2

M is an H-surface $\iff M$ is a critical point for the area functional under compactly supported variations preserving the volume.

- Sphere
- Cylinder
- Delaunay surfaces
Definition 1

\[M \text{ is an } \textbf{H-surface} \text{ means that it has constant mean curvature } H. \]

Definition 2

\[M \text{ is an } \textbf{H-surface} \iff M \text{ is a critical point for the area functional under compactly supported variations preserving the volume.} \]

- Sphere
- Cylinder
- Delaunay surfaces
Introduction to the theory of CMC surfaces.

Definition

An H-surface \(M \) is a **minimal surface** \(\iff H \equiv 0 \iff M \) is a critical point for the area functional under compactly supported variations.

- **Catenoid**
- **Helicoid**
Soap films are minimal surfaces.

Soap bubbles are nonzero H-surfaces.
Notation and Language

- \(\text{Ch}(Y) = \inf_{K \subset Y \text{ compact}} \frac{\text{Area}(\partial K)}{\text{Volume}(K)} = \text{Cheeger constant of } Y. \)

- \(H(Y) = \inf \{ \max |H_M| : M = \text{immersed closed surface in } Y \} \), where \(\max |H_M| \) denotes \(\max \) of absolute mean curvature function \(H_M \).

- The number \(H(Y) \) is called the \textit{critical mean curvature} of \(Y \).
Notation and Language

- \(\text{Ch}(Y) = \inf_{K \subset Y \text{ compact}} \frac{\text{Area}(\partial K)}{\text{Volume}(K)} = \text{Cheeger constant of } Y. \)
- \(H(Y) = \inf \{ \max |H_M| : M = \text{immersed closed surface in } Y \} \), where \(\max |H_M| \) denotes max of absolute mean curvature function \(H_M \).
- The number \(H(Y) \) is called the **critical mean curvature** of \(Y. \)

Theorem (Meeks-Mira-Pérez-Ros)

- If \(Y \) is a simply connected homogeneous 3-manifold, then:
 \[
 2H(Y) = \text{Ch}(Y)
 \]
Notation and Language

- \(\text{Ch}(Y) = \inf_{K \subset Y \text{ compact}} \frac{\text{Area}(\partial K)}{\text{Volume}(K)} \) = Cheeger constant of \(Y \).

- \(H(Y) = \inf \{\max |H_M| : M = \text{immersed closed surface in } Y\} \), where \(\max |H_M| \) denotes max of absolute mean curvature function \(H_M \).

- The number \(H(Y) \) is called the **critical mean curvature** of \(Y \).

Theorem (Meeks-Mira-Pérez-Ros)

- If \(Y \) is a simply connected homogeneous 3-manifold, then:
 \[
 2H(Y) = \text{Ch}(Y)
 \]

Remark

Proof uses \(H(Y) \)-foliations of \(Y \) to show that if \(\Omega(n) \subset Y \) is a sequence of isoperimetric domains in \(Y \) with \(\text{Volume}(\Omega(n)) \to \infty \), then

\[
H_{\partial \Omega(n)} \geq H(Y) \quad \text{and} \quad \lim_{n \to \infty} H_{\partial \Omega(n)} = H(Y).
\]
Fact:
Simply connected homogeneous 3-manifolds X are either isometric to $S^2(\kappa) \times \mathbb{R}$ or to a metric Lie group.
Fact:
Simply connected homogeneous 3-manifolds X are either isometric to $S^2(\kappa) \times \mathbb{R}$ or to a metric Lie group.

Let M be a Riemannian homogeneous 3-manifold, X denote its Riemannian universal cover, $\text{Ch}(X)$ denote the Cheeger constant of X.

Fact:
Simply connected homogeneous 3-manifolds X are either isometric to $S^2(\kappa) \times \mathbb{R}$ or to a metric Lie group.

Let M be a Riemannian homogeneous 3-manifold, X denote its Riemannian universal cover, $\text{Ch}(X)$ denote the Cheeger constant of X.

The next theorem solves what is usually referred to as the **Hopf Uniqueness Problem**

Theorem (Meeks-Mira-Pérez-Ros)
Any two spheres in M of the same absolute constant mean curvature differ by an isometry of M.
Fact: Simply connected homogeneous 3-manifolds X are either isometric to $S^2(\kappa) \times \mathbb{R}$ or to a metric Lie group.

Let M be a Riemannian homogeneous 3-manifold, X denote its Riemannian universal cover, $\text{Ch}(X)$ denote the Cheeger constant of X.

The next theorem solves what is usually referred to as the **Hopf Uniqueness Problem**

Theorem (Meeks-Mira-Pérez-Ros)

Any two spheres in M of the same absolute constant mean curvature differ by an isometry of M. Moreover:

1. If X is not diffeomorphic to \mathbb{R}^3, then, for every $H \in \mathbb{R}$, there exists a sphere of constant mean curvature H in M.

Bill Meeks at the University of Massachusetts

The theory of surfaces of constant mean curvature
Fact:
Simply connected homogeneous 3-manifolds X are either isometric to $S^2(\kappa) \times \mathbb{R}$ or to a metric Lie group.

Let M be a Riemannian homogeneous 3-manifold, X denote its Riemannian universal cover, $\text{Ch}(X)$ denote the Cheeger constant of X.

The next theorem solves what is usually referred to as the Hopf Uniqueness Problem

Theorem (Meeks-Mira-Pérez-Ros)
Any two spheres in M of the same absolute constant mean curvature differ by an isometry of M. Moreover:

1. If X is not diffeomorphic to \mathbb{R}^3, then, for every $H \in \mathbb{R}$, there exists a sphere of constant mean curvature H in M.

2. If X is diffeomorphic to \mathbb{R}^3, then the values $H \in \mathbb{R}$ for which there exists a sphere of constant mean curvature H in M are exactly those with $|H| > \text{Ch}(X)/2$.

Bill Meeks at the University of Massachusetts
The theory of surfaces of constant mean curvature
Theorem

Let S be an H-sphere in M and let $\tilde{S} \subset X$ be a lift.

