Variational Geometry

Hung Tran

Texas Tech University

Feb 20th, 2018
Junior Scholar Symposium, Texas Tech University
Geometric Variational Problems

- Geometry: Metric (measurement) and curvature (shape).
- Ricci flow: Specific variations.
- Minimal surfaces: Critical points of the area functional.
Geometric Variational Problems

- Geometry: Metric (measurement) and curvature (shape).
Geometric Variational Problems

- Geometry: Metric (measurement) and curvature (shape).

- Ricci flow: Specific variations.
Geometric Variational Problems

• Geometry: Metric (measurement) and curvature (shape).

• Ricci flow: Specific variations.

• Einstein Structures: Critical points of a natural geometric functional.
Geometric Variational Problems

• Geometry: Metric (measurement) and curvature (shape).

• Ricci flow: Specific variations.

• Einstein Structures: Critical points of a natural geometric functional.

• Minimal surfaces: Critical points of the area functional.
Differentiable Manifolds

- Differentiable manifold M: locally Euclidean.
- Riemannian metric g: measure length/distance/volume.
Differentiable Manifolds

- Differentiable manifold M^n: locally Euclidean.
Differentiable Manifolds

- Differentiable manifold M^n: locally Euclidean.
- Riemannian metric g: measure length/distance/volume.
Curvature

• Levi-Civita connection: Allow differentiation.

• Curvature: (determined by derivatives of the metric) Measure non-flatness.

• Intrinsic: Riemannian curvature, Ricci curvature, scalar curvature.

• Extrinsic: Mean curvature, second fundamental form.
Curvature

- Levi-Civita connection: Allow differentiation.

A tangent plane
Curvature

- Levi-Civita connection: Allow differentiation.

- Curvature: (determined by derivatives of the metric) Measure non-flatness.

A tangent plane
Curvature

- Levi-Civita connection: Allow differentiation.

A tangent plane

- Curvature: (determined by derivatives of the metric) Measure non-flatness.

- Intrinsic: Riemannian curvature, Ricci curvature, scalar curvature.
Curvature

- Levi-Civita connection: Allow differentiation.

- Curvature: (determined by derivatives of the metric) Measure non-flatness.

- Intrinsic: Riemannian curvature, Ricci curvature, scalar curvature.

- Extrinsic: Mean curvature, second fundamental form.
Space Forms

Constant curvature models: Euclidean space (flat), round sphere (constant positive), hyperbolic space (constant negative).
Space Forms

Constant curvature models: Euclidean space (flat), round sphere (constant positive), hyperbolic space (constant negative).

Round sphere
Space Forms

Constant curvature models: Euclidean space (flat), round sphere (constant positive), hyperbolic space (constant negative).

Round sphere

Poincare model
Space Forms

Constant curvature models: Euclidean space (flat), round sphere (constant positive), hyperbolic space (constant negative).

Round sphere

Poincare model
Ricci Flow

\[
\frac{\partial}{\partial t} g = -2Rc
\]

Figure: Ricci flow on a neck

Ricci Flow

$(M, g(t))$ is a Ricci flow solution if

$$\frac{\partial}{\partial t} g = -2Rc.$$
Ricci Flow

$(M, g(t))$ is a Ricci flow solution if

$$\frac{\partial}{\partial t} g = -2Rc.$$

Ricci flow on a neck

Overview
Overview

- Fundamental questions:
 - Convergence.
 - Formulation of Singularities.

Celebrated applications:
- G. Perelman's proof of the Poincare's conjecture.
- The proof of the differentiable sphere theorem by S. Brendle and R. Schoen.

Technicality: Parabolic PDE, maximum principle.
Overview

- Fundamental questions:
 - Convergence.
 - Formulation of Singularities.

- Celebrated applications:
 - G. Perelman’s proof of the Poincare’s conjecture.
 - The proof of the differentiable sphere theorem by S. Brendle and R. Schoen.
Overview

- Fundamental questions:
 Convergence.
 Formulation of Singularities.

- Celebrated applications:
 G. Perelman’s proof of the Poincare’s conjecture.
 The proof of the differentiable sphere theorem by S. Brendle and R. Schoen.

- Technicality: Parabolic PDE, maximum principle.
Contributions

- Harnack inequalities crucial in Perelman’s singularity analysis.
- Obtain analogous estimates in generalized settings:
 - Ricci flow on warped Products (2015, JGA)
 - (with Mihai Bailesteanu) Ricci-Harmonic map flow (2017, PEMS)
 - (with Xiaodong Cao, Hongxin Guo) Generalized abstract flow (2015, MZ)
- (with X. Cao) Behavior of curvature towards the singular time (2015, MRL)
Einstein Structures

- (M, g) is an Einstein structure if, for a constant λ, $Rc = \lambda g$.
- Critical points of the Hilbert functional.
- Generalized Structures: Gradient Ricci soliton, Harmonic curvature, Harmonic Weyl tensor.
- Quest for the best metric.
Einstein Structures

- (M, g) is an Einstein structure if, for a constant λ,
 \[Rc = \lambda g. \]
Einstein Structures

- \((M, g)\) is an Einstein structure if, for a constant \(\lambda\),
 \[R_c = \lambda g. \]
- Critical points of the Hilbert functional.
Einstein Structures

- \((M, g)\) is an Einstein structure if, for a constant \(\lambda\),
 \[
 \text{Rc} = \lambda g.
 \]
- Critical points of the Hilbert functional.
- Generalized Structures: Gradient Ricci soliton, Harmonic curvature, Harmonic Weyl tensor.

