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Abstract

In this paper, we consider a play-like hysteresis operator defined by an n
th order rate-independent differential system. We investigate

the properties of the operator for n = 1 and n = 2. We show that the operator for n = 2 satisfies a one-step wiping out property.
This result can be extended to show that the n

th order operator satisfies an (n − 1)-th step wiping out property. Thus the new
family of operators fall between the first-order differential equation models that do not satisfy any wiping-out properties and the
Preisach-type operator that can show, in general, a countably infinite-step wiping out property. We will show that the “backlash-
like” operator defined by Su, Stepanenko, Svoboda and Leung (SSSL) is a special case of our operator for n = 1.
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1. Introduction

Hysteresis representation by integral operators or dif-
ferential equations dates back to Duhem’s model in 1897
[3]. These operators reflect the observation that hysteresis
curves for physical systems are monotone except when the
input changes direction. Most differential equation hystere-
sis operators are first–order differential equations [3–6].

Fig. 1. Relationship between hysteresis models.

Figure 1 shows the relation between some of the various
hysteresis models. Most differential equation models are
rate-independent and satisfy the Volterra property. Hence,
they are general hysteresis operators (Prop 2.2.9 [2]). Ad-
vantages of using a differential equation operator include
simplicity of implementation and a limited number of pa-
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rameters. However, unlike operators of the Preisach type,
the output trajectories of these rate–independent operators
do not depend on the previous input extrema, and hence,
they do not satisfy Madelung’s rules 1 [2,3].

One such first-order differential equation hysteresis oper-
ator was proposed by Bouc in 1964 [4,5], with the primary
objective of describing forced vibrations of a hysteretic sys-
tem under periodic excitation. Another first-order hystere-
sis operator, called “backlash–like”, was introduced for the
purpose of avoiding the inversion of hysteresis nonlinearity
in an adaptive controller design [1]. We refer to this op-
erator as the SSSL–play operator. We will show that the
SSSL operator has a serious limitation in parameter selec-
tion. This limitation is overcome by our generalized nth or-
der play–like operator with the additional benefit that the
robust, non-inversion type, adaptive controller defined in
[1] is also applicable to this operator without change.

In this paper, we consider a play–like operator and the
construction of a Preisach-Krasnoselskii-Pokrovskii (PKP)
type operator using an nth order differential system. We
investigate the cases where n = 1 and n = 2 and show that

1 (i) Any curve C1 emanating from a turning point A of the input-
output graph is uniquely determined by the coordinates of A. (ii)

If any point B on the curve C1 becomes a new turning point, then
the curve C2 originating at B leads back to the point A. (iii) If the
curve C2 is continued beyond the point A, then it coincides with
the continuation of the curve C which led to the point A before the

C1 − C2 cycle was traversed.
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the play–like operator corresponding to n = 1 is the SSSL
operator.

2. Generalized n
th–order play–like operator

Suppose {vi}
−1
i=−2n+2 is an alternating string of dis-

tinct real numbers such that {v2i}
−1
i=−n+1 is strictly de-

creasing and {v2i+1}
−1
i=−n+1 is strictly increasing with

v−1 < v−2 (see Figure 2). Consider operator w(t) =
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Fig. 2. An alternating string of monotone decreasing and increasing
real numbers

F c

a0

[v; v−2n+2, · · · , v−1](t) defined by

w(n) + sign (v̇) an−1w
(n−1) + · · · + (signv̇)n−1d(w(1), w, v)

= 0,

where d(w(1), w, v) = a1(w
(1) − 1) + sign(v̇) a0(w − v) + c,

w(k) =
dkw

dvk
, 1 ≤ k ≤ n and am > 0 for all m. Let

w(vi) = wi such that {w2i}
−1
i=−n+1 is strictly decreasing and

{w2i+1}
−1
i=−n+1 is strictly increasing with w−1 < w−2. The

solution of (2) is w = v− sign(v̇) c

a0

+ c1e
−sign(v̇)α1v + · · ·+

cne−sign(v̇)αnv, where α1,...,αn are real, distinct and posi-
tive for appropriate choices of coefficients a1, · · · , an. Con-
stants c1, · · · , cn are found using linear algebra from the
initial conditions corresponding to {v2i}

−1
i=−n+1

⋃

{v−1} for

v̇ > 0 and to {v2i+1}
−1
i=−n+1

⋃

{v−2} for v̇ < 0. Note that

lim
vր∞

(v − w) = −
c

a0
and lim

vց−∞
(v − w) =

c

a0
. Hence, w

asymptotically approaches the output of a play operator
with parameter r = c

a0

. Note that the operator given by
Equations (1)–(2) is rate–independent. By construction,
every trajectory passes through n previous turning points,
and therefore the operator can close n − 1 minor loops,
which we refer to as the (n − 1)–step wiping–out property.

Next, we construct a PKP operator using play-like oper-
ators, similar to the construction of the Preisach operator
from play operators. Suppose Fr[v(t); ·] is a play-like hys-
teresis operator with the (n− 1)-step wiping-out property.