1. If X is a product $S^2 \times \mathbb{R}$, where S^2 is a sphere of constant curvature, and $\tilde{S} = S^2 \times \{t_0\}$, for some $t_0 \in \mathbb{R}$, then S is totally geodesic, stable and has nullity 1 for its Jacobi operator.

2. Otherwise, S has index 1 and nullity 3 for its Jacobi operator and the immersion of S into X extends as the boundary of an isometric immersion $F: B \to M$ of a Riemannian 3-ball B which is mean convex.

3. There is a point $p_S \in M$ such that every isometry of M that fixes p_S also leaves invariant S.

The theory of surfaces of constant mean curvature
Theorem

Let S be an H-sphere in M and let $\tilde{S} \subset X$ be a lift.

1. If X is a product $S^2 \times \mathbb{R}$, where S^2 is a sphere of constant curvature, and $\tilde{S} = S^2 \times \{t_0\}$, for some $t_0 \in \mathbb{R}$, then S is totally geodesic, stable and has nullity 1 for its Jacobi operator.

2. Otherwise, S has index 1 and nullity 3 for its Jacobi operator and the immersion of S into X extends as the boundary of an isometric immersion $F: B \rightarrow M$ of a Riemannian 3-ball B which is mean convex.

3. There is a point $p_S \in M$ such that every isometry of M that fixes p_S also leaves invariant S.

Bill Meeks at the University of Massachusetts

The theory of surfaces of constant mean curvature
Let S be an H-sphere in M and let $\tilde{S} \subset X$ be a lift.

1. If X is a product $S^2 \times \mathbb{R}$, where S^2 is a sphere of constant curvature, and $\tilde{S} = S^2 \times \{t_0\}$, for some $t_0 \in \mathbb{R}$, then S is totally geodesic, stable and has nullity 1 for its Jacobi operator.

2. Otherwise, S has index 1 and nullity 3 for its Jacobi operator and the immersion of S into X extends as the boundary of an isometric immersion $F: B \to M$ of a Riemannian 3-ball B which is mean convex.
Theorem

Let S be an H-sphere in M and let $\tilde{S} \subset X$ be a lift.

1 If X is a product $S^2 \times \mathbb{R}$, where S^2 is a sphere of constant curvature, and $\tilde{S} = S^2 \times \{t_0\}$, for some $t_0 \in \mathbb{R}$, then S is totally geodesic, stable and has nullity 1 for its Jacobi operator.

2 Otherwise, S has index 1 and nullity 3 for its Jacobi operator and the immersion of S into X extends as the boundary of an isometric immersion $F : B \to M$ of a Riemannian 3-ball B which is mean convex.

3 There is a point $p_S \in M$ such that every isometry of M that fixes p_S also leaves invariant S.
Previous results on the Hopf Uniqueness Problem are the following:

Theorem (Hopf, 1950)

H-spheres in \mathbb{R}^3 are round.

Theorem (Abresch-Rosenberg, 2014)

If M has a 4-dimensional isometry group, then H-spheres in M are surfaces of revolution and they are characterized by their mean curvatures.

Theorem (Daniel-Mira (2013), Meeks (2013))

If X is the Lie group Sol_3 with any of its most symmetric left invariant metrics, then H-spheres in X have index 1 and nullity 3 and they are characterized by their mean curvatures.
Previous results on the **Hopf Uniqueness Problem** are the following:

Theorem (Hopf, 1950)

H-spheres in \mathbb{R}^3 are round.

Theorem (Abresch-Rosenberg, 2014)

If M has a 4-dimensional isometry group, then H-spheres in M are surfaces of revolution and they are characterized by their mean curvatures.
Previous results on the **Hopf Uniqueness Problem** are the following:

Theorem (Hopf, 1950)

H-spheres in \mathbb{R}^3 are round.

Theorem (Abresch-Rosenberg, 2014)

If M has a 4-dimensional isometry group, then H-spheres in M are surfaces of revolution and they are characterized by their mean curvatures.

Theorem (Daniel-Mira (2013), Meeks (2013))

If X is the Lie group Sol_3 with any of its most symmetric left invariant metrics, then H-spheres in X have index 1 and nullity 3 and they are characterized by their mean curvatures.
Definition

Given an oriented immersed surface $f: \Sigma \to X$ with unit normal vector field $N: \Sigma \to TX$, the left invariant Gauss map of Σ is the map $G: \Sigma \to S^2 \subset T_eX$ that assigns to each $p \in \Sigma$, the unit tangent vector to X at the identity element e given by left translation:

$$(dl_{f(p)})_e(G(p)) = N_p.$$
Theorem (Representation Theorem, Meeks-Mira-Perez-Ros)

- Suppose Σ is a simply connected Riemann surface with conformal parameter z, X is a simply connected metric Lie group, $H \in \mathbb{R}$ and $R(q): \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ is the H-potential.

- Let $g: \Sigma \to \overline{\mathbb{C}}$ be a solution of the complex elliptic PDE

$$
g_{zz} = \frac{R_q}{R}(g)g_zg_{\overline{z}} + \left(\frac{R_{\overline{q}}}{R} - \frac{R_q}{R}\right)(g)|g_z|^2,
$$

such that $g_z \neq 0$ everywhere\(^a\), and such that the H-potential R of X does not vanish on $g(\Sigma)$ (for instance, this happens if Σ is closed).

- Then, there exists an immersed H-surface $f: \Sigma \hookrightarrow X$, unique up to left translations, whose Gauss map is g.

- Conversely, if $g: \Sigma \to \overline{\mathbb{C}}$ is the Gauss map of an immersed H-surface $f: \Sigma \hookrightarrow X$ in a metric Lie group X, and the H-potential R of X does not vanish on $g(\Sigma)$, then g satisfies the equation (1), and moreover $g_z \neq 0$ holds everywhere.

\(^a\)By $g_z \neq 0$ we mean that $g_z(z_0) \neq 0$ if $g(z_0) \in \mathbb{C}$ and that $\lim_{z \to z_0} (g_z/g^2)(z) \neq 0$ if $g(z_0) = \infty$.

Bill Meeks at the University of Massachusetts

The theory of surfaces of constant mean curvature
Theorem (Classification Theorem for H-spheres, Meeks-Mira-Pérez-Ros)

Suppose X is a simply connected 3-dimensional metric Lie group.

