CH 7: Sampling Distributions

1. Basic Concepts
(A) Parameter: A numerical characteristic of a population, such as a population mean μ, a population standard standard deviation σ, a population proportion p.
(B) Sample statistic: A sample characteristic, such as sample mean \bar{x}, sample standard deviation s, a sample proportion \bar{p}.
(C) Our goal in this chapter is to use sample statistics to estimate certain parameters, such as point estimator \bar{x} for μ, point estimator \bar{p} for p.
(D) Any sample statistic will have a probability distribution called the sampling distribution of the statistic.
2. Sample Distribution of \bar{x}.
(A) The expected value of \bar{x} (or the population mean of the sample mean, denoted by $E(\bar{x})$)

$$
\begin{equation*}
E(\bar{x})=\mu \tag{eq7.1}
\end{equation*}
$$

where μ is the population mean.
(B) The standard deviation the sample mean (or the standard error of the sample mean, denoted by $\sigma_{\bar{x}}$)

$$
\begin{equation*}
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \tag{eq7.3}
\end{equation*}
$$

where σ is the population standard deviation.
EX 1 A population has a mean of 99 and standard deviation of 7. Compute the expected value of the sample mean and the standard error of the sample mean for (1). $n=4$
(2). $n=25$
(C) If a random variable x is from a normal distribution, i.e., $N(\mu, \sigma)$, then the random variable sample mean \bar{x} would have a normal distribution with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$, i.e., $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.
Application 1: Finding the probability of the sample mean \bar{x} :
Step 1: Write down the probability statement (say: $P(\bar{x}<a) . P(\bar{x})>a, P(a<\bar{x}<b)$)
Step 2: Use $Z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}$ to standardize the value of \bar{x} into Z
Step 3: Look in the standard normal table (z-table) to find the probability.

Application 2: Recovering the \bar{x} value for a given probability p.
Step 1: Find the Z-value from the standard normal table for the given probability.
Step 2: Use the formula $Z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}$ to solve for \bar{x}
EX 2 Apples have a mean weight of 7 ounces and a standard deviation of 2 ounces (they are normally distributed) and they are chosen at random and put in a box of 30 .
(1) Find the probability that the average weight of the apples in a box is greater than 6.5 ounces.
(2) Below what value do 12.1% of the average weight of the apples fall?
(D) Question: what if the sampling is from a nonnormal population, do we have similar result? Answer: yes! if the sample size n is large enough (say, at least 30). This result is called the Central Limit Theorem: Whatever the population, the distribution of \bar{x} is approximately normal with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$ if n is large.
EX 3 Consider a population with mean $\mu=82$ and standard deviation $\sigma=12$. If a random sample of size of 64 is selected. What is the probability that the sample mean will lie between 80.8 and 83.2 ?
3. Sample distribution of \bar{p}
(A) The sample proportion \bar{p} can be computed use the equation $\bar{p}=\frac{x}{n}$ where x is the number of elements in the sample that possess the characteristic of interest and n is the sample size.
(B) Expected value of \bar{p}

$$
\begin{equation*}
E(\bar{p})=p \tag{eq7.4}
\end{equation*}
$$

where p is the population proportion
(C) The standard deviation of \bar{p} (or called the standard error, denoted by $\sigma_{\bar{p}}$)

$$
\begin{equation*}
\sigma_{\bar{p}}=\sqrt{\frac{p(1-p)}{n}} \tag{eq7.6}
\end{equation*}
$$

EX 4 A simple random sample of size 100 is selected from a population with $p=0.40$. What is the expected value of \bar{p} ? What is the standard error of \bar{p} ?

