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ABSTRACT

The topics of my dissertation involve technics and ideas common to
both functional analysis and geometry.

The first chapter contains the solution to a problem from the spectral
theory of commuting n-tuples of operators. The question is whether one can perturb
a Fredholm n-tuple of operators with index zero by compact operators to get an
n-tuple with exact Koszul complex. This property is true in the one dimensional
case, namely a Fredholm operator with index zero can be compactly perturbed to an
invertible one. I prove that there exist Fredholm n-tuples of index zero that cannot
be perturbed by compact operators to an n-tuple with exact Koszul complex. I do
this by finding an obstruction at the level of the boundary operator from the long
exact sequence in cohomology.

The main result of the second chapter is the proof in dimension 2 of
a conjecture of Douglas and Paulsen. The conjecture is related to the study of
invariant subspaces for multiplication operators on the polydisk, and states that
an ideal of polynomials is relatively closed in the Hardy space topology of the
unit polydisk if and only if each irreducible component of its variety intersects the
polydisk. The conjecture is proved by reducing it to a topological version of the
Hilbert Nullstellensatz and using an inequality for polynomials that went unnoticed
before. The chapter also includes some Bergman space analogues of this result.

The third chapter gives a positive answer to the question whether the

smooth topological quantum field theory of Lickorish, Blanchet, Habeger, Masbaum



and Vogel comes from a topological quantum field theory with corners. I give the
construction of a topological quantum field theory with corners that satisfies the
axioms of K. Walker by describing the basic data and checking its consistency. In
addition, I give an axiomatic proof of the Lickorish invariant formula for closed

three-manifolds.
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CHAPTER 1
COMPACT PERTURBATIONS OF FREDHOLM N-TUPLES

1.1 Introduction

The spectral theory of linear operators has its roots in the study of differential
equations. The spectral decomposition theorem for selfadjoint operators proved by
D. Hilbert at the beginning of the century, together with the advances made in
quantum physics, caused this area to become a domain of interest in itself. The
spectral decomposition theorem produced a comprehensible model for selfadjoint
operators, and led to the construction of a functional calculus with measurable
functions for these operators. Later, the study of spaces of analytic functions made
nonselfadjoint phenomena become attractive to operator theorists; a spectral the-
ory for arbitrary operators, together with an analytic functional calculus was then
introduced by F. Riesz and N. Dunford. Fredholm operators appeared first in the
study of a class of integral equations done by I. Fredholm, and by now are well
understood.

The developments in the study of spaces of functions of more variables made
it possible for a multivariable operator theory to emerge. Such a theory already
appeared for the selfadjoint case in the works of J. von Neumann, being related to
commutative von Neumann algebras. In 1970, J. L. Taylor [37], [38], constructed a
spectral theory for commuting n-tuples of operators by using the Koszul complex
[28] (a tool that had already been used by the French school in complex analy-
sis). Taylor defined the notion of spectrum, introduced analytic functional calculus,

and proved that several important properties valid in the case of one operator are



preserved in this more general setting; among these, the fact that the spectrum is
compact and nonvoid and that the spectral mapping theorem has a multivariable
analogue.

In the late 70’s, the notion of Fredholm n-tuples and a definition for the index
as the Euler characteristic of the Koszul complex were introduced. Since then a lot
of properties that these notions satisfy in the case of a single operator have been
shown to be also true for commuting n-tuples. For example the index is continuous
([40], [8]), invariant under compact perturbations ([8], [2]), and additive ([32]).

It is a well known fact that a Fredholm operator of index zero can be perturbed
with a compact operator, in fact a finite rank operator, to an invertible one. In [9],
R. Curto asked if this remains true in the case of an n-tuple, namely if one can
perturb a Fredholm n-tuple of index zero with compact operators to get an n-tuple
whose Koszul complex is exact. The purpose of this chapter is to prove the existence
of n-tuples for which this property does not hold.

The results from this chapter have appeared in [14] and [15]

We will start by reviewing some facts in multivariable operator theory. Let
us discuss first the corresponding notions for a single operator.

Let X be a Banach space, i. e. a vector space endowed with a norm || - ||
that induces a topology in which X is complete. If T" is a linear operator on X
let |T|| := supgex||Tz||/||z||. In case ||T|| is finite, we say that T is a bounded
operator, and ||T|| is called the norm of 7.

Given an operator T, it is invertible if there exists an operator S with the
property that ST =TS = I. On the other hand, one says that T is singular if the
following complex of Banach spaces is not exact

05 X5 x—0. (1.1)



As a consequence of the open mapping theorem, if 7" is bounded, then 7T is invertible
if and only if it is not singular.

One defines the spectrum of T" to be

o(T) :={z € C| z — T is singular}.
The spectrum is a compact nonvoid set. The number r := sup{|z| z € o(T)} is
called the spectral radius of 7. If f is an analytic function in a neighborhood of
o(T) one can define f(T). In particular if f(z) = Sapz* then f(T) = Xa,T*,
and if f(z) = p(2)/q(z) is a rational function having no poles inside o(T'), then
f(T) =p(T)e(T)~".

The operator T is called Fredholm if the complex (1.1) has finite dimensional
quotients. We define indT' := dimkerT —dimcokerT', which is the Euler characteris-
tic of the complex. The index is continuous and invariant under perturbations with
compact operators. Let us recall that an operator is compact if it maps bounded
sets from X into relatively compact sets.

As an example of Fredholm operator we have the unilateral shift U, : [2 — [2,
Uy (EFae;) = X3°ae;,41. Another example is the operator of multiplication with
the variable on the Bergman space of the unit disk (that is the space of analytic,
square integrable functions).

The point of view described above makes the following construction of J. L.
Taylor [37] natural.

To each n-tuple T' = (11, T5, - - -, T,,) of operators on X satisfying T;7; = T;7T;
for every 1 < i,5 < n, one attaches a complex of Banach spaces, called the Koszul
complex, as follows. Let A? = AP[ej, eq,-- -, €,] be the p-forms on C". Define the
operator Dy : X @A? - X QAP by Dr =T\ QE, +ToQ®F,+ -+ T, FE,,

where Fw :=e,w,1=1,---,n.



The Koszul complex is
0 XQRQABXrRQA T BrRA —o (1.2)
It is easy to check that D2 = 0, so this is indeed a complex.

If we consider the algebraic notion of invertibility, namely the existence of the
operators Si,S,, -+, S, with the property that SiT} + SoT5 + --- S, T, = 1, then
the lack of an analogue of the open mapping theorem for several variables does not
let us relate the invertibility to the Koszul complex. However, because of technical
reasons, Taylor developed the whole spectral theory based on this complex. Thus
an n-tuple will be called invertible if its Koszul complex is exact.

Let HP(T') be the cohomology spaces of the complex (1.2). The n-tuple T is
invertible if H?(T') = 0,0 < p < n, it will be called Fredholm if dimH?(T) < 00,0 <
p < n, in which case we define its index to be indT" := 37 _(—1)PdimH?(T).

As an example, in the case when n = 2 the Koszul complex is

OaX%X@X%Xao (1.3)
where DY(z) = (Tyx, Tox) and DX (x,y) = Tox — Tyy, for any x,y € X. In this case
HY(T) = kerDj., H'(T) = ker D}./ranD4., and H*(T) = X /ranDj..

The Taylor spectrum of T', denoted by o (T), is the set of all z = (21, 29, - -, 2,)
in C" such that z—T = (21 =T}, 20—T5, - - -, 2,—T,,) is not invertible. It is known that
o(T) is a compact nonvoid set. For any holomorphic map f on a neighborhood of
the spectrum one can define f(T), in particular, if f(z1, -+, 2,) = Zag, i, 21" -+ 20",

then f(T) = Sa;,..;, T} - T The following result holds (see [38]).

.....

THEOREM 1.1. ( Spectral Mapping Theorem) If f : U —C™ is holomorphic
on a neighborhood U of o(T') then f(o(T)) = o(f(T)).

Like every homology theory, the spectral theory for commuting n-tuples has

a long exact sequence in cohomology.



THEOREM 1.2. U T = (T3, Ts,---,T,) and T" = (11, T3, - -, T, S) are com-
muting tuples, then the following sequence is exact:
0 — HOT') — HY(T) > HO(T) — H(T") — H'(T) — ---
HY (T) — HY(T') — H"(T) > HY(T) — - -- (1.4)
where S is the operator induced by SQ1: XY QAP - X QAP,0 < p<n.