- X is diffeomorphic to $\mathbb{R}^3 \implies$ the moduli space of H-spheres in X is parameterized by the mean curvature values H in $(H(X), \infty)$.

- X is diffeomorphic to $S^3 \implies$ the moduli space of H-spheres in X is parameterized by the mean curvature values H in $[0, \infty)$.

- X diffeomorphic to $S^3 \implies$ the areas of all H-spheres form a half-open interval $(0, A(X)]$.

- H-spheres in X are **Alexandrov embedded** with index 1, nullity 3.
Steps of the proof of the Classification Theorem for H-spheres.

Throughout Σ denotes a fixed H_0-sphere in X of index 1.
Steps of the proof of the Classification Theorem for H-spheres.

Throughout Σ denotes a fixed H_0-sphere in X of index 1.

- **Step 0:** Σ has nullity 3: Cheng’s theorem.

Bill Meeks at the University of Massachusetts

The theory of surfaces of constant mean curvature
Steps of the proof of the Classification Theorem for H-spheres.

Throughout Σ denotes a fixed H_0-sphere in X of index 1.

- **Step 0:** Σ has nullity 3: Cheng’s theorem.
- **Step 1:** The moduli space $\mathcal{M}(X)$ of non-congruent index-1 H-spheres in X is an analytic 1-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.
Steps of the proof of the Classification Theorem for H-spheres.

Throughout Σ denotes a fixed H_0-sphere in X of index 1.

- **Step 0**: Σ has nullity 3: Cheng's theorem.

- **Step 1**: The moduli space $\mathcal{M}(X)$ of non-congruent index-1 H-spheres in X is an analytic 1-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.

- **Step 2**: The left invariant Gauss map $G: \Sigma \to S^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument.
Steps of the proof of the Classification Theorem for H-spheres.

Throughout Σ denotes a fixed H_0-sphere in X of index 1.

- **Step 0:** Σ has nullity 3: Cheng’s theorem.
- **Step 1:** The moduli space $\mathcal{M}(X)$ of non-congruent index-1 H-spheres in X is an analytic 1-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.
- **Step 2:** The left invariant Gauss map $G: \Sigma \to S^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument.
- **Step 3:** Curvature estimates for Σ (given any fixed upper bound H_1 of H_0): Use that Gauss map is a degree-1 diffeo.
Steps of the proof of the Classification Theorem for H-spheres.

Throughout Σ denotes a fixed H_0-sphere in X of index 1.

- **Step 0:** Σ has nullity 3: Cheng’s theorem.

- **Step 1:** The moduli space $\mathcal{M}(X)$ of non-congruent index-1 H-spheres in X is an analytic 1-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.

- **Step 2:** The left invariant Gauss map $G: \Sigma \to S^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument.

- **Step 3:** Curvature estimates for Σ (given any fixed upper bound H_1 of H_0): Use that Gauss map is a degree-1 diffeo.

- **Step 4:** Area estimates for Σ.

Bill Meeks at the University of Massachusetts

The theory of surfaces of constant mean curvature
Steps of the proof of the Classification Theorem for H-spheres.

Throughout Σ denotes a fixed H_0-sphere in X of index 1.

- **Step 0:** Σ has nullity 3: Cheng’s theorem.

- **Step 1:** The moduli space $\mathcal{M}(X)$ of non-congruent index-1 H-spheres in X is an analytic 1-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.

- **Step 2:** The left invariant Gauss map $G: \Sigma \rightarrow S^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument.

- **Step 3:** Curvature estimates for Σ (given any fixed upper bound H_1 of H_0): Use that Gauss map is a degree-1 diffeo.

- **Step 4:** Area estimates for Σ. This means:

 (A) If X is isomorphic to $SU(2)$, areas of spheres in $\mathcal{M}(X)$ are uniformly bounded.
Steps of the proof of the Classification Theorem for H-spheres.

Throughout Σ denotes a fixed H_0-sphere in X of index 1.

- **Step 0:** Σ has nullity 3: Cheng’s theorem.

- **Step 1:** The moduli space $\mathcal{M}(X)$ of non-congruent index-1 H-spheres in X is an analytic 1-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.

- **Step 2:** The left invariant Gauss map $G: \Sigma \to S^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument.

- **Step 3:** Curvature estimates for Σ (given any fixed upper bound H_1 of H_0): Use that Gauss map is a degree-1 diffeo.

- **Step 4:** Area estimates for Σ. This means:

 (A) If X is isomorphic to $SU(2)$, areas of spheres in $\mathcal{M}(X)$ are uniformly bounded.

 (B) If X is not isomorphic to $SU(2)$, then for any $\Delta > 0$ the areas of spheres in $\mathcal{M}(X)$ with $H_0 \in [H(X) + \Delta, \infty)$ are uniformly bounded.
Steps of the proof of the Classification Theorem for H-spheres.

Throughout Σ denotes a fixed H_0-sphere in X of index 1.

- **Step 0:** Σ has **nullity 3**: Cheng’s theorem.
- **Step 1:** The moduli space $\mathcal{M}(X)$ of non-congruent index-1 H-spheres in X is an analytic 1-manifold locally parameterized by its mean curvature values: **Implicit Function Theorem**.
- **Step 2:** The left invariant Gauss map $G: \Sigma \to S^2 \subset T_e(X)$ is a degree-1 diffeomorphism: **Nodal Domain Argument**.
- **Step 3:** Curvature estimates for Σ (given any fixed upper bound H_1 of H_0): **Use that Gauss map is a degree-1 diffeo.**
- **Step 4:** Area estimates for Σ. This means:

 (A) If X is isomorphic to SU(2), areas of spheres in $\mathcal{M}(X)$ are uniformly bounded.
 (B) If X is **not** isomorphic to SU(2), then for any $\Delta > 0$ the areas of spheres in $\mathcal{M}(X)$ with $H_0 \in [H(X) + \Delta, \infty)$ are uniformly bounded. There are **no** $H(X)$-spheres in X.