Define operator Γr by Γr[v(t)] =
∫

Fr[v;·](t)

0
ω(r, s)ds, where

ω ∈ L1
loc

(R+ × R). Suppose that ω(r, s) has compact sup-
port. Then, for each r, Γr(t) can produce saturated out-
puts with the (n− 1)-step wiping out property. For n ≥ 2,
these operators satisfy Madelung’s first and second rules.

However, the third rule cannot be satisfied exactly since
we need to allow non-uniqueness of trajectories through a
point, which cannot be done using a differential equation
with an initial condition. Consider the output map:

Q(t) =

∫ ∞

0

Γr[v(t)]dr with Γr(v(t)) =

∫

Fr[v](t)

0

ω(r, s)ds, (1)

where ω(r, s) is the density function and Fr[v](t) is the play-
like operator given by Equation (2). A discussion of the
properties of Q(t) for an arbitrary n is beyond the scope of
this paper. We discuss the properties for n = 1 and n = 2.

3. SSSL-play operator

The backlash-like operator proposed in [1] – which we
refer to as the SSSL-play operator – is a relation w =
W [v;w0] between a function v ∈ C1[0, T ] and a continu-
ous function w, defined by the differential equation dw

dt
=

α
∣

∣

∣

dv

dt

∣

∣

∣
(v − w) + β dv

dt
, with w(v0) = w0, where parameters

α and β are positive. If a0 = α and c = 1 − β, the above
equation can be rearranged as

sign(v̇)

[(

dw

dv
− 1

)

+ c

]

+ a0 (w − v) = 0, (2)

which is the operator corresponding to n = 1 in Equation
(2). It is easy to verify that the SSSL operator is a hystere-
sis operator using Prop. 2.2.9 in [2]. We show that for an
appropriate choice of c, the operator is strictly monotone 2 .
Lemma 1 Suppose a0, c > 0 and initial state w0 ∈
(

v0 −
c

a0

, v0 + c

a0

)

. Then the trajectories of the SSSL-play

operator corresponding to increasing inputs are convex and
those corresponding to decreasing inputs are concave. Fur-
thermore, if c ∈ (0, 1/2), then the SSSL-operator is strictly
monotone.
Proof: Suppose c ∈ (0, 1/2). Since w0 − v0 + c

a0

> 0, for

v̇ > 0, we have c1 =
(

w0 − v0 + c

a0

)

ea0v0 > 0 and d
2
w

dv2 =

a2
0c1e

−a0 v > 0. Also dw

dv
(v0) = 1−c−a0(w0−v0) > 1−2c >

0. Similarly, for v̇ < 0, d
2
w

dv2 < 0 and dw

dv
(v0) > 0. 2

For a given c, we construct the corresponding PKP op-
erator as in Equation (1). Suppose c = 1

4 . Consider density
function ω(r, s) = (5− |s|)Ur, for |s| < 5, where Ur = 1 for
0 < r < 5 and Ur = 0 otherwise. Corresponding outputs
of the SSSL and PKP-type operators are given in Figure 3,
which shows that these operators do not possess the wip-
ing out property. This is not the case for n = 2, as we will
see in the next subsection.

Next we consider operator w(t) = Fr[v; ·](t) for n = 2.
Letting a0 = ab and a1 = a + b, the differential equation
corresponding to Equation (2) is

d2w

dv2
+sign(v̇)

[

(a+b)

(

dw

dv
− 1

)

+c

]

+ ab(w−v)=0, (3)

2 If a hysteresis operator satisfies sign
(

dw

dt

)

= sign
(

dv

dt

)

whenever
the derivatives exist, then it is called a strictly monotone hysteresis

operator. See also the definition (11.22) on page 111 in [2].
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(a) Output of SSSL operator for r = 3
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(b) Output of SSSL-PKP operator

Fig. 3. An illustration that SSSL operators do not possess any wiping
out property.

with initial memory w−2 = w(v−2) and w−1 = w(v−1),

and satisfying 0 <
w−1 − w−2

v−1 − v−2
< 1, |w−1 − v−1| < c

ab
, and

|w−2 − v−2| < c

ab
. The solution is

w(t) = c1e
−sign(v̇)av + c2e

−sign(v̇)bv + v − sign(v̇)r, (4)

where r = c

ab
. An argument similar to the one for the SSSL

operator shows that this operator is a hysteresis operator.
We again desire that increasing trajectories be convex and
decreasing trajectories be concave. Observe that for v̇ > 0,

if c1 and c2 are positive in Equation (4), then d
2
w

dv2 > 0.
Similarly for v̇ < 0, if c1 and c2 are both negative then
d
2
w

dv2 < 0, as desired.
We need the following two lemmas.

Lemma 2 Define ∆1 = 1
v1−v0

ln
(

r+w0−v0

r+w1−v1

)

, ∆2 =

1
v1−v0

ln
(

r+v1−w1

r+v0−w0

)

, ∆3 = 1
r+w0−v0

, and ∆4 = 1
r+v1−w1

.