Let us remark that if 7" is invertible, then S is an isomorphism at each stage.
If T is Fredholm, the long exact sequence in cohomology provides an exact sequence
of finite dimensional spaces, consequently the alternated sum of their dimensions
is zero. This shows that 7" is a Fredholm tuple of index zero. Inductively we see
that any n-tuple that contains a Fredholm subtuple is Fredholm of index zero. We
will look at this kind of tuples for finding the counterexample to our perturbation
problem.

The following result will also be used in the sequel.

THEOREM 1.3. [32] If T = (T}, Ts,---,T,) is a Fredholm n-tuple of op-
erators on a Banach space, and if m = (my,mg,---,m,) € N, then T™ =
(7™, 15, -« -, T is also Fredholm and

ind(T™) = mymgy - - - myindT.

1.2 Finite Rank Perturbations
Given a Fredholm operator of index zero T, it is a well known fact that one can
add a finite rank operator R to T" and make it invertible. The classical construction
is to let R be an isomorphism between the kernel and the cokernel of 7. Considering
the Koszul complex of T, that is the complex (1.1), we see that R induces a finite

rank perturbation of this complex to the exact complex

0—x ™ x o (1.5)



Similarly, the Koszul complex of a Fredholm n-tuple of index zero has a finite
rank perturbation to an exact complex [8], but usually the new complex is not the
Koszul complex of an n-tuple. The purpose of this section is to prove the existence
of commuting n-tuples of index zero that do not admit finite rank perturbations to

commuting n-tuples with exact Koszul complex.

LEMMA 2.1. Let (S, S, -+, Sy) be an invertible commuting n-tuple and let
f: C® — C™ be a holomorphic function with f=!'(0)=0. Then f(S;, Sy,---,S,) is

invertible.

PROOF: Since f~'(0) N o (S, Sz, -, S,) = 0, from the spectral mapping the-
orem (Theorem 1.1) it follows that 0 is not in the spectrum of f(Si, Sa, -, Sy), S0

this m-tuple is invertible.O

LEMMA 2.2. Let (Sy,Ss,--+,S,) be a Fredholm commuting n-tuple, with
the property that ind(S;, Sz, -+, Sn) # 0. Then there exists a sequence of positive

integers {my }r and 0 < py < n such that dimH?*(S{"*, Sy, -+, S,) — oo for k — 0.

PROOF: By Theorem 1.3, ind(S7", Sa,--+,Sp) = m - ind(S1, S, -+, Sp), S0
Yo _o(=1)PdimHP (ST, Sy, - -+, Sp) — oo for k — oo. It follows that
Yo _odimHP (ST, S, + -+, Sp) — oc for k — oo; so there is a py such that the se-

quence dimHP (ST, Sy, - --,S,) is unbounded, from which the conclusion follows.O

THEOREM 2.3. Let (T, Ts,---,T,) be a Fredholm commuting n-tuple with
ind(Ty, Ty, --+,T,) # 0, and let p € Cl[zy, 29, -, 2,] with p(0) = 0. Define the
operator T, 11 := p(T1, Ty, - -+, T,,). Then (Ty, Ty, - -+, T,,T,11) is Fredholm of index
zero, but there do not exist finite rank operators R, Ry, -+, R,, R,+1 such that

(Ty + Ry, Ty + Ry, -+ -, Ty41 + Ryy1) is an invertible commuting (n+1)-tuple.

PROOF: Suppose that such finite rank operators exist and let S; = T; +



R;. 1<i<n + 1. Applying Lemma 2.1 to the function ¢ : C**! — C"*! de-
fined by ¢(z1, 22, -+, Zny Zns1) := (21, 22, "+ * s Zny Zng1 — D(21, 22, -+, 2n)) We get that
(S1,S2, -+, Sy, R) must be invertible, where R := S, ;1 — p(S1, Sa, -+, Sp). Clearly,
R is a finite rank operator. By applying again Lemma 2.1 to the function ¢ :
C™ — C" ah(21, 29, 4 Zny 2ng1) = (21 22, Zn, Zni1) We get that the (m+n)
tuple (S}, Sa, -+, Sy, R) is also invertible, for every positive integer m.

Let {my}r and py be the numbers obtained by applying Lemma 2.2 to the
n-tuple (Sy, Sa,---,S,), and let R = R(mk,po) be the operator induced by R on
HPo(S" Sy, -+, Sy,). Because (S7",Ss,--+,S,) is invertible, from the long exact
sequence in cohomology it follows that R must be an isomorphism for every my,.

But this is impossible since dimH?(S]™ Sy, -+, S,) — oo and rank(R) <

(n ) - rank(R). This completes the proof.0]

This result can be generalized as follows.

PROPOSITION 24. Let T = (T},Ts,---,T,) be a Fredholm n-tuple with
indT # 0, and let p € Clzy, 29, -+, 2,]™ be a polynomial map satisfying p(0) =
0. Then the (m + n)-tuple (T, p(T)) is Fredholm of index zero, but it cannot be

perturbed with finite rank operators to an invertible (m+n)-tuple.

PROOEF: Suppose such a perturbation exists. As in the proof of the previous
theorem we can deduce that there exists a commuting n-tuple Sy, Sy, -+, S,), that
is Fredholm of nonzero index and finite rank operators Fi, F5,---, F,, such that
(S1,S2, -+, Sp,F1, -+, Fy) is invertible.

As before, from Lemma 2.1 we get that for every k, the m + n-tuple
(SF, Sy, -+, S, Fy,- -+, F,) is invertible. Choose i to be minimal with the property

that sup, rdimH,(S¥, Sy, -+, S,, Fi,-++,F;) = co. Such an i exists because of



Lemma 2.2, and it is smaller than m since for ¢ = m all the dimensions are zero.
Let s := sup, xgdimH,(S¥, Sq, -+, Sy, F1,- -+, F}, Fi11) By Theorem 1.2, for ev-
ery p we have a short exact sequence
Hy(SE, S+, Sy Frv o Foy Fiy) — Hy(SE, Sy, oo, Sy Fy, oo F) 8!

T (81, S+, Sy iy, F) (1.6)
from which it follows that rankFy,, > dimH,(S¥, Sy, -+, Sp,Fy,--+, F;}) — s. But
rankF,.; < (pt)rankFii,.

Therefore dimH,(S¥, Sa, -+, Sn, F1,-, F;) < s+ (Z“)mnsz-H, and we get
that sup, pdimH,(S¥, Sy, -+, Sp, F1,++,F;) < oo, a contradiction. This proves

the proposition.O

1.3 The Main Example
In what follows we will restrict ourselves to bounded linear operators on an
infinite dimensional Hilbert space H. It is known [8] that the index of an n-tuple
is invariant under compact perturbations. We will show the existence of Fredholm
pairs of index zero that cannot be perturbed with compact operators to invertible
ones. We start with a result about the structure of a Fredholm operator of positive

index.

LEMMA 3.1. Let T be a Fredholm operator with indT" > 0. Define H, =
kerT"©kerT™ ', Then H, # (0),n>2. Let T,, := T'|kerT™. Write

A, 0
To: Ho @ kerT" ' — s P kerT" % T, = : (1.7)
Bn Cn

Then there exists ng such that, for n > ng, A, is an isomorphism.
PROOF: Suppose that for some n, H, = (0). Then kerT™ = kerT"'. Hence

kerT"t* = kerT™, for all k > 0. But this contradicts the fact that lim,,_,, indT"t* =



Since H,—kerT, 1, T|H, is injective and TH,, N kerT,, o = (0). This shows
that A, is injective. But then the sequence {dim#H,}, is decreasing so it becomes
stationary. Let ng be such that for n > ng, dimH, = dimH,_;. Then for n > ny,
A, is an injective operator between finite dimensional spaces of the same dimension,

so it is an isomorphism.O

REMARK. In the case when T is a coisometry, this result provides the Wold
decomposition for its adjoint. In this case all the subspaces H,, are isomorphic, and

H, is the wandering space of T™.

LEMMA 3.2. Let T and H,,n>2, be as in the statement of the previous
lemma. If S is an operator that commutes with 7', then for all n>1, kerT™ is an

invariant subspace for S. Let S, = S|kerT™,

n

X, 0
Syt Hn EB kerT" ' — #, GB kerT™ 1 S, = . (1.8)
Y, Z.

Then there is ng such that for n > ng, X,, is similar to X,,,.