Bill Meeks at the University of Massachusetts

The theory of surfaces of constant mean curvature
Steps of the proof continued.

- **Step 5:** Each component of $\mathcal{M}(X)$ is an interval parameterized by the mean curvature values in a subinterval $I_X \subset [0, \infty)$. $I_X = [0, \infty)$ if X is isomorphic to $SU(2)$ and otherwise $I_X = (H(X), \infty)$.

- **Step 6:** On any H_0-sphere M different from a left translation of Σ, \exists a non-zero complex valued quadratic differential ω_M with isolated negative index zeroes.

- **Step 7:** Since the Euler characteristic of the sphere is positive, any H_0-sphere in X is a left translate of the unique H_0-sphere in $M(X)$.

Conclusions: The space of non-congruent H-spheres in X equals $\mathcal{M}(X)$ which is an interval parameterized by the mean curvature values in $[0, \infty)$ if X is isomorphic to $SU(2)$ and otherwise, in the interval $(H(X), \infty)$. Each H-sphere in X has index 1 and nullity 3. Each H-sphere in X is the boundary of an immersed 3-ball $F: B \to X$ (Alexandrov embedded). If X is isomorphic to $SU(2)$, then the areas of H-spheres in X form a half-open interval $(0, A(X))$.

Bill Meeks at the University of Massachusetts
The theory of surfaces of constant mean curvature
Steps of the proof continued.

- **Step 5:** Each component of \(\mathcal{M}(X) \) is an interval parameterized by the mean curvature values in a subinterval \(I_X \subset [0, \infty) \). \(I_X = [0, \infty) \) if \(X \) is isomorphic to \(SU(2) \) and otherwise \(I_X = (H(X), \infty) \).

- **Step 6:** On any \(H_0 \)-sphere \(M \) different from a left translation of \(\Sigma \), \(\exists \) a **NON-ZERO** complex valued quadratic differential \(\omega_{\Sigma}(M) \) with isolated negative index zeroes.

Bill Meeks at the University of Massachusetts

The theory of surfaces of constant mean curvature
Steps of the proof continued.

- **Step 5:** Each component of $\mathcal{M}(X)$ is an interval parameterized by the mean curvature values in a subinterval $I_X \subset [0, \infty)$. $I_X = [0, \infty)$ if X is isomorphic to $SU(2)$ and otherwise $I_X = (H(X), \infty)$.

- **Step 6:** On any H_0-sphere M different from a left translation of Σ, \exists a **NON-ZERO** complex valued quadratic differential $\omega_\Sigma(M)$ with isolated negative index zeroes.

- **Step 7:** Since the Euler characteristic of the sphere is positive, any H_0-sphere in X is a left translate of the unique H_0-sphere in $\mathcal{M}(X)$.

Conclusions:

The space of non-congruent H-spheres in X equals $\mathcal{M}(X)$ which is an interval parameterized by the mean curvature values in $[0, \infty)$ if X is isomorphic to $SU(2)$ and otherwise in the interval $(H(X), \infty)$. Each H-sphere in X has index 1 and nullity 3. Each H-sphere in X is the boundary of an immersed 3-ball $F : B \to X$ (Alexandrov embedded). If X is isomorphic to $SU(2)$, then the areas of H-spheres in X form a half-open interval $(0, A(X))$.

Bill Meeks at the University of Massachusetts

The theory of surfaces of constant mean curvature
Steps of the proof continued.

Step 5: Each component of $\mathcal{M}(X)$ is an interval parameterized by the mean curvature values in a subinterval $I_X \subset [0, \infty)$. $I_X = [0, \infty)$ if X is isomorphic to $SU(2)$ and otherwise $I_X = (H(X), \infty)$.

Step 6: On any H_0-sphere M different from a left translation of Σ, \exists a **NON-ZERO** complex valued quadratic differential $\omega_\Sigma(M)$ with isolated negative index zeroes.

Step 7: Since the Euler characteristic of the sphere is positive, any H_0-sphere in X is a left translate of the unique H_0-sphere in $\mathcal{M}(X)$.

Conclusions:

- The space of non-congruent H-spheres in X equals $\mathcal{M}(X)$ which is an interval parameterized by the mean curvature values in $[0, \infty)$ if X is isomorphic to $SU(2)$ and otherwise, in the interval $(H(X), \infty)$.

Bill Meeks at the University of Massachusetts The theory of surfaces of constant mean curvature
Steps of the proof continued.

- **Step 5:** Each component of $\mathcal{M}(X)$ is an interval parameterized by the mean curvature values in a subinterval $I_X \subset [0, \infty)$. $I_X = [0, \infty)$ if X is isomorphic to $SU(2)$ and otherwise $I_X = (H(X), \infty)$.

- **Step 6:** On any H_0-sphere M different from a left translation of Σ, \exists a **NON-ZERO** complex valued quadratic differential $\omega_\Sigma(M)$ with isolated negative index zeroes.

- **Step 7:** Since the Euler characteristic of the sphere is positive, any H_0-sphere in X is a left translate of the unique H_0-sphere in $\mathcal{M}(X)$.

Conclusions:

- The space of non-congruent H-spheres in X equals $\mathcal{M}(X)$ which is an interval parameterized by the mean curvature values in $[0, \infty)$ if X is isomorphic to $SU(2)$ and otherwise, in the interval $(H(X), \infty)$.
- Each H-sphere in X has **index 1** and **nullity 3**.
Steps of the proof continued.

- **Step 5:** Each component of $\mathcal{M}(X)$ is an interval parameterized by the mean curvature values in a subinterval $I_X \subset [0, \infty)$. $I_X = [0, \infty)$ if X is isomorphic to $SU(2)$ and otherwise $I_X = (H(X), \infty)$.

- **Step 6:** On any H_0-sphere M different from a left translation of Σ, there exists a NON-ZERO complex valued quadratic differential $\omega_\Sigma(M)$ with isolated negative index zeroes.

- **Step 7:** Since the Euler characteristic of the sphere is positive, any H_0-sphere in X is a left translate of the unique H_0-sphere in $\mathcal{M}(X)$.

