CH 9: Hypothesis Testing Part 1

1. Introduction

- (A) The aim of testing statistical hypotheses is to determine whether a claim or conjecture about some feature of the population parameter (say, the mean μ , or the proportion p) is strongly supported by the information obtained from the sample data.
- (B) Some basic concepts in Hypothesis Testing
 - (a) A set of hypotheses:

 H_1 or H_a : the claim or the research hypothesis that we wish to establish is called the alternative hypothesis.

 H_0 (Null hypothesis): Refers to a specified value of the population parameter.

(b) There are three forms of Hypotheses in this chapter:

Form 1: Two-tailed test H_0 : Parameter = reference value H_1 : Parameter \neq reference value Form 2: Upper, one-tailed test H_0 : Parameter \leq reference value H_1 : Parameter > reference value Form 3: lower, one-tailed test H_0 : Parameter \geq reference value H_1 : Parameter \leq reference value

- (C) Type I and Type II error of the test
- (D) The probability of making a type I error = α : level of significance.
- (E) Test Statistic: A statistic whose value helps determine whether a null hypothesis should be rejected.
- (F) *p*-value: A probability that provides a measure of the evidence against the null hypothesis provided by the sample. If the *p*-value is less than α , we reject H_0 ; If the *p*-value is more than α , we fail to reject H_0 .
- 2. Application: Hypothesis Testing Step 1: State H_0 vs. H_1 .

Step 2: Compute the test statistic

Step 3: Compute the *p*-value based on the test statistic and making a decision: if the *p*-value is less than α , we reject H_0 , otherwise, we fail to reject H_0 . (A) Case I: Z-test for the population mean μ (σ known)

$$Z_{cal} = \frac{X - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$
(eq9.1)
Note: two-tailed test: $p - value = 2P(Z > |Z_{cal}|)$
upper, one-tail test: $p - value = P(Z > Z_{cal})$
lower, one-tail test: $p - value = P(Z < Z_{cal})$

- EX 1. A manager wants to know if the amount of paint in 1-gallon cans is indeed 1-gallon. Given that the population standard deviation is 0.02 gallon. A random sample of 50 cans is selected and the sample mean is 0.995 gallon. Is there evidence that the mean amount is different from 1 gallon ($\alpha = 0.01$)?
 - (a) State H_0 and H_1

Note: two-tailed test: p -

- (b) Compute the test statistic
- (c) Find the *p*-value and make a decision.
- (B) Case II: t-test for the population mean μ (σ unknown)

$$t_{cal} = \frac{X - \mu_0}{\frac{S}{\sqrt{n}}} \tag{eq9.2}$$

Note: use the t-table (with n-1 degrees of freedom) to obtain the range of the p-value and then make a decision.

- EX 2. 100 candy bars are random selected with a mean of 1.466 and standard deviation of 0.132. For $\alpha = 0.05$, is there evidence that the average weight of the candy bars is less than 1.5 ounces?
 - (a) State H_0 and H_1
 - (b) Compute the test statistic
 - (c) Guessing the range of the *p*-value and make a decision.

CH 9: Hypothesis Testing Part 2

EX 2 (Cont) Is there evidence that the average weight of the candy bars is different from 1.5 ounces ($\alpha = 0.05$)?

(C) Case III: Z-test for the population proportion p

$$Z_{cal} = \frac{p - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}}$$
(eq9.4)

Note: two-tailed test: $p - value = 2P(Z > |Z_{cal}|)$ upper, one-tail test: $p - value = P(Z > Z_{cal})$ lower, one-tail test: $p - value = P(Z < Z_{cal})$

- EX 3 It's claim that the usual percentage of overdraw is more than 10% on checking account(CA) at a bank. To test this claim, a random sample of 50 CA is examined and six out of 50 were found to be overdraw. What conclusion can you make at $\alpha = 0.05$?
 - (a) State H_0 and H_1
 - (b) Compute the test statistic
 - (c) Find the *p*-value and make a decision.

3. Making a decision based on the Critical Value Step 1: State H_0 vs. H_1 .

Step 2: Compute the test statistic and find the critical value.

Step 3: Make a decision based on the critical value.

EX 1 (cont) For the two-tail test, make a decision using the critical approach. Step 1: State H_0 and H_1

Step 2: Compute the test statistic and find the critical value

Step 3: Make a decision.

EX 2 (cont) Use the critical value approach to test if the average weight of the candy bars is less than 1.5 ounces ($\alpha = 0.05$).

EX 3 (cont) Use the critical value approach to test the hypothesis.