PROOQF": The fact that kerT™ is invariant for S follows from commutativity.
Let A, and ng be as in Lemma 3.1. Then ST =TS implies S, 1T, = T,S,,n > 2.
Therefore, X,,_1A, = A,X,,n > 2. For n > ng A,, is an isomorphism hence X, is

similar to X,, ;. This proves the lemma.O

LEMMA 3.3. Let (T,S) be an invertible commuting pair. Then for any n,
SlkerT™ is an automorphism of kerT™.

PROOF: Applying Lemma 2.1 to (T, S) and f : C* — C?, f(z1,22) = (27, 29)
we get that (7™, S) is invertible for any n. From the long exact sequence in cohomol-

ogy it follows that S : HO(T™) — H°(T") is an isomorphism. But H(T") = kerT",
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and the lemma is proved.O

THEOREM 3.4. Let T be a Fredholm operator with indT # 0. Then the pair
(T,0) is Fredholm of index zero and there do not exist compact operators K; and

K, such that (T + K, K3) is an invertible commuting pair.

PROOF: Suppose such K; and K, exist. Without loss of generality we may
assume nd1T > 0, otherwise we take 7™ instead of 7. We can also assume that
K, =0, otherwise we can denote 7'+ K; by T', and let K, := K.

Consider the spaces H,,n > 2, obtained by applying Lemma 3.1 to T, and
let K, := Kl|kerT™. By Lemma 3.2,

K, H, PkerT" ' = H, P kerT" 1 K, = Ko 0 , (1.9)
Y, Z,

have the property that X, is similar to X,,, for some ny and n > ny. Applying
Lemma 3.3 we get that the operators X,,n > 2 are isomorphisms. If we denote
by 7 the spectral radius of X,,,, then since X,,, is invertible its spectrum contains
nonzero elements, so r > 0. From the fact that X, is similar to X,,, for n > ng, (so

all X!s have the same spectral radius), it follows that || X,| > r.
But | K|H,|| = [|[Ku|Ha| > || Xa|| > r for n > ng. Because H,, — Hynyn # m,
and H,, # (0) for any n, it follows that K contains a diagonal that is bounded below

in norm, which contradicts the fact that K is compact. Therefore such K; and K,

cannot exist.]

This gives a negative answer to Problem 3 in [9].

PROBLEM. Can a Fredholm pair of index zero be compactly perturbed to an

invertible pair?
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COROLLARY 3.5. The pair (T,T) can be perturbed by compacts to an
invertible commuting pair if and only if 7" can be perturbed by a compact to an

invertible operator.

EXAMPLE: Let H?(D) be the Hardy space and T, be the operator of multi-
plication by the indeterminate z. Then the pair (T}, 7,) is a Fredholm pair of index
zero that cannot be perturbed with compact operators to a pair with exact Koszul

complex.

1.4 The Case of n-tuples
In this section we generalize Theorem 3.1 to n-tuples. The obstruction will
again be given by the index of one of the operator coordinates of the n-tuple, and

it will appear at one end of the Koszul complex. We start with a technical result.

LEMMA 4.1. Let T be such that for any n, dimkerT™ < oo and dimkerT™ —
oo. If S commutes with 7" and the sequence {dim(kerS N kerT™)}, is bounded,
then there exists a sequence of nontrivial orthogonal subspaces H,, in H such that

Py, S|H,, is invertible, and for every m and n, Py, S|H, is similar to Py, S|Hn.

PROOF: Let K, = kerT™ © kerT™'. Since dimkerT™ — oo, the spaces K,
are nontrivial. Moreover, the operator Pc, T|KC, : K, — K,_1 is injective, therefore
dimIC,, < dimIC,,_;. This shows that the sequence dimK,, n € N is a decreasing
sequence of natural numbers, so it becomes stationary. It follows that there exists a
number ng such that for n > ng, the operator Py, ,T|K, is an isomorphism. Since
for every n, kerT™ C kerT"™"! and the sequence {dim(kerS N kerT,)}, is bounded,
there exists a number n; > ng such that for n > ny, the operator P,k S|k, is
injective, hence invertible. Moreover, the operator Py, T|K, defines a similarity

between Py, S|K, and P, S|K,1 for every n > n;. Taking H, = K,1n,, n > 0,
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we obtain a sequence of spaces with the desired property.0

THEOREM 4.2. Let (T},Ts,---,T,) be a commuting n-tuple with 7} Fred-
holm and indT; # 0 . If for each k, 2 < k < n, there exists an analytic function of
two variables f; such that

1. fr(0,w) =0 implies w = 0,

2. fu(Ty,Ty) = Li, Ly compact,
then the n-tuple (77, T3, -« -, T,) cannot be perturbed with compact operators to an

invertible n-tuple.

PROOF: Suppose that such compacts K, Ks, - - -, K,, exist. Denote S; = T; +
K;. Then S; is Fredholm of nonzero index, we may assume indS; > 0. We remark
that for every k, 2 < k < n the operator N, = f(S1, Sk) is compact. Consider
the analytic function f : C" — C", f(21,29, -+, zn) = (21, fo(21, 22), -+, fu(21, 20))-
Then f~'(0) = 0, and since (S;, So, - -+ S,) is invertible, from the spectral mapping
theorem it follows that (Si, Ny, -, N,) is also invertible. Let us show that this is
not possible.

Let k£ be the smallest integer with the property that the sequence
{dim(kerS" N ker Ny - <N kerNg)}m, is bounded. Such a k exists, for by the
spectral mapping theorem (S}, Ny, - -+, N,,) is invertible for every m, hence
kerS7" N kerNo(---(NkerN, = 0. Consider the subspace Hy = kerNy()--- Ny
(in case k = 2 take Hy = H). Since the operators Sy, No, -+, Ny commute, Hy is
invariant for S; and N,. Moreover, because of the minimality of k, the operators
S1|Ho and N = Ni|H, satisfy the hypothesis of the previous lemma.

Let H,, be the spaces obtained by applying the lemma. Since Py, N|H; is
invertible, its spectral radius r is nonzero, so because of the similarity we have

| Pa,, N|Hm|| > r > 0 for every m, which contradicts the fact that N is compact.
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This proves the theorem.O

COROLLARY 4.3. If T is Fredholm with indT # 0, and kq, ks, -, k, are
positive integers, then the n-tuple (7%, T*2 ... T*) has index equal to zero, but

cannot be perturbed with compact operators to an invertible n-tuple.

EXAMPLE: Let T, be the operator of multiplication by the indeterminate
z, acting on the Hardy space H*(D). Then the n-tuple (T,,T,,--,T,) cannot be

compactly perturbed to an invertible n-tuple.

The following result for triples shows that the obstruction might also be pro-

vided by a subtuple.

PROPOSITION 4.4. If the pair (T3, T3) is Fredholm of positive index then the
triple (T3, T»,0) is Fredholm of index zero and cannot be perturbed with compact

operators to an invertible one.

PROOF: Suppose that there exist compact operators Ky, K, and K3 such that
the triple (71 + Ky, To+ K5, K3) is invertible. Let S; = T+ K; and Sy = To+ K;. By
Theorem 1.3, ind(S}, Sy) = n - ind(Sy, Sy) = n, which shows that dimH°(S?, Ss) +
dimH?(S}', Sy) — oc for n — oc. So there is a sequence of positive integers {ny }x
such that either dimH°(ST*,Sy) — oo or dimH?(S{*,Ss) — oco. Without loss of
generality we may assume that dimH°(ST*, Sy) — oc. Since H°(S}, Sy) = kerSp N
kerSy and kerSP C kerS™! we get that dim(kerS? NkerSy) — oo for n — oo. On
the other hand, from the spectral mapping theorem it follows that (S}, Ss, K3) is
invertible for any positive integer n hence kerST N kerSy N ker K5 = 0. Therefore
we can apply Lemma 4.1 to the space kerS,, and to the operators S;|kerS; and
K3lkerSy. Using the same idea as in the proof of Theorem 4.2 we contradict the

compactness of K3, which proves the claim.O
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EXAMPLE: Let H?(D?) be the Hardy space on the bidisk, and let T}, and T,
be the two shifts defined by T, f(21,20) := z1f(21, 22), To, (21, 22) := 20f (21, 22),
f € H*(D?). It is well known that the pair (7},,T},) is Fredholm of index 1 [5].
Therefore (7,,,7,,,0) is a Fredholm triple of index zero that cannot be perturbed
with compact operators to a commuting invertible triple.

It is still not known whether such a result is true in general.