Conclusions:

- The space of non-congruent H-spheres in X equals $\mathcal{M}(X)$ which is an interval parameterized by the mean curvature values in $[0, \infty)$ if X is isomorphic to $SU(2)$ and otherwise, in the interval $(H(X), \infty)$.
- Each H-sphere in X has **index 1** and **nullity 3**.
- Each H-sphere in X is the boundary of an immersed 3-ball $F: B \to X$ (Alexandrov embedded).
Steps of the proof continued.

- **Step 5:** Each component of $\mathcal{M}(X)$ is an interval parameterized by the mean curvature values in a subinterval $I_X \subset [0, \infty)$. $I_X = [0, \infty)$ if X is isomorphic to $SU(2)$ and otherwise $I_X = (H(X), \infty)$.

- **Step 6:** On any H_0-sphere M different from a left translation of Σ, \exists a **NON-ZERO** complex valued quadratic differential $\omega_{\Sigma}(M)$ with isolated negative index zeroes.

- **Step 7:** Since the Euler characteristic of the sphere is positive, any H_0-sphere in X is a left translate of the unique H_0-sphere in $\mathcal{M}(X)$.

Conclusions:

- The space of non-congruent H-spheres in X equals $\mathcal{M}(X)$ which is an interval parameterized by the mean curvature values in $[0, \infty)$ if X is isomorphic to $SU(2)$ and otherwise, in the interval $(H(X), \infty)$.
- Each H-sphere in X has **index 1** and **nullity 3**.
- Each H-sphere in X is the boundary of an immersed 3-ball $F : B \to X$ (Alexandrov embedded).
- If X is isomorphic to $SU(2)$, then the areas of H-spheres in X form a half-open interval $(0, A(X)]$.

Bill Meeks at the University of Massachusetts

The theory of surfaces of constant mean curvature
Step 4(A): Suppose X is isomorphic to $SU(2)$. There exists a uniform bound on the areas of index 1 H-spheres in $M(X)$.

Proof. Arguing by contradiction, \exists a sequence of H_n-spheres $\Sigma_n \in M(X)$ with $\text{Area}(\Sigma_n) \geq n$ and H_n uniformly bounded. Some subsequence of compact domains in the Σ_n converges to a complete, stable limit H-surface Σ_∞ with degenerate Gauss map. Σ_∞ is invariant under the left action of a 1-parameter subgroup S^1 of X generating a tangent right invariant Killing field K. Σ_∞ can be chosen to be a quasi-periodic cylinder of bounded curvature and linear area growth $\Rightarrow \Sigma_\infty$ is parabolic. Given a point $p \in \Sigma_\infty$, let K' be a right invariant Killing field with $K'(p) \in T_p \Sigma_\infty$ linearly independent from $K(p)$. Jacobi function $\langle K', N \rangle$ changes sign on Σ_∞, $N =$ unit normal field. But on a stable parabolic H-surface, a bounded Jacobi function cannot change sign, a contradiction.
Steps of the proof continued.

- **Step 4(A):** Suppose X is isomorphic to $SU(2)$. There exists a uniform bound on the areas of index 1 H-spheres in $\mathcal{M}(X)$.

Proof.

- Arguing by contradiction, \exists a sequence of H_n-spheres $\Sigma_n \in \mathcal{M}(X)$ with $\text{Area}(\Sigma_n) \geq n$ and H_n uniformly bounded.

Bill Meeks at the University of Massachusetts

The theory of surfaces of constant mean curvature
Steps of the proof continued.

- **Step 4(A):** Suppose X is isomorphic to $SU(2)$. There exists a uniform bound on the areas of index 1 H-spheres in $\mathcal{M}(X)$.

Proof.

- Arguing by contradiction, \exists a sequence of H_n-spheres $\Sigma_n \in \mathcal{M}(X)$ with $\text{Area}(\Sigma_n) \geq n$ and H_n uniformly bounded.

- Some subsequence of compact domains in the Σ_n converges to a complete, stable limit H-surface Σ_∞ with degenerate Gauss map.
Steps of the proof continued.

- **Step 4(A):** Suppose X is isomorphic to $SU(2)$. There exists a uniform bound on the areas of index 1 H-spheres in $M(X)$.

Proof.

- Arguing by contradiction, \exists a sequence of H_n-spheres $\Sigma_n \in M(X)$ with $\text{Area}(\Sigma_n) \geq n$ and H_n uniformly bounded.

- Some subsequence of compact domains in the Σ_n converges to a complete, stable limit H-surface Σ_∞ with degenerate Gauss map.

- Σ_∞ is invariant under the left action of a 1-parameter subgroup S^1 of X generating a tangent right invariant Killing field K.

Bill Meeks at the University of Massachusetts

The theory of surfaces of constant mean curvature
Steps of the proof continued.

- **Step 4(A):** Suppose X is isomorphic to $\text{SU}(2)$. There exists a uniform bound on the areas of index 1 H-spheres in $\mathcal{M}(X)$.

Proof.

- Arguing by contradiction, \exists a sequence of H_n-spheres $\Sigma_n \in \mathcal{M}(X)$ with $\text{Area}(\Sigma_n) \geq n$ and H_n uniformly bounded.
- Some subsequence of compact domains in the Σ_n converges to a complete, stable limit H-surface Σ_∞ with degenerate Gauss map.
- Σ_∞ is invariant under the left action of a 1-parameter subgroup \mathbb{S}^1 of X generating a tangent right invariant Killing field K.
- Σ_∞ can be chosen to be a quasi-periodic cylinder of bounded curvature and linear area growth $\implies \Sigma_\infty$ is parabolic.
Steps of the proof continued.

- **Step 4(A):** Suppose X is isomorphic to $SU(2)$. There exists a uniform bound on the areas of index 1 H-spheres in $\mathcal{M}(X)$.

Proof.

- Arguing by contradiction, \exists a sequence of H_n-spheres $\Sigma_n \in \mathcal{M}(X)$ with $\text{Area}(\Sigma_n) \geq n$ and H_n uniformly bounded.
- Some subsequence of compact domains in the Σ_n converges to a complete, stable limit H-surface Σ_∞ with degenerate Gauss map.
- Σ_∞ is invariant under the left action of a 1-parameter subgroup S^1 of X generating a tangent right invariant Killing field K.
- Σ_∞ can be chosen to be a quasi-periodic cylinder of bounded curvature and linear area growth $\implies \Sigma_\infty$ is parabolic.
- Given a point $p \in \Sigma_\infty$, let K' be a right invariant Killing field with $K'(p) \in T_p \Sigma_\infty$ linearly independent from $K(p)$.

