CH 10: Hypothesis Testing for Data from Two or More Samples Part 1

- 1. Case 4: Z-test for difference in Means $(\mu_1 \mu_2)$ with both σ_1 and σ_2 known.
 - (A) Concepts

(B) The Test Statistic

eq 10.5 : Test statistic for mean difference $\mu_1 - \mu_2$ (σ_1, σ_2 known): $Z_{cal} = \frac{(\overline{X_1} - \overline{X_2}) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$

- (C) Assumptions for using this formula: the populations are normally distributed or the samples are large; the two samples are randomly and independently drawn.
- (D) We can draw our conclusion either based on the critical value approach or the p-value approach.
- (E) For two-tailed test: $p value = 2 * P(Z > |Z_{cal}|);$ upper, one-tail test: $p - value = P(Z > Z_{cal}),$ lower, one-tail test: $p - value = P(Z < Z_{cal})$
- EX 1 Given two independent samples, a sample of size $n_1 = 40$ from a population 1 with known standard deviation $\sigma_1 = 20$ is selected and resulting in a sample mean of $\overline{X_1} = 72$; another sample of size $n_2 = 50$ from population 2 with known standard deviation $\sigma_2 = 10$ is also selected and the sample mean $\overline{X_2} = 66$. Test if the average for population 1 is more than the average for population 2 ($\alpha = 0.025$).

Step 1: State H_0 vs. H_1 .

Step 2: Compute the test statistic

Step 3: Make a decision using either the *p*-value approach or the critical value approach.

- 2. Case 5: t-test for difference in Means $(\mu_1 \mu_2)$ with both σ_1 and σ_2 unknown.
 - (A) Concepts
 - (B) Compute the test statistic

eq10.8: Test statistic for Mean difference $\mu_1 - \mu_2$ (σ_1 , σ_2 unknown): $t_{cal} = \frac{(\overline{X_1} - \overline{X_2}) - D_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ with eq10.7: $df = \frac{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2}{\frac{1}{n_1 - 1}(\frac{s_1^2}{n_1})^2 + \frac{1}{n_2 - 1}(\frac{s_2^2}{n_2})^2}$

Note: we round the noninterger degrees of freedom down.

EX 2 Comparing the lifetimes of two brands of batteries, a researcher has randomly selected 20 batteries of brand A with $\overline{X}_A = 22.5$ months and $S_A = 2.5$ months and 30 batteries from brand B with $\overline{X}_B = 20.1$ months and $S_B = 4.8$ months . Test if the means are different ($\alpha = 0.05$)

Step 1: State H_0 vs. H_1 .

Step 2: Compute the test statistic and df

Step 3: Make a decision using either the p value approach or the critical value approach.

CH 10: Hypothesis Testing for Data from Two or More Samples Part 2

3. Case 6: t-test for difference in two related samples μ_d

(A) Basic Concept and Data Structure

(B) Test Statistic

eq 10.9 Test statistic for mean difference (related samples): $t_{cal} = \frac{\overline{d} - \mu_d}{\frac{S_d}{\sqrt{n}}}$ (with (n-1) degrees of freedom)

(C) Hypothesis Testing Step 1: State H_0 vs. H_1 .

Step 2: Compute the test statistic

Step 3: Make a decision using either the *p*-value approach or the critical value approach.

EX 3 Given a set of matched pair of data, test if the mean has been changed (use $\alpha = 0.05$).

Step 1: State H_0 vs. H_1 .

Step 2: Compute the test statistic

Step 3: Make a decision using either the *p*-value approach or the critical value approach.

- 4. Case 7: Z-test for the Difference Between Two Proportions $p_1 p_2$
 - (A) Basic Concepts
 - (B) The Test Statistic

eq10.16: Test statistic for the difference between two proportions $Z_{cal} = \frac{(\overline{p}_1 - \overline{p}_2)}{\sqrt{\overline{p}(1 - \overline{p})(\frac{1}{n_1} + \frac{1}{n_2})}},$ where eq 10.15: $\overline{p} = \frac{n_1\overline{p}_1 + n_2\overline{p}_2}{n_1 + n_2}$

EX 4 Auto company suspects that singles have more claims than married policyholders. Let the single policyholder be population 1 and married policyholder be population2. If a random survey indicates that 76 out of 400 single and 90 out of 900 married policyholders did auto claim last year, test the theory with $\alpha = 0.05$. Step 1: State H_0 vs. H_1 .

Step 2: Compute the test statistic

Step 3: Make a decision using either the *p*-value approach or the critical value approach.