QUESTION: Let T' = (T3, Ty, - - -, T,) be a Fredholm n-tuple with indT" # 0,
and let p € Clzy, 29, -+, 2,]™ be a polynomial map satisfying p(0) = 0. Is it true
that the (m + n)-tuple (T, p(T")) cannot be perturbed with compact operators to a

commuting (m + n)-tuple whose Koszul complex is exact?
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CHAPTER 2

RINGS WITH TOPOLOGIES INDUCED BY SPACES OF
FUNCTIONS

2.1 Introduction

In the case of the Hardy space of the unit disk, the invariant subspaces of the
operator of multiplication by the independent variable are completely characterized
by a well-known theorem of Beurling in terms of inner functions. However, in the
case of several variables, this characterization proves to be very difficult.

In the recent years, the theory of Hilbert modules developed by R. G. Dou-
glas and V. Paulsen [11] provided some useful methods to approach this problem.
The first jointly invariant subspaces for the multiplication operators studied in this
context were the ones that are closures of ideals of polynomials. A surprising result,
the Rigidity Theorem [12], shows that unlike the one variable case (in which any
two invariant subspaces are unitary equivalent as Hilbert modules), if two subspaces
are unitary equivalent as modules, they must coincide. Another result, the char-
acterization of invariant subspaces of finite codimension done by P. Ahern and D.
N. Clark (see [1]) proved also to be very natural in this setting. The techniques
involved come from commutative algebra and algebraic geometry.

Among the ideals of polynomials in several variables, a special role is played
by those that are closed in the relative topology induced on the ring of polyno-
mials by the Hardy space of the polydisk. These ideals can be put in one-to-one
correspondence with the invariant subspaces that are their closures in the Hardy

space, thus, they can be used to “label” invariant subspaces. Several properties of
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subspaces can be proved by using their associated ideals.

In what follows we will restrict ourselves to the study of closed ideals. Some
results have also been obtained in [12]; let us note in that paper the authors call these
ideals contracted. Instead of doing everything the way it is usually done, namely
by considering dense rings in Hilbert modules, we will consider Noetherian rings
endowed with topologies carrying properties similar to those induced by spaces of
functions. The module can be recovered as the topological completion of the ring.
Among other things, we prove that if an ideal is closed, then every prime ideal
associated to it is closed as well (thus answering a question in [12]), and we prove
in dimension two a conjecture of Douglas and Paulsen. Our results will be obtained
by using as a major tool the primary decomposition of ideals. The results from this
chapter have appeared in [17] and [20].

For a better understanding of the topic let us first discuss the case of the ring
of polynomials in one variable with the topology induced by the Hardy space of
the unit disk D. Recall that the topology is given by the norm || f|], := /X|ax|?,
where f(z) = Sagz*. Let us remark that our ring is almost topological, just that
multiplication is not continuous, only separately continuous.

Let I C C[z] be an ideal. Then [ is generated by some polynomial f. Let
f(z) = (z = 2z1)(z = z3) -+ (2 — 2z), where z, 2y, -+, 2z, are the (non-necessarily
distinct) roots of f. Assume that 2, 29,-+,2, € D, and z,,1,- -, 2, € D. It is well
known that the closure of I is the ideal generated by (z —21)(z — 22) - - - (2 — 2,-), and
we see that f can be written as the product g-h, where g := (z—21)(z2—22) - - - (z—2,)
generates a closed ideal, and h = (2 — z,41) - - - (2 — 2,) generates a dense ideal. In
particular [ is closed if and only if all the roots of f are in D and dense if all the

roots lie outside D. Reformulating, I is closed if and only if all the irreducible
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components of its zero set intersect D, and dense if its zero set is disjoint from D.

If 29 € C, the ideal M, generated by (z — zp) is maximal; it is closed if and
only if zy € D. In this case all the powers of this ideal are closed as well. Let us
remind that the I-adic topology, determined by an ideal I in a ring R (see [4]). is
the topology characterized by the fact that the closure of a set A C R is N, (A+1").
Returning to our situation, we see that the M, -adic topology is weaker than the
Hardy space topology if and only if z5 € D.

If we think about D as a set of distinguished maximal ideals, then we can
say that C[z] endowed with the topology induced by the Hardy space satisfies a
topological Hilbert Nullstellensatz, in the sense that an ideal is either dense, or
there is a maximal ideal M € D that contains it. Let us now go back to the general

setting.

2.2 Hilbert Nullstellensatz for Closed Ideals

Throughout the chapter R will denote a commutative Noetherian ring with
unit, endowed with a topology 7 for which addition is continuous and multiplication
is separately continuous in each variable.

An example of such a ring is the ring C[zq, 29, -, 2,] of polynomials in n
variables with the topology induced by the Hardy space of the polydisk H?(D"),
or the Bergman space L2(€2) of an open set 2 C C™. Another example is the ring
O(B) of analytic functions in a neighborhood of the closed unit ball BC C" with
the topology induced by L2(B).

Let us remind some basic algebraic facts. For a certain ideal I C R the radical
of I'is rad(I) := {f € R| In, f™ € I}. An ideal P is prime if f - g € P implies
that either f € P or ¢ € P. An ideal @) is primary if f-¢g € Q and g ¢ () implies

that f* € @ for some power n. If @) is primary then P := rad(Q) is prime, and we
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say that ) is P-primary. Since R is Noetherian, every ideal I C R has a (minimal)
primary decomposition I = Q1 N Q2 N - - - Q,, where each (); is P;-primary for some
prime ideal P;. The ideals P;, 1 < ¢ < m are called the prime ideals associated
to I, and we let P(I) := {Py, Py, -, Py,}. A result that will be used often in the
sequel is the Hilbert Nullstellensatz, which states that the set of maximal ideals of
Clz1, 29, - -, z,] can be canonically identified with C".

As mentioned above, the ring R is not necessarily a topological ring, and also
it is not usually complete in the topology 7. This is where the difficulty lies in
developing such a theory. In what follows we study properties of ideals that are

closed in the topology 7.
LEMMA 2.1. The radical of a closed ideal is closed.

PROOF: Let I be closed, and rad(I) be its radical. By Proposition 7.14 in [4]
there exists an integer k such that rad(I)¥ C I. Let f, be a sequence of elements
in rad(I) converging to some f. We want to prove that f € rad(l). Since the
multiplication is continuous in each variable, for every g € rad(I)*~!, f,g — fg,
hence fg € I, since I is closed. This shows that in particular fg € I for every
g € rad(I)*~1. Repeating the argument we get ff,g — f2g for any g € r(I)*2,
hence f2g € I for g € rad(I)*=2. Inductively we get f7g € I, for g € r(I)¥~" and

0 <r <k, so f¥ eI which shows that f € rad(I).0

If @) is P-primary, the lemma above shows that () closed implies that P is

closed. The following result shows that this is true in a more general setting.

THEOREM 2.2. If an ideal [ is closed, then every prime ideal P € P(I) is

closed.

PROOF: If I is closed and f € R, then the ideal (I : f) :={g € R,gf € I}
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is closed. Indeed, if g, € (I : f) and g, — g then g,f — gf, so gf € I which shows
that g € (I : f).
From Lemma 2.1 we get that rad(([ : f)) is closed for every f. By Theorem

4.5. in [4] every prime ideal associated to I is of this form hence it is closed.O

This gives a positive answer to a question raised in [12]. The converse of this
theorem is not always true; for example, if we endow C with the topology induced
by A(D), the Dirichlet algebra of the unit disk, by choosing z € D we get that

the ideal generated by (2 — z) is closed, but the one generated by (z — z)? is not.

REMARK. Since the closure of an ideal is an ideal, a maximal ideal is either

closed or dense.

Given an ideal J C R, the J-adic topology on R is the topology determined
by the powers of .J, so in this topology the closure of a set A C R is N, (A + J").
For more details the reader can consult [4].

Let
C .= {M C R, M maximal ideal and the M-adic topology is weaker than 7}.

We see that C consists of those maximal ideals M for which M" is dense
for every integer n. As an example, if R = Clzy, 29, -, 2,], and 7 is induced
by the Hardy space of the polydisk, then C coincides with the polydisk, when
making the usual identification between points and maximal ideals via the Hilbert
Nullstellensatz. The following result is a slightly modified version of Theorem 2.7

in [12].

THEOREM 2.3. If an ideal I has the property that for every prime P € P([)

there exists M € C with P C M, then I is closed.