Bill Meeks at the University of Massachusetts
The theory of surfaces of constant mean curvature
Steps of the proof continued.

- **Step 4(A):** Suppose X is isomorphic to $\text{SU}(2)$. There exists a uniform bound on the areas of index 1 H-spheres in $\mathcal{M}(X)$.

Proof.

- Arguing by contradiction, \exists a sequence of H_n-spheres $\Sigma_n \in \mathcal{M}(X)$ with $\text{Area}(\Sigma_n) \geq n$ and H_n uniformly bounded.
- Some subsequence of compact domains in the Σ_n converges to a complete, stable limit H-surface Σ_∞ with degenerate Gauss map.
- Σ_∞ is invariant under the left action of a 1-parameter subgroup S^1 of X generating a tangent right invariant Killing field K.
- Σ_∞ can be chosen to be a quasi-periodic cylinder of bounded curvature and linear area growth $\implies \Sigma_\infty$ is parabolic.
- Given a point $p \in \Sigma_\infty$, let K' be a right invariant Killing field with $K'(p) \in T_p \Sigma_\infty$ linearly independent from $K(p)$.
- Jacobi function $\langle K', N \rangle$ changes sign on Σ_∞, $N = \text{unit normal field}$.

Bill Meeks at the University of Massachusetts The theory of surfaces of constant mean curvature
Steps of the proof continued.

- **Step 4(A):** Suppose X is isomorphic to $SU(2)$. There exists a uniform bound on the areas of index 1 H-spheres in $\mathcal{M}(X)$.

Proof.

- Arguing by contradiction, \exists a sequence of H_n-spheres $\Sigma_n \in \mathcal{M}(X)$ with $\text{Area}(\Sigma_n) \geq n$ and H_n uniformly bounded.
- Some subsequence of compact domains in the Σ_n converges to a complete, stable limit H-surface Σ_∞ with degenerate Gauss map.
- Σ_∞ is invariant under the left action of a 1-parameter subgroup S^1 of X generating a tangent right invariant Killing field K.
- Σ_∞ can be chosen to be a quasi-periodic cylinder of bounded curvature and linear area growth $\implies \Sigma_\infty$ is parabolic.
- Given a point $p \in \Sigma_\infty$, let K' be a right invariant Killing field with $K'(p) \in T_p \Sigma_\infty$ linearly independent from $K(p)$.
- Jacobi function $\langle K', N \rangle$ changes sign on Σ_∞, $N = \text{unit normal field}$.
- But on a stable parabolic H-surface, a bounded Jacobi function cannot change sign, a contradiction.
New uniqueness results for CMC surfaces.

Question
Is the round sphere the only complete simply connected surface embedded in \mathbb{R}^3 with non-zero constant mean curvature?

NOT simply connected
- Cylinder

NOT embedded
- Smyth surface conformally \mathbb{C}
Question

Is the round sphere the only complete simply connected surface embedded in \mathbb{R}^3 with non-zero constant mean curvature?

NOT simply connected

- Cylinder

NOT embedded

- Smyth surface conformally \mathbb{C}
New uniqueness results for CMC surfaces.

Theorem (Meeks-Tinaglia)
Round spheres are the only complete simply connected surfaces embedded in \mathbb{R}^3 with non-zero constant mean curvature.

1986 - Above result proved by Meeks for properly embedded.

Bill Meeks at the University of Massachusetts

The theory of surfaces of constant mean curvature
Theorem (Meeks-Tinaglia)

Round spheres are the only complete simply connected surfaces \textbf{embedded} in \mathbb{R}^3 with non-zero constant mean curvature.

1986 - Above result proved by \textbf{Meeks} for \textbf{properly embedded}.

2007 - Work of \textbf{Colding-Minicozzi} and \textbf{Meeks-Rosenberg} for $H = 0$ shows that if M is a complete, simply connected 0-surface \textbf{embedded} in \mathbb{R}^3, then M is either

\textbf{a plane or a helicoid}.
Theorem (Meeks-Tinaglia)

Let $M \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

1. M has positive injectivity radius $\implies M$ is properly embedded in \mathbb{R}^3.

2. M has finite topology $\implies M$ has positive injectivity radius.

3. Suppose $H > 0$. Then: $|A_M|$ is bounded $\iff M$ has positive injectivity radius.

When $H = 0$, items 1 and 2 were proved by Meeks-Rosenberg, based on: Colding-Minicozzi: M has finite topology and $H = 0 \implies M$ is proper.

Item 3 in the above theorem holds for 3-manifolds which are homogeneously regular; in particular it holds in closed Riemannian 3-manifolds.
Theorem (Meeks-Tinaglia)

Let $M \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

1. M has positive injectivity radius \implies M is properly embedded in \mathbb{R}^3.
2. M has finite topology \implies M has positive injectivity radius.

Suppose $H > 0$. Then:

$|A_M|$ is bounded \iff M has positive injectivity radius.

When $H = 0$, items 1 and 2 were proved by Meeks-Rosenberg, based on:

Colding-Minicozzi: M has finite topology and $H = 0$ \implies M is proper.

Item 3 in the above theorem holds for 3-manifolds which are homogeneously regular; in particular it holds in closed Riemannian 3-manifolds.
Theorem (Meeks-Tinaglia)

Let $M \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

1. M has positive injectivity radius $\implies M$ is properly embedded in \mathbb{R}^3.
2. M has finite topology $\implies M$ has positive injectivity radius.
3. Suppose $H > 0$. Then:

 \[|A_M| \text{ is bounded } \iff M \text{ has positive injectivity radius.} \]

When $H = 0$, items 1 and 2 were proved by Meeks-Rosenberg, based on:

Colding-Minicozzi: M has finite topology and $H = 0 \implies M$ is proper.