Suppose the initial memory v0, v1, w0, w1 satisfies v1−v0 >
0, 0 < w1−w0

v1−v0

< 1, |w1 − v1| < r, and |w0 − v0| < r. Then
i. if ∆2 ≤ ∆1, then ∆3 ≤ ∆4. ii. if ∆1 ≤ ∆2, then
∆4 ≤ ∆3.
Proof: Let ∆2 ≤ ∆1. Then (v1−w1)

2 ≤ (w0−v0)
2. Suppose

w0−v0 < 0. Since v1−v0 > 0 and
w1 − w0

v1 − v0
< 1, w1−v1 <

w0 − v0 < 0. Then (v1 −w1)
2 > (w0 − v0)

2, which leads to
a contradiction. Hence w0 − v0 ≥ 0 and v1 −w1 ≤ w0 − v0.

Furthermore, 0 < r + v1 − w1 and thus
1

r + w0 − v0
≤

1

r + w0 − v0
. The proof of the second statement is similar

but with the inequality reversed. 2

Lemma 3 Suppose the initial memory satisfies the con-

ditions in Lemma 2. Let
w1 − w0

v1 − v0
= k < 1. If r >

max
{

2−k

k
(w0 − v0),

2−k

k
(v1 − w1)

}

, then min {∆3, ∆4} ≥
max {∆1,∆2}.

Proof: Let r > 2−k

k
(w0 − v0). Substituting the value of

k and simplifying, we obtain 1
v1−v0

(v1−v0)−(w1−w0)
r+v0−w0

<
1

r+w0−v0

. Using the inequality lnx ≤ x− 1 and r+v1−w1

r+v0−w0

>

0, ln
(

r+v1−w1

r+v0−w0

)

≤ r+v1−w1

r+v0−w0

− 1 = (v1−v0)−(w1−w0)
r+v0−w0

≤
v1−v0

r+w0−v0

. Thus ∆1 ≤ ∆3. Similarly, r ≥ 2−k

k
(v1 − w1)

implies ∆2 ≤ ∆4. Combining these results with Lemma 2,
we have min {∆3, ∆4} ≥ max {∆1,∆2}. 2

Now we can state and prove the desired theorem.
Theorem 1 Suppose a, b, c > 0 and b > a in Equation
(3). For a given initial memory w0 = w(v0) and w1 =
w(v1), and for a given parameter r = c/ab, there exists
a bounded region D ⊂ R

2
+ such that if (a, b) ∈ D, then

all the increasing trajectories are convex, all the decreasing
trajectories are concave, and the corresponding operator is
strictly monotone.
Proof: From Equation (4),

c1 =
(r + w1 − v1) ebv1 − (r + w0 − v0) ebv0

e(b−a)v1 − e(b−a)v0

and

c2 =
(r + w0 − v0) eav0 − (r + w1 − v1) eav1

e(a−b)v0 − e(a−b)v1

for increasing

trajectories. It can be shown that, c1 and c2 are positive if
a ≤ ∆1 ≤ b. Similar calculations for decreasing curves give
a ≤ ∆2 ≤ b. Therefore, if b ≥ max {∆1,∆2} ≡ ∆ and a ≤
min {∆1,∆2} ≡ ∆, then increasing trajectories are convex
and decreasing trajectories are concave.

Next, we find conditions on b for which the operator
is strictly monotone. For increasing trajectories, ẇ =
−c1ae−av−c2be

−bv+1. Since c1 and c2 are positive and a <
b, we have ac1e

−av0 + bc2e
−bv0 < b

(

c1e
−av0 + c2e

−bv0

)

=
b(r+w0−v0). If b ≤ ∆3, then ẇ > 0. Similarly for decreas-

ing trajectories, b ≤ ∆4. So if b < min {∆3, ∆4} ≡ ∆, then

the operator is strictly monotone. From Lemma 3, ¯̄∆ > ∆.
Therefore, if ∆ < b < ¯̄∆ and 0 < a < ∆̄, the operator
is strictly monotone for both increasing and decreasing
curves. 2

Now we define the PKP-type operator as Q(t) =
∫ ∞

0

∫ ¯̄∆

∆

∫ ∆̄

0
Γr[v(t)]da db dr. The results of a numerical

simulation for b = 0.5 and a = 0.3 are given in Figure 4,
which illustrates that the operator processes the wiping
out property.

4. Conclusion

In this paper, we consider a play-like hysteresis operator
defined by an nth order rate-independent differential sys-
tem. We showed that the “backlash-like” operator defined
by Su, Stepanenko, Svoboda and Leung (SSSL) is a spe-
cial case of our operator for n = 1. The generalized play
operators for n ≥ 2 satisfy what we call the (n − 1)-step
wiping property. We have shown that the SSSL operator is
the only one in the family that does not satisfy any kind of
wiping out property.

3
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(a) Output of play-like operator

−10 −5 0 5 10

−20

−10

0

10

20

V

W

(b) Output of PKP-type operator

Fig. 4. An illustration that the play-like operator and the PKP-op-
erator formed from it possesses the wiping out property for n = 2.
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