PROOF: Let P, Py, ---, P, be the prime ideals associated to I, P, C M,,
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M; eC. If J=MMs;---M,, then the J-adic topology is weaker than 7, so it
suffices to prove that I is closed in the .J-adic topology. Without loss of generality
we may assume that I = (0), in which case the ideals P; are the primes associated
to (0), so by Proposition 4.7 in [4] they contain all zero divisors. Now let us suppose
that (0) is not closed. By Krull’s Theorem ([3, Theorem 10.7]) there exists f € .J
such that 1+ f is a zero divisor. It follows that there exists ¢ such that 1+ f € P;,
so the unit can be written as a sum of an element in J and one in P;,. But this is

impossible since both .J and P; are contained in M;. This proves the theorem.O

DEFINITION. The pair (R, 7) is said to satisfy the (topological) Hilbert Null-

stellensatz if every ideal I C R is either dense, or there exists M € C with I C M.

Let us remark that if (R, 7) satisfies Hilbert’s Nullstellensatz then any closed
ideal is contained in a maximal closed ideal, which motivates the terminology. By
Krull’s Theorem, (R, 7) satisfies Hilbert’s Nullstellensatz for every J-adic topology
7. The ring Cl[z] with the topology induced by H?(D) or L?(D) also satisfies this
property. In [33], a class of strongly pseudoconvex domains 2 for which (9(52) with
the topology induced by L?(f2) satisfies the topological Hilbert Nullstellensatz has

been exhibited.
LEMMA 2.4. If I and J are two dense ideals in R then [ - J is dense.

PROOF: Let f, - 1, n - oo, f, € I. If g € J then f,g — g which shows

that I -.J is dense in .J, hence dense in R.O

THEOREM 2.5. If (R, 7) satisfies Hilbert’s Nullstellensatz then an ideal I C
R is closed if and only if every prime associated to I is closed. Moreover, the
closure of an ideal in R is equal to the intersection of its primary components that

are contained in closed maximal ideals.
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PROOQOF": If I is closed then every prime associated to I is closed by Theorem
2.2. Conversely, if a prime associated to [ is closed, then it is not dense, so it is
included in an M € C. The fact that [ is closed now follows from Theorem 2.3.

For the second part, let I be the closure of I in R, and let I = N",Q; be
a (minimal) primary decomposition of I, such that Q,Qs, -+, @, are included in
maximal ideals that are in C, hence closed, and Q,11,Qy12, -+, @y, are not, so they
are dense. Then from the first part of the proof we get 7C N, Q;.

On the other hand, by Lemma 2.4 the ideal Q, 1@, 2 --Q,, is dense in R,
hence Q,11Qri2+ - Qm(Q1NQ2N---NQ,) is dense in Q1 N QN ---NQ,, hence [

isdenseianﬂQgﬂ---ﬂQr,sof:QlﬂQQH---ﬂQr.D

This result shows that in a ring that satisfies the topological Hilbert Nullstel-
lensatz, the closed ideals can be easily classified. In particular, in the case when
R is the ring of polynomials and 7is induced by the Hardy space we see that the
following conjecture of R. G. Douglas and V. Paulsen ([12], [31]) is equivalent to

the fact that the topological Hilbert Nullstellensatz is satisfied.

CONJECTURE. Let R = Clz, 29, ", 2,] be endowed with the topology
induced by H?(D"). Then an ideal I is closed if and only if every irreducible

component of the zero set of I intersects D".

2.3 The Case of the Bidisk

In this section we prove the above mentioned conjecture for the case of two
variables. Let us denote by T? the 2-dimensional torus {(z1,22) € C?| |z;| = 1,i =

1,2}.

LEMMA 3.1. If a € C, |a| > 1 and 1/2 < r < 1 then for any z with |z| =1

we have |[(z —a)/(rz — a)| < 2.
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PROOF: The result follows from |z — | < |z — a/r|. The last inequality is
obvious since in the triangle formed by the points z, & and a/r the angle at « is

obtuse.O

LEMMA 3.2. Let p(z) = a,(2z — 21)(2 — 22) - - - (¢ — 2,,) be such that |z;] > 1.

If 1/2 < r <1 then for any 2z with |z| = 1, |p(2)/p(rz)| < 2".

PROOF": The result follows by applying the previous lemma to each of the

factors in the decomposition of p.O

PROPOSITION 3.3. Let p € Cl[z, 29, - -, 2,,] be a polynomial having no zeros
inside D™. Then pH?*(D") is dense in H?*(D").

PROOF: For a fixed £ and r, 1/2 < r < 1, the polynomial
p(rzi, - ,T2k_1, 2k, * * *, 2,) has no zeros in D", so if we consider z; as the indepen-
dent variable, by Lemma 3.2 we get

(21, - T2ty Zhs v 20) DT 20, oo T2y e 2y)| < 206987 (2.1)

for all (21, 29,---,2,) € D", and 1/2 < r < 1, where deggp is the degree of p in z.

Multiplying these inequalities for 1 < k < n we get
Ip(r21, 20, 2n) [ D(r 21T 20, o T2 )| < 27PN (2, 2,0, 2,) €D 1/2 <1 < 1,
where degp is the total degree of p. By continuity, the same inequality holds on T™.

Let f,(2) :=p(2)/p(rz), 2 = (21,22, +, 2z,) € D™. Since p has no zeros in D"
we see that f, € pH?*(D"). If we show that f, — 1 for r — 1 in the L?-norm, then
we are done.

The set A := V(p) N T", where V(p) is the zero set of p, has measure zero on
the torus, and f, — 1 uniformly on compact subsets of T"\ A. For € > 0, choose W
a neighborhood of A on the torus, with measure smaller than €/(2(2™ + 1)?). Also

choose rg, 1/2 < rog < 1, such that for r > rq, || f, — 1||§,T”\W < €/2. Tt follows that
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for v > 10, [1fy = 1 < [1fr = Uppmy + 1 = oy < (27 + 12/(2(27 +1)2) +

€/2 = €, which proves the assertion.O]

REMARK. We see that the only nontrivial situations where this result applies
are those when the zero set of the polynomial touches the boundary of D™. Here

are some examples of such polynomials: 2120 — 1, 21 + 20 — 2, 22129 + 21 + 20 + 2.

THEOREM 3.4. The ring C|z, 23], with the topology induced by the Hardy

space, satisfies the topological Hilbert Nullstellensatz.

PROOF: Let us first prove the property for prime ideals. Using the classical
Hilbert Nullstellensatz we see that the only maximal ideals in C are those corre-
sponding to points in D?. Moreover, the other maximal ideals are dense. So by
Theorem 2.3 we only have to show that if P is prime and V(P) N D? = (), where
V' (P) is the zero set of P, then P is dense in C|zy, 25|. Standard results in dimension
theory (see [4]) show that P is either maximal or principal. Indeed the maximal
length of a chain of nonzero prime ideals containing P is 2. If we have Py C P then
P is maximal and the result follows easily. If P C P; then P must be principal
since if P is generated by g1, go, -, gr We can take g; to be irreducible ( using the
fact that P is prime), and then the ideal generated by g; is included in P, so it
must coincide with P. The density in the second case follows from Proposition 3.3.

If I is an arbitrary ideal having no zeros in D2, let us show that it is dense. If
P, Py, ---, P, are the primes associated to it then from what has been established
above it follows that each P; is dense. By Proposition 7.14 in [4] there exists an
integer k such that (P, - Py - ... P,)* C I. It follows from Lemma 2.4 that I itself

is dense in Clzy, 23], which proves the theorem.O

As a direct consequence of this result and Theorem 2.5 we get
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COROLLARY 3.5. Let C|[z, 23] be endowed with the topology induced by
the Hardy space. Then an ideal is closed if and only if each of the irreducible

components of its zero set intersects D?.

COROLLARY 3.6. If I is a principal ideal in Cl[zy, 29, - -, 2,| and we endow
this ring with the topology induced by the Hardy space, then I is closed if and only

if each algebraic component of its zero set intersects D".

2.4 The Case of Reinhardt Domains

In the sequel we are going to describe another situation in which the topolog-
ical Hilbert Nullstellensatz is true. Following [10] we introduce the pseudoconvex
domains in C?

Qg ={2=1(21,22) €C* | |z1]P + |22|? < 1}, (1 < p, g < ).

A study of the Bergman spaces of these domains has been done in [10]. We
will prove that Cl[zy, 2] with the topology induced by the L?-norm on €, , satisfies
the topological Hilbert Nullstellensatz. This will be done in two stages. First, we
prove that C coincides with the set of maximal ideals coming from points in 2, ,,
and the other maximal ideals are dense. Then, we prove a density result analogous
to Proposition 3.3, and conclude that the Nullstellensatz holds. We start with some

technical results.