Item 3 in the above theorem holds for 3-manifolds which are homogeneously regular; in particular it holds in closed Riemannian 3-manifolds.
Theorem (Meeks-Tinaglia)

Let $M \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

1. M has positive injectivity radius $\implies M$ is properly embedded in \mathbb{R}^3.
2. M has finite topology $\implies M$ has positive injectivity radius.
3. Suppose $H > 0$. Then:

 $$|A_M| \text{ is bounded } \iff M \text{ has positive injectivity radius.}$$

When $H = 0$, items 1 and 2 were proved by Meeks-Rosenberg, based on:

Colding-Minicozzi: M has finite topology and $H = 0 \implies M$ is proper.
Theorem (Meeks-Tinaglia)

Let $M \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

1. M has positive injectivity radius $\implies M$ is properly embedded in \mathbb{R}^3.
2. M has finite topology $\implies M$ has positive injectivity radius.
3. Suppose $H > 0$. Then:

 $|A_M|$ is bounded $\iff M$ has positive injectivity radius.

When $H = 0$, items 1 and 2 were proved by Meeks-Rosenberg, based on:

Colding-Minicozzi: M has finite topology and $H = 0 \implies M$ is proper.

Item 3 in the above theorem holds for 3-manifolds which are homogeneously regular; in particular it holds in closed Riemannian 3-manifolds.
Theorem (Radius Estimates for H-Disks, Meeks-Tinaglia)

$\exists R_0 \geq \pi$ such that every embedded H-disk in \mathbb{R}^3 has radius $< R_0/H$.
Theorem (Radius Estimates for H-Disks, Meeks-Tinaglia)

$\exists R_0 \geq \pi$ such that every embedded H-disk in \mathbb{R}^3 has radius $< \frac{R_0}{H}$.

Corollary (Meeks-Tinaglia)

A complete simply connected H-surface embedded in \mathbb{R}^3 with $H > 0$ is a round sphere.
Theorem (Radius Estimates for H-Disks, Meeks-Tinaglia)

$\exists \ R_0 \geq \pi$ such that every embedded H-disk in \mathbb{R}^3 has radius $< R_0/H$.

Corollary (Meeks-Tinaglia)

A complete simply connected H-surface embedded in \mathbb{R}^3 with $H > 0$ is a round sphere.

Theorem (Curvature Estimates for H-Disks, Meeks-Tinaglia)

Fix $\varepsilon, H_0 > 0$ and a complete locally homogenous 3-manifold X. $\exists \ C > 0$ s.t. for all embedded $(H \geq H_0)$-disks D:

$|A_D|(p) \leq C$ for all $p \in D$ s.t. $\text{dist}_D(p, \partial D) \geq \varepsilon$.
Theorem (One-sided curvature estimate for H-disks, Meeks-Tinaglia)

$\exists C, \varepsilon > 0$ s.t. for any H-disk $\Sigma \subset \mathbb{R}^3$ as in the figure below:

$$|A_{\Sigma}| \leq \frac{C}{R} \text{ in } \Sigma \cap \mathbb{B}(\varepsilon R) \cap \{x_3 > 0\}.$$

This result generalizes the one-sided curvature estimates for minimal disks by Colding-Minicozzi, and uses their work in its proof.
Universal domain for Embedded Calabi-Yau problem?

\[\mathcal{D}_\infty = \text{the above bounded domain, smooth except at } p_\infty. \]

- Ferrer, Martin and Meeks conjecture: An open surface properly embeds as a complete minimal surface in \(\mathcal{D}_\infty \) \iff every end has infinite genus \iff it admits a complete bounded minimal embedding in \(\mathbb{R}^3 \).
Conjecture (Meeks-Perez-Ros-Tinaglia)

For any complete, connected embedded H-surface $\Sigma \subset \mathbb{R}^3$ of finite genus and compact boundary, there exists a constant K_Σ s.t. $\forall R \geq 1$,

$$\text{Area}(\Sigma \cap \mathbb{B}(R)) \leq K_\Sigma \cdot R^3.$$
Conjecture (Meeks-Perez-Ros-Tinaglia)

For any complete, connected embedded H-surface $\Sigma \subset \mathbb{R}^3$ of finite genus and compact boundary, there exists a constant K_Σ s.t. $\forall R \geq 1$,

$$\text{Area}(\Sigma \cap B(R)) \leq K_\Sigma \cdot R^3.$$

Theorem (Meeks-Perez-Ros)

Let $\Sigma \subset \mathbb{R}^3$ be a complete, connected embedded 0-surface of finite genus. Then:

$$\Sigma \text{ is proper } \iff \Sigma \text{ has a countable } \# \text{ of ends.}$$
The family \mathcal{R}_t of Riemann minimal examples

Riemann's Infinite Staircase

- Catenoid Soap Film
- Perturbed Soap Film

Shifted wire

Bill Meeks at the University of Massachusetts
The theory of surfaces of constant mean curvature
I am foliated by circles
The family \mathcal{R}_t of Riemann minimal examples

Riemann's Infinite Staircase

Catenoid Soap Film

Perturbed Soap Film

Shifted wire
Cylindrical parametrization of a Riemann minimal example

Infinite cylinder
Cylindrical parametrization of a Riemann minimal example

Bill Meeks at the University of Massachusetts

The theory of surfaces of constant mean curvature
Topologically there is only one connected genus-zero surface with two limit ends. Riemann minimal examples have this property.
Properly embedded genus-0 examples - Collin-Meeks-Perez-Ros-Rosenberg

Bill Meeks at the University of Massachusetts
The theory of surfaces of constant mean curvature

- Catenoid
- Helicoid
- Riemann
- Plane

MODULI SPACE

$\mathbb{R}_t = \text{Riemann Examples}$

CATENOID

HELICOID
Next theorem is motivated by the study of 3-periodic H-surfaces that appear as interfaces in material science or as equipotential surfaces in crystals. This result contrasts with the failure of area estimates for compact minimal surfaces of genus $g > 2$ in any flat 3-torus (Traizet).
Next theorem is motivated by the study of 3-periodic H-surfaces that appear as interfaces in material science or as equipotential surfaces in crystals. This result contrasts with the failure of area estimates for compact minimal surfaces of genus $g > 2$ in any flat 3-torus (Traizet).

