CH 4: Basic Probability

1. Basic Concepts

(A) Sample Space: The collection of all possible outcomes.
(B) An Event: An event is a subset (part) of the sample space in which you are interested.
(C) Combination:

$$
\begin{gathered}
C_{n}^{N}=\frac{N!}{n!(N-n)!} \\
N!=N(N-1)(N-2) \cdots(2)(1), n!=n(n-1)(n-2) \cdots(2)(1), \text { and } 1!=1,0!=1
\end{gathered}
$$

EX 1. From a committee of 10 people, in how many ways can we choose a subcommittee of 3 people?
(D) Probability: A numerical measure of the likelihood that an event will occur.

EX 2. Two coins are tossed, find the probability of getting at least one head.

Note 1: The probability of an event is a number between 0 and 1.
Note 2: The probability of the sample space is 1 .
(E) Some basic set notations and formulas.
(1) The complement of an event A, denoted by A^{c} (the set of all outcomes that are not in A). The equation for computing probability using the complement is given by
(2) The union of two events A, B, denoted by $(A \cup B)$, is the set of all outcomes that are in A, B or both.

(3) The intersection of two events A, B, denoted by $(A \cap B)$, is the set of all outcomes that are in A and B. Note: $P(A \cap B)$ is the joint probability.

(4) If the intersection $(A \cap B)$ is empty (i.e. $P(A \cap B)=0$), then the two events A, B are called mutually exclusive (disjoint).
(5) Addition law

$$
\begin{equation*}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \tag{eq4.6}
\end{equation*}
$$

(F) Conditional Probability:

The probability of the occurrence of an event A, given the occurrence of another event B, denoted by $P(A \mid B)$ is given by

$$
\begin{equation*}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \tag{eq4.7}
\end{equation*}
$$

Similarly, the conditional probability of event B given that event A has occurred as

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

Now, based on the conditional probability, we can write $P(A \cap B)=P(A \mid B) P(B)$ or $P(A \cap B)=$ $P(B \mid A) P(A)$ (called the multiplication law). If $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$, then A and B are said to be independent.
(G) Independent Events: Two events A and B are said to be statistically independent if and only if

$$
\begin{equation*}
P(A \cap B)=P(A) P(B) \tag{eq4.13}
\end{equation*}
$$

EX 3. Suppose that an employment agency has found that 40% of the applicants are college grads and 30% of the applicants have had computer skills. The two characteristics are independent. Find the probability that the applicants are college grads and have had computer skills.
2. Application: Computing Probability from crosstabulations.

	A	B	C	Total
D				
E				
Total				

EX 4. The manager of a shirt manufacture wants to study the connection between shifts and shirt quality. 600 shirts are randomly selected. The results are shown below:

Shirt quality	Shift 1	Shift2	Shift3	Total
Perfect	240	191	139	570
Flawed	10	9	11	30
Total	250	200	150	600

(1) What proportion (\%, probability) of the shirts were perfect or made by shift 2 ?
(2) Given that the shirts were made by shift 2, what proportion (\%, probability) of the shirts were perfect?