LEMMA 4.1. If 0 < a < 1 then the series

> a™(1—a)” (2.2)

m,n>0 m

diverges.

PROOF: By symmetry, we can assume a < 1. We have
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m-+n p

Z am(l — a)n — Z Z aq(l _ a)p—q _
m,n20 m p>0q<p \ ¢
=> (1-a)l>] P al(l —a)P™9 =
p=0 a<p\ ¢

COROLLARY 4.2. If 0 < a <1 then the series

a2m71(1 o a)2n71 (23)
m,n>0 2m —1
diverges.
Let B denote the beta function, defined by B(r,s) := 7 (r)?(s)/? (r + s),
r,s > 0.
By [6],
1
B(r ) :/ Y1 — 1)Lt (r,s > 0).
0

LEMMA 4.3. If (21, 22) € 02, , then the series

21 |71 | 2|

TI’TZQ:>U B(2T1p—|—2, 27'2q—|—2 + 2)

diverges.

PROOF: Since B(r,s) is a decreasing function in r and s, by taking the
subseries corresponding to indices with the property that pm < r; < pm + 1 and

gn < ry < qn + 1 we get the inequality

|Zl|27'1|z2|27'2
Z B(2r1+2 27=2+2+2) Z |Zl‘p+2|22‘Q+2 Z

ri1,m22>0 p 7 q m,n>0

‘Zl ‘ (2m-1)p ‘22 |(2n—1)q
B(2m, 2n)

(2.4)
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Since |z1|9 =1 — |2,/ the sum of the latter series is equal to

> (1) (1 = |z |p)*™ " /B(2m, 2n).

m,n>0

Applying Corollary 4.2 for a = |21 |P, and using the fact that
B(2m,2n) = (2m — 1)I(2n — 1)1/ (2m +2n — 1)1 < 1/(3mtm-2)
(since 7 (k) = (k — 1)! for k a positive integer) we get the desired result.O
Recall that C is the set of maximal ideals M with the property that the M-

adic topology is weaker than the Bergman space topology, and that by the classical

Hilbert Nullstellensatz it can be identified with a subset of CZ2.

PROPOSITION 4.4. If we endow the ring Clz1, 29] with the topology induced
by L*(Q,,), then C =, ,, and if M & C then M is dense.

PROOF: By Theorem 4.9 ¢) and Example 5.2 in [10], an ideal M = (2 —

wy, 29 — wy) is dense in Cl[zy, 29] with the L?-norm if and only if

2(7r)2 \w1|2“\w2|2’"2
r9 + 1 . 2.5
p 1“1,7“22:>U( i )B(Zrll)+2’ 2T2q+2 1) ( )

diverges.

By Lemma 4.3 this series diverges if (wy,wy) € 09, 4, so if wy, we & Q,, the
ideal M is dense.

It is not difficult to check that M™ is closed whenever (wq,ws) € Q,, and
m € N. Indeed, if we consider a polydisk centered in (wy, wy) contained in Q, ,, the
topology 7 induced by the L2-norm on this polydisk is weaker than the one induced
by the L?-norm on €, ,, and the ideals M™ are all closed in this topology, so they

are also closed in 7. It follows that C = €, ,, and if M ¢ C then M is dense.O
The following result is analogous to Proposition 3.3.

PROPOSITION 4.5. Let €2 be a bounded, complete Reinhardt domain and
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let p € Clzy, 29, - +, 2] be a polynomial having no zeros in 2. Then pL?(Q) is dense

in L2(Q).

PROOF: Since the Reinhardt domain is complete, for any r, 1/2 < r < 1,
p(rz) has no zeros inside €2. The proof of Proposition 3.3 applies mutatis mutandis
to show that f,(z) := p(z)/p(rz) is a family of functions in L?(Q) that is uniformly
bounded. Since this family converges uniformly on compacts to 1, it follows that it

converges in L2(Q) to 1, which proves the density.O

THEOREM 4.6 The ring Clz1, 2] with the topology induced by L2(€,,)
satisfies the topological Hilbert Nullstellensatz. In particular C[zy, 2] with the

topology induced by L?(B) satisfies the topological Hilbert Nullstellensatz.

PROOF: The proof is similar to that of Theorem 3.4; the second part of the

statement follows from the fact that B = {2y ,.0

We now prove an analogous for the ring of germs of analytic functions in the
neighborhood of the unit ball. Let us denote by B? the open unit ball in C? and by
O(B?) the ring of germs of analytic functions defined in a neighborhood of B2. We
want to prove the topological Hilbert Nullstellensatz for O(B2) with the topology
induced by the Bergman space. For k > 1, denote by S* the unit sphere in R*¥+!

and by D the unit disk in the plane. We will need the following technical result.

LEMMA 4.7. Let f € O(B2?), f not identically equal to zero. Then there

exists a transformation p : C? — C? such that f o p(0,e") # 0 for all o € [0, 27).

PROOF: For S? = 0B? consider the Hopf fibration
St 8% L 52
where we recall that the projection 7 is given by the equivalence relation (a,b) ~

a or = 1. we denote the zero set o then N as
()\ ,)\b)f |)\\ If d by V(f) h f f, th V(f) S3 h
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dimension at most one, hence (V' (f) N S?) has dimension at most one. It follows
that there exists x € S2\n(V(f) N S3). Let (a,b) € C?, |a> + [b]*> = 1 with the
property that m(a,b) = x. Then f(ae'®, be'®) # 0 for all a € [0,27). If we choose

b a
p= then f o p satisfies the desired property.O
—a b
PROPOSITION 4.8. Let f € O(B2) be an analytic function having no zeros
in B2 Then the space fL?(B?) is dense in L?(B?).

PROOF: By Lemma 4.7 we may assume that if (wy, w;) € B2 and w; = 0 then
f(wy, wy) # 0. Let us show that there exists C' > 0 such that for every 1/2 < r < 1
and (21, 22) € B2, |f(21,22)/f(r21, 20)| < C.

Fix (w;, ws) € B2, and assume that w; # 0. Note that f(z,w,) is not identi-
cally zero as a function of z;, otherwise (0, ws) would be a zero for f lying inside of
B?. Thus there exists a > 0 such that w; € aD and f(-,w;) is defined in a neigh-
borhood of aD and has no zeros on aS! = {2 | |z| = a}. It follows that f(-,ws) has
a finite number of zeros in aD, say m, counting multiplicities. By Rouché’s and has
no zeros on aS' = {z | |z| = a}. It follows that f(-,ws) has a finite number of zeros
in aD, say m, counting multiplicities. By Rouché’s Theorem there is a compact
neighborhood K of w, such that aD x K is contained in the domain of f, and for
every zo € K, f(+,2) has exactly m zeros in aD, counting multiplicities, and no
zero on aS'. Thus on aD x K we can write f(21, 20) = p.,(21)g.,(21) where for each
29, P2, (21) is a polynomial of degree m and g.,(z1) is an analytic function having no
zeros in aD. Another application of Rouché’s Theorem and the maximum modulus
principle shows that ¢,, depends continuously on zs.

It follows that for 1/2 < r < 1 the family {g,,(rz1)}, is bounded away from
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zero, hence
C) = SUP1/2§r§18UPa_DxK‘922(21)/9@(7“21” < oC.
By Proposition 3.2 for 1/2 < r <1 and (2, 23) € aD x K N B?
P2y (21) /P2y (r2n)| < 27

Thus there exists a neighborhood U of (w;,w;) and a constant Cy > 0 such
that for 1/2 < r < 1 and (21, 20) € U N B2

f(z1,20) ) f(rz1,29)] < Cs.

If w; = 0 then f(21,22) # 0 in a neighborhood of (w;,ws), thus a similar
inequality holds there. From the compactness of B? it follows that there exists a
constant C' > 0 such that for 1/2 < 7 < 1 and (21, 25) € B2, |f(21, 22)/f (21, 22)| <
C.

As in the proof of Proposition 4.5, the family h,(z1, 22) = f(21, 22)/f (121, 22)

is in fL2(B?) and tends to 1 as r — 1, so the conclusion follows.O

THEOREM 4.9. The ring O(B2) with the topology induced by L2(B?) satis-

fies the topological Hilbert Nullstellensatz.

