CH 10: Hypothesis Testing for Data from Two or More Samples Part 1

1. Case 4: Z-test for difference in Means $\left(\mu_{1}-\mu_{2}\right)$ with both σ_{1} and σ_{2} known.
(A) Concepts
(B) The Test Statistic
eq 10.5: Test statistic for mean difference $\mu_{1}-\mu_{2}\left(\sigma_{1}, \sigma_{2}\right.$ known $): Z_{\text {cal }}=\frac{\left(\overline{X_{1}}-\overline{X_{2}}\right)-D_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}$
(C) Assumptions for using this formula: the populations are normally distributed or the samples are large; the two samples are randomly and independently drawn.
(D) We can draw our conclusion either based on the critical value approach or the p-value approach.
(E) For two-tailed test: p-value $=2 * P\left(Z>\left|Z_{\text {cal }}\right|\right)$; upper, one-tail test: $p-$ value $=P\left(Z>Z_{\text {cal }}\right)$, lower, one-tail test: p-value $=P\left(Z<Z_{\text {cal }}\right)$

EX 1 Given two independent samples, a sample of size $n_{1}=40$ from a population 1 with known standard deviation $\sigma_{1}=20$ is selected and resulting in a sample mean of $\overline{X_{1}}=72$; another sample of size $n_{2}=50$ from population 2 with known standard deviation $\sigma_{2}=10$ is also selected and the sample mean $\overline{X_{2}}=66$. Test if the average for population 1 is more than the average for population $2(\alpha=0.025)$.

Step 1: State H_{0} vs. H_{1}.

Step 2: Compute the test statistic

Step 3: Make a decision using either the p-value approach or the critical value approach.
2. Case 5: t-test for difference in Means $\left(\mu_{1}-\mu_{2}\right)$ with both σ_{1} and σ_{2} unknown.
(A) Concepts
(B) Compute the test statistic
eq10.8: Test statistic for Mean difference $\mu_{1}-\mu_{2}\left(\sigma_{1}, \sigma_{2}\right.$ unknown $): t_{c a l}=\frac{\left(\overline{X_{1}}-\overline{X_{2}}\right)-D_{0}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$
with eq10.7: $d f=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}$
Note: we round the noninterger degrees of freedom down.

EX 2 Comparing the lifetimes of two brands of batteries, a researcher has randomly selected 20 batteries of brand A with $\bar{X}_{A}=22.5$ months and $S_{A}=2.5$ months and 30 batteries from brand B with $\bar{X}_{B}=20.1$ months and $S_{B}=4.8$ months. Test if the means are different $(\alpha=0.05)$

Step 1: State H_{0} vs. H_{1}.

Step 2: Compute the test statistic and $d f$

Step 3: Make a decision using either the p value approach or the critical value approach.

CH 10: Hypothesis Testing for Data from Two or More Samples Part 2

3. Case 6: t-test for difference in two related samples μ_{d}
(A) Basic Concept and Data Structure
(B) Test Statistic
eq 10.9 Test statistic for mean difference (related samples): $t_{c a l}=\frac{\bar{d}-\mu_{d}}{\frac{S_{d}}{\sqrt{n}}}$
(with $(n-1)$ degrees of freedom)
(C) Hypothesis Testing

Step 1: State H_{0} vs. H_{1}.

Step 2: Compute the test statistic
Step 3: Make a decision using either the p-value approach or the critical value approach.

EX 3 Given a set of matched pair of data, test if the mean has been changed (use $\alpha=0.05$).

Step 1: State H_{0} vs. H_{1}.

Step 2: Compute the test statistic

Step 3: Make a decision using either the p-value approach or the critical value approach.
4. Case 7: Z-test for the Difference Between Two Proportions $p_{1}-p_{2}$
(A) Basic Concepts
(B) The Test Statistic
eq10.16: Test statistic for the difference between two proportions $Z_{\text {cal }}=\frac{\left(\bar{p}_{1}-\bar{p}_{2}\right)}{\sqrt{\bar{p}(1-\bar{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$,
where eq 10.15: $\bar{p}=\frac{n_{1} \bar{p}_{1}+n_{2} \bar{p}_{2}}{n_{1}+n_{2}}$
EX 4 Auto company suspects that singles have more claims than married policyholders. Let the single policyholder be population 1 and married policyholder be population2. If a random survey indicates that 76 out of 400 single and 90 out of 900 married policyholders did auto claim last year, test the theory with $\alpha=0.05$.
Step 1: State H_{0} vs. H_{1}.

Step 2: Compute the test statistic

Step 3: Make a decision using either the p-value approach or the critical value approach.