Theorem (Meeks-Tinaglia)

Given a flat 3-torus \mathbb{T}^3 and $H > 0$, $\exists C_H$ s.t. $\forall g \in \mathbb{N}$, a closed H-surface Σ embedded in \mathbb{T}^3 with genus at most g satisfies $\text{Area}(\Sigma) \leq C_H(g + 1)$.
Definition

Suppose \(f : \Sigma \to N \) is a closed immersed surface positive mean curvature in a Riemannian 3-manifold \(N \).

\(\Sigma \) is called strongly *Alexandrov embedded* if \(f \) extends to an immersion \(F : W \to N \) of a compact 3-manifold \(W \) with \(\Sigma = \partial W \), where the extended immersion is injective on the interior of \(W \).
Definition

Suppose $f : \Sigma \to N$ is a closed immersed surface positive mean curvature in a Riemannian 3-manifold N.

Σ is called **strongly Alexandrov embedded** if f extends to an immersion $F : W \to N$ of a compact 3-manifold W with $\Sigma = \partial W$, where the extended immersion is injective on the interior of W.

Theorem (Meeks-Tinaglia, 2017)

- Let N be a closed Riemannian 3-manifold.
- Given $H > 0$ and a non-negative integer g, then the space of strongly Alexandrov embedded closed surfaces in N of genus at most g and constant mean curvature H is **compact**.
These studies on the geometry of embedded \(H \)-surfaces lead to the following deep results on \textbf{CMC} foliations of 3-manifolds.

Definition

A codimension-1 foliation \(F \) of a Riemannian \(n \)-manifold \(X \) is a \textbf{CMC} foliation if it is transversely oriented and the mean curvature function \(H_F : X \to \mathbb{R} \) constant along leaves of \(F \).

Theorem (CMC Foliation Extension Theorem, Meeks-Perez-Ros)

Let \(F \) be a weak \textbf{CMC} foliation of a punctured Riemannian 3-ball \(B(p, r) - \{ p \} \).

Then \(F \) extends to a weak \textbf{CMC} foliation of \(B(p, r) \) if and only if the mean curvature function of \(F \) is bounded in some neighborhood of \(p \).

2 key ingredients in the proof.

- Curvature estimates for \textbf{CMC} foliations.
- Local removable singularity theorem for weak \(H \)-laminations.

Bill Meeks at the University of Massachusetts

The theory of surfaces of constant mean curvature
These studies on the geometry of embedded H-surfaces lead to the following deep results on CMC foliations of 3-manifolds.

Definition

A codimension-1 foliation \mathcal{F} of a Riemannian n-manifold X is a CMC foliation if it is transversely oriented and the mean curvature function $H_{\mathcal{F}} : X \to \mathbb{R}$ is constant along leaves of \mathcal{F}.

Theorem (CMC Foliation Extension Theorem, Meeks-Perez-Ros)

Let \mathcal{F} be a weak CMC foliation of a punctured Riemannian 3-ball $B(p, r) - \{p\}$. Then \mathcal{F} extends to a weak CMC foliation of $B(p, r) \iff$ the mean curvature function of \mathcal{F} is bounded in some neighborhood of p.

2 key ingredients in the proof.

- Curvature estimates for CMC foliations.
- Local removable singularity theorem for weak H-laminations.
These studies on the geometry of embedded H-surfaces lead to the following deep results on CMC foliations of 3-manifolds.

Definition

A codimension-1 foliation \mathcal{F} of a Riemannian n-manifold X is a CMC foliation if it is transversely oriented and the mean curvature function $H_{\mathcal{F}} : X \to \mathbb{R}$ constant along leaves of \mathcal{F}.

Theorem (CMC Foliation Extension Theorem, Meeks-Perez-Ros)

- Let \mathcal{F} be a weak CMC foliation of a punctured Riemannian 3-ball $B(p, r) - \{p\}$.
- Then \mathcal{F} extends to a weak CMC foliation of $B(p, r) \iff$ the mean curvature function of \mathcal{F} is bounded in some neighborhood of p.

Curvature estimates for CMC foliations. Local removable singularity theorem for weak H-laminations.
These studies on the geometry of embedded H-surfaces lead to the following deep results on CMC foliations of 3-manifolds.

Definition

A codimension-1 foliation \mathcal{F} of a Riemannian n-manifold X is a CMC foliation if it is transversely oriented and the mean curvature function $H_{\mathcal{F}} : X \rightarrow \mathbb{R}$ constant along leaves of \mathcal{F}.

Theorem (CMC Foliation Extension Theorem, Meeks-Perez-Ros)

- Let \mathcal{F} be a weak CMC foliation of a punctured Riemannian 3-ball $B(p, r) - \{p\}$.
- Then \mathcal{F} extends to a weak CMC foliation of $B(p, r)$ if and only if the mean curvature function of \mathcal{F} is bounded in some neighborhood of p.

2 key ingredients in the proof.

- Curvature estimates for CMC foliations.
- Local removable singularity theorem for weak H-laminations.
CMC foliation of \mathbb{R}^3 punctured in two points by spheres and planes

Theorem (Meeks-Perez-Ros)

Suppose \mathcal{F} is a CMC foliation of $\mathbb{R}^3 - S$ where S is a closed countable set. Then all leaves of \mathcal{F} are contained in planes and round spheres.
Calabi-Yau type problems for embedded H-surfaces

Theorem (Meeks-Tinaglia)
For $H \geq 1$, complete embedded finite topology H-surfaces in complete hyperbolic 3-manifolds are proper.

Theorem (Coskunuzer-Meeks-Tinaglia)
- For every $H < 1$, \exists a complete embedded stable H-plane that is nonproper in \mathbb{H}^3.
- For every $H \in (0, 1/2)$, \exists a complete embedded stable H-plane that is nonproper in $\mathbb{H}^2 \times \mathbb{R}$.

Theorem (Tinaglia-Rodriguez)
\exists a complete embedded stable 0-plane that is nonproper in $\mathbb{H}^2 \times \mathbb{R}$.