PROOF: The ring O(B?) is Noetherian [36], and has dimension 2. Indeed, if
there existed distinct prime ideals Py C P, C P, C P5, by localizing at a maximal
ideal M D P; we would get a chain of four distinct prime ideals in the local ring
O, which would contradict the fact that the latter ring has dimension 2. So the

proof of Theorem 3.4. applies to give the desired conclusion.O

COROLLARY 4.10. Let O(B?) be endowed with the topology induced by the
Bergman space. Then an ideal is closed if and only if each irreducible component

of its zero set intersects the unit ball.
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2.5 Ideals of Finite Codimension
Now let us suppose that R is also a k-algebra, where k is an algebraically
closed field, and that the scalar multiplication is continuous (not just separately
continuous). By the classical Hilbert Nullstellensatz ([3, Corollary 5.24]), R/ M=k
for every maximal ideal M. Let us also assume that the family C defined right
before the statement of Theorem 2.3. consists of all closed maximal ideals. Thus
in this case a maximal ideal M is either dense, or the M-adic topology is weaker

then the topology of R.

EXAMPLE. If we consider C[zy, 2y, -+, 2,] with the topology induced by

H?(D") then the condition above is satisfied. In this case we have C = D".

In a similar way as we proved Theorem 2.3 we can establish the following

result.

LEMMA 5.1. Given an ideal I whose associated prime ideals are maximal,

is closed if and only if every maximal ideal belonging to I is closed.

LEMMA 5.2. An ideal I C R has finite codimension in R if and only if every

prime ideal belonging to I is maximal.

PROOF: Let I =Q1NQaN---NQp, Qi M;-primary. By Proposition 7.14 in
[4] there exists an integer n such that M C @;, so (M My--- M,,)" C I. Since
dimR/(MiMs - M,;,)" < oo, I has finite codimension.

For the converse, let P be a prime ideal belonging to I. Then P has finite
codimension as well, so R/P is an integral domain that is finite over k, and since k

is algebraically closed we must have R/P=k, therefore P is maximal.O

Let R be the closure of R in the topology 7. Since multiplication is only

separately continuous, R is no longer a ring, but it is an R-module. Each element
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x € R induces a continuous multiplication morphism 77 on R. We shall denote by
I the closure in R of an ideal I in R, to avoid confusion with I, the closure of I in
R. Clearly I is a closed submodule of R. Also, if Y C R is a closed submodule,

then Y NR is an ideal that is closed in R.

DEFINITION. (see [4], page 58) A submodule ¥ C R is called primary in R
if Y # R and every zero-divisor in R/Y is nilpotent.( An element z € R is called
a zero-divisor if the morphism induced by 7T, on ﬁ/Y has nontrivial kernel, and

nilpotent if this morphism is nilpotent).

REMARK. If Y C R is primary then (Y : R) := {z € R | T,R C Y} is

primary, so P := r((Y : R)) is prime. We say that Y is P-primary. Moreover,

(Y:R)=YNRsoYNR is also P-primary.

Although every ideal in R has a primary decomposition, this is not true in
general for the submodules of R. For example in the case of the module H?(D the
zero sets of primary submodules consist of a single point, thus a closed submodule
whose zero set inside the unit disk is infinite does not have a primary decomposition.
Such a submodule can arise from a Blaschke product. The next result shows that

closed submodules of R of finite codimension admit primary decompositions.

THEOREM 5.3. There is a one-to-one correspondence between ideals in R
whose associated prime ideals are maximal and closed in R, and closed submodules
in R of finite codimension, given by the maps I — T and Y — Y N'R. Moreover,
if I =Q NQyN - NQy is a (minimal) primary decomposition for I, then I =

@1 N @2 N---N @m is a (minimal) primary decomposition for I.

PROOF: By Lemmas 5.1 and 5.2 we have to show that the maps indicated

above establish a one-to-one correspondence between ideals of finite codimension
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that are closed in the topology of R and closed submodules of finite codimension
in R.

If Y is a closed submodule of R of finite codimension then R/(Y NR)=R/Y
since the canonical map R — R/Y is surjective, R being dense in R and R/Y
being finite dimensional, and the kernel of this map is ¥ N R. On the other hand
ﬁ/(YAﬂJR)%R/(Y NR), hence ¥V = (Y?WJR) Also for every ideal I C R that is
closed in the topology of R, INR = I, so the two maps are inverses of one another,
and the one-to-one correspondence is proved.

Let I = Q1 NQyN---NQ,, be a primary decomposition of I. Then IcC
Q:1NQsN---NQym, and since INR = Q1NQsN---NQmNR = Q1NQsN---Q,, = I,
by the first part of the proof the two must be equal.

In the commutative diagram below the horizontal arrows are isomorphisms

R/Q:=R/Q;

T, l l T,

R/Qi=R/Q
so the fact that @; is a primary ideal (hence a primary R-module as well) implies
that Q, is a primary submodule of R.

If the primary decomposition of I is minimal let us show that the corre-
sponding decomposition for T is also minimal. Suppose that there exists j such that
I=QNQ;_1MNQj 41N - -NQyn. Then I = INR = QiN- - -NQ;j_1NQ; 11N -NQp,
which contradicts the minimality of the primary decomposition of I. The proof the

theorem is complete.O

From the previous proof it follows that the associated primes of I and I coin-

cide. Corollary 4.11 in [4] shows that in this case the minimal primary decomposition
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is unique.

REMARK. In the case when the topology on R comes from a norm, the first

part of the theorem is contained in [8], Corollary 2.8.

EXAMPLES. 1. For the case R = Clzy, 29, - -, 2,) and R = H2(D") Theo-
rem 5.3 already appears in the work of Ahern and Clark [1]. The primary closed
Clz1, 22, +, 25]-submodules of finite codimension of H?(D™") are those closed sub-
modules Y for which there exists a point A € D™ and a number m € N such that Y

contains the space of functions f that satisfy (0™ /0z7"0™ /024" - - - 0™ /02" f)(A) = 0.

2. If B is the unit ball in C", R = O(B) and R = L2(B) then C = B, and
if M is a maximal ideal corresponding to a point in OB then M is dense in LZ(B)
(see [17]). This shows that the conditions listed at the beginning of this section
are satisfied, so Theorem 5.3 holds. The primary closed O(B)-modules of finite

codimension have the same description as in the previous example.
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CHAPTER 3

TOPOLOGICAL QUANTUM FIELD THEORY WITH CORNERS
BASED ON THE KAUFFMAN BRACKET

3.1 Introduction

In 1984 V.F.R. Jones [23] discovered a polynomial invariant for knots in three
dimensional space. The definition of this invariant was purely combinatorial and
topologists started to look for a geometric explanation of its existence. The first
major progress was made by E. Witten [44] who described a construction of this
invariant by making use of the Feynman path integral from quantum field theory.
As he pointed out, the Jones polynomial is related to a new set of topological
three manifold invariants. However, his approach lacks a rigorous mathematical
foundation, since the construction uses an integral over the space of all connections.

M.F. Atiyah noted [3] that if the path integral existed, it had to satisfy a
certain number of axioms. According to Atiyah, a topological quantum field theory
(TQFT) consists of a functor from the category of surfaces to that of finite dimen-
sional vector spaces, and a partition function that associates to each three manifold
a vector in the vector space of its boundary. This theory is multiplicative with
respect to disjoint union, and the invariants of cobordisms multiply like matrices
under composition of cobordisms. Moreover, it has no dynamics, i.e. the invariant
of the mapping cylinder of a surface is the identity matrix.

A first example of a TQFT that satisfies Atiyah’s axioms and is related to the
Jones polynomial was produced by Reshetikhin and Turaev in [34], and makes use

of the representation theory of Hopf algebras. Then, an alternative construction



35

based on geometric techniques has been worked out by Kohno in [27]. A combi-
natorial approach based on skein spaces associated to the Kauffman bracket [25],
another polynomial invariant closely related to the Jones polynomial, was exhibited
by Lickorish in [30] and [29] and by Blanchet, Habegger, Masbaum, and Vogel in [5].
All these theories are smooth, in the sense that manifolds can be glued only along
closed surfaces in their boundary, and as a consequence, the axioms are not sufficient
to enable the computation of invariants from the ones of very simple manifolds.

In an attempt to give a more axiomatic approach to such a theory, and also to
make it easier to handle, K. Walker described in [41] a system of axioms for a TQFT
in which one allows gluings along surfaces with boundary, a so called TQFT with
corners. He also described the minimal amount of initial information (basic data)
that one needs to know in order to be able to recover the whole theory from axioms.
He based his theory on the decompositions of surfaces into disks, annuli and pairs
of pants, and along with the mapping class group of a surface he considered the
groupoid of transformations of these decompositions.