Hung Tran (TTU)
Variational Geometry
Feb 20th, 2018 9 / 15
Einstein Structures

- \((M, g)\) is an Einstein structure if, for a constant \(\lambda\),

\[\text{Rc} = \lambda g.\]

- Critical points of the Hilbert functional.
- Generalized Structures: Gradient Ricci soliton, Harmonic curvature, Harmonic Weyl tensor.
- Quest for the best metric.
Einstein Structures

- \((M, g)\) is an Einstein structure if, for a constant \(\lambda\),
 \[\text{Re} = \lambda g. \]
- Critical points of the Hilbert functional.
- Generalized Structures: Gradient Ricci soliton, Harmonic curvature, Harmonic Weyl tensor.
- Quest for the best metric.

Round sphere
Einstein Structures

- (M, g) is an Einstein structure if, for a constant λ,
 \[\text{Rc} = \lambda g. \]
- Critical points of the Hilbert functional.
- Generalized Structures: Gradient Ricci soliton, Harmonic curvature, Harmonic Weyl tensor.
- Quest for the best metric.

Round sphere

Non-Round sphere
Einstein Structures

Fundamental questions:
• Existence.
• Uniqueness/moduli space.

Open question:
Conjecture: A non-flat simply connected Einstein four-manifold with non-negative sectional curvature must be either S^4, \mathbb{CP}^2, $S^2 \times S^2$.

Technicality: Non-linear PDE, elliptic methods.
• Fundamental questions:
• Fundamental questions:

Existence.
• Fundamental questions:

Existence.

Uniqueness/moduli space.
Fundamental questions:

Existence.

Uniqueness/moduli space.

Open question:

Conjecture

A non-flat simply connected Einstein four-manifold with non-negative sectional curvature must be either S^4, \mathbb{CP}^2, $S^2 \times S^2$.

Fundamental questions:

Existence.

Uniqueness/moduli space.

Open question:

Conjecture

A non-flat simply connected Einstein four-manifold with non-negative sectional curvature must be either S^4, CP^2, $S^2 \times S^2$.

Technicality: Non-linear PDE, elliptic methods.
Contributions

- (with X. Cao) Rigidity of a gradient Ricci soliton (2016, GT)
- Rigidity of closed manifolds with harmonic Weyl curvature (2017, AiM)
- (with X. Cao) Progress towards E4M conjecture (2016, Preprint)
Free Boundary Minimal Surfaces

\[\Sigma \subset B_3, \quad \partial \Sigma \subset \partial B_3, \quad \Sigma \text{ is a FBMS if } H \equiv 0 \text{ and } \Sigma \text{ meets } \partial B_3 \text{ perpendicularly.} \]

FBMS are critical points of the area functional with the free boundary condition (extension of Plateau's problem).

Figure: Critical Catenoid

Images courtesy of Peter McGrath
Free Boundary Minimal Surfaces

- \(\Sigma \subset B^3, \partial \Sigma \subset \partial B^3 \), \(\Sigma \) is a FBMS if \(H \equiv 0 \) and \(\Sigma \) meets \(\partial B^3 \) perpendicularly.
Free Boundary Minimal Surfaces

- $\Sigma \subset B^3$, $\partial \Sigma \subset \partial B^3$, Σ is a FBMS if $H \equiv 0$ and Σ meets ∂B^3 perpendicularly.

- FBMS are critical points of the area functional with the free boundary condition (extension of Plateau’s problem).

Critical Catenoid

\(^2\)Images courtesy of Peter McGrath
Overview

- Fundamental questions:
Overview

- Fundamental questions:

 Regularity (relatively well understood).
Overview

- Fundamental questions:

 Regularity (relatively well understood).

 Existence (rapid progress recently).
Overview

- Fundamental questions:
 -Regularity (relatively well understood).
 -Existence (rapid progress recently).
 -Uniqueness.
Overview

- Fundamental questions:
 - Regularity (relatively well understood).
 - Existence (rapid progress recently).
 - Uniqueness.

- Analogous Lawson’s conjecture:

Conjecture

* A free boundary minimal annulus must be the critical catenoid.*
Overview

- Fundamental questions:

 Regularity (relatively well understood).

 Existence (rapid progress recently).

 Uniqueness.

- Analogous Lawson’s conjecture:

 Conjecture

 A free boundary minimal annulus must be the critical catenoid.

 Technicallity: Elliptic PDE, PDE, GMT, and complex methods.
Contributions

• Stability (quantitatively measured by the Morse index) is crucial to answer uniqueness questions.

• Develop a natural method to compute the Morse index (2016, CAG).

• (with Graham Smith, Ari Stern, and Detang Zhou) Study the growth of Morse indices of higher dimensional catenoids (2017, Preprint).

• Characterize the critical catenoid by a natural condition on its Gauss map (2017, Preprint).
Contributions

- Stability (quantitatively measured by the Morse index) is crucial to answer uniqueness questions.
Contributions

- Stability (quantitatively measured by the Morse index) is crucial to answer uniqueness questions.

- Develop a natural method to compute the Morse index (2016, CAG).
Contributions

- Stability (quantitatively measured by the Morse index) is crucial to answer uniqueness questions.

- Develop a natural method to compute the Morse index (2016, CAG).

- (with Graham Smith, Ari Stern, and Detang Zhou) Study the growth of Morse indices of higher dimensional catenoids (2017, Preprint).
Contributions

- Stability (quantitatively measured by the Morse index) is crucial to answer uniqueness questions.

- Develop a natural method to compute the Morse index (2016, CAG).

- (with Graham Smith, Ari Stern, and Detang Zhou) Study the growth of Morse indices of higher dimensional catenoids (2017, Preprint).

- Characterize the critical catenoid by a natural condition on its Gauss map (2017, Preprint).
Thank You