Following partial work from [41], in [13] and [18] we exhibited a TQFT with
corners associated to the Reshitikhin-Turaev theory. We mention that in this con-
struction one encounters a sign problem at the level of the groupoid of transforma-
tions of decompositions. The presence of this sign problem was due to the fact [21]
that the theory was based on the Jones polynomial, whose skein relation is defined
for oriented links.

In this chapter we describe the construction of a TQFT with corners that
underlies the smooth TQFT of Lickorish [30], [29]. It is based on the skein theory
of the Kauffman bracket. Note that since the Kauffman bracket is defined for unori-

ented links, we will not encounter any sign problem this time. The main elements
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involved in our construction are the Jones-Wenzl idempotents [43], which appeared
in the work of Jones on the index of subfactors. They are the analogues of the irre-
ducible representations of irreducible representations of the quantum deformations
of sl(2,C) (see [34]). Regarding the computations, we make the observation that
in our case they will be done either in the skein space of the plane, or in that of the
disk with points on the boundary, although the spaces associated to closed surfaces
are skein spaces of handlebodies [29], [35].

In Section 2 we review the definitions from [41]. Section 3 starts with a review
of facts about skein spaces and then proceeds with the description of the basic data.
In Section 4 we prove that the basic data gives rise to a well defined TQFT. As
a main device involved in the proof we exhibit a tensor contraction formula. In
the fifth section we generalize to surfaces with boundary a well known formula for
the invariant of the product of a closed surface with a circle. Next we show that
the invariants of 3-manifolds with boundary have a distinguished vector component
which satisfies the Kauffman bracket skein relation. As a consequence, we compute
the invariant of the complement of a regular neighborhood of a link, and explain
how the invariants of closed manifolds arise when doing surgery on such links.

The results from this section have appeared in [16], citesaptesprezece, [19],

[21].

3.2 Facts About TQFT’s With Corners
A TQFT with corners is one that allows gluings of 3-manifolds along surfaces
in their boundary that themselves have boundary. In order to be able to understand
such a theory we must first briefly describe its objects, the extended surfaces and
3-manifolds. For an extensive discussion we recommend [41]. The adjective “ex-

tended” comes from the way the projective ambiguity of the invariants is resolved,
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which is done, as usually, via an extension of the mapping class group. All surfaces
and 3-manifolds throughout the paper are supposed to be piecewise linear, compact
and orientable.

In order to fulfill the needs of a TQFT with corners, the concept of ex-
tended surface will involve slightly more structure than the usual Lagrangian space,
namely the decomposition into disks, annuli and pairs of pants (shortly DAP-

decomposition).

DEFINITION. A DAP-decomposition of a surface ¥ consists of

- a collection of disjoint simple closed curves in the interior of ¥ that cut X
into elementary surfaces: disks, annuli, and pairs of pants, and an ordering of these
elementary surfaces;

- a numbering of the boundary components of each elementary surface ¥, by
1if 3y is a disk, 1 and 2 if ¥ is an annulus, and 1,2 and 3 if ¥ is a pair of pants;

- a parametrization of each boundary component C of ¥y by S' = {z] |z| =
1} (the parametrization being compatible with the orientation of 3, under the
convention “first out”);

- fixed disjoint embedded arcs in ¥4 joining e (where € > 0 is small) on the
j-th boundary component to e~ on the j + 1-st (modulo the number of boundary

components of ¥g). These arcs will be called seams.

An example of a DAP-decomposition is shown in Fig 3.1. Two decompositions
are considered identical if they coincide up to isotopy. We also make the convention
that whenever we talk about the decomposition curves we also include the boundary

components of the surface as well.

DEFINITION. An extended surface (abbreviated e-surface) is a pair (X, D)
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Figure 3.1: DAP-decomposition

where X is a surface and D is a DAP-decomposition of X.

Let us note that in the case of smooth TQFT’s one is only interested in the
Lagrangian subspace spanned by the decomposition curves of D in H{(X). In our
case, we will be interested in the decomposition itself, since we can always arrange
the gluing to be along a collection of elementary subsurfaces in the boundary of the
3-manifold. We emphasize that the DAP-decomposition plays the same role as the
basis plays for a vector space.

If we change the orientation of a surface, the DAP-decomposition should be
changed by reversing all orientations and subsequently by permuting the numbers
2 and 3 in the pairs of pants.

In what follows, we will call a move any transformation of one DAP-decomposition
into another. By using Cerf theory [7] one can show that any move can be written
as a composition of the elementary moves described in Fig. 3.2 and their inverses,
together with the permutation map P that changes the order of elementary surfaces.
In the sequel T7 will be called a twist, R rotation, the maps A and D contractions

of annuli, respectively disks, and their inverses expansions of annuli and disks.

DEFINITION. An extended morphism (shortly e-morphism) is a map between

two e-surfaces (f,n) : (X1, D1) — (22, Dy) where f is a homeomorphism and n is
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an integer.
1
2
A o L@
E——
2\
? 2 3 2

Figure 3.2: Elementary moves

Note that such an e-morphism can be written as a composition of a homeo-
morphism (f,0) : (X1, D1) = (X, f(D1)), a move (X, f(D1)) — (X2, D3) and the
morphism (0,n) : (X2, Dy) — (X9, Dy). Note also that the moves from Fig 2.2 have
the associated homeomorphism equal to the identity.

The set of e-morphisms is given a groupoid structure by means of the following
composition law. For (fi,n1) : (X1,D1) — (22, D) and (fo,n2) : (X9, Dy) —
(33, D3) let

(fo; n2)(f1,m) == (fafi,m1 +n2 — o ((fof1).La, (f2)« Lo, L3)
where o is Wall’s nonadditivity function [42] and L, C H;(%;) is the subspace
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generated by the decomposition curves of D;, i =1, 2, 3.

Let us now review some facts about extended 3-manifolds.

DEFINITION. The triple (M, D,n) is called an extended 3-manifold (e-3-
manifold) if M is a 3-manifold, D is a DAP-decomposition of OM and n € Z.

The boundary operator, disjoint union and mapping cylinder are defined in
the canonical way, namely 0(M, D,n) = (0M, D), (My, Dy,ny) U (Ms, Dy, ny) =
(My U My, Dy L Dy, ny +ny) and for (f,n) : (1, D1) = (32, D2), Iz = (Iy, D,n),
with the only modification that in I; we identify the boundary components of —%;
with those of ¥y that they get mapped onto, thus 01y = =3, UX, and D = D;UD;,.

More complicated is the gluing of e-3-manifolds, which is done as follows.

DEFINITION. Let (M, D,n) be an e-3-manifold and (X, Dy) and (33, Dy)
be two disjoint surfaces in its boundary. Let (f,m) : (X1, D;) — (29, Ds) be an
e-morphism. Define the gluing of (M, D,n) by (f,m) to be

(M,D,n)(sm) = (My,D',m+n—o(K,L &Ly, A7))
where My is the gluing of M by f, D' is the image of D under this gluing, o is
Wall’s nonadditivity function, K is the subspace of H;(OM) spanned by the kernel
of Hi(X; UXs) — Hy(M), 0% and 0%, L; are the subspaces of H;(Y;) generated
by the decomposition curves of D; and A~ = {(z, —f.(z)),z € H{(21)}.

For a geometric explanation of this definition see [41].

In order to define a TQFT we also need a finite set of labels £, with a dis-
tinguished element 0 € L. Consider the category of labeled extended surfaces
(le-surfaces) whose objects are e-surfaces with the boundary components labeled by
elements in £ (le-surfaces), and whose morphisms are the e-morphisms that pre-

serve labeling (called labeled extended morphism and abbreviated le-morphisms).
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An le-surface is thus a triple (X, D, 1), where [ is a labeling function.

Following [Wa] we define a TQFT with label set £ to consist out of

-a functor V' from the category of le-surfaces to that of finite dimensional
vector spaces, called modular functor,

-a partition function Z that associates to each 3-manifold a vector in the
vector space of its boundary.

The two should satisfy the following axioms:

(2.1) (disjoint union)V (2,35, D1UDy, [1ULs) = V (X1, D1, 1) @ V(2e, Do, ly);

(2.2) (gluing for V') Let (X, D) be an le-surface, C, C' two subsets of boundary
components of (X), and g : C'— C’ the homeomorphism which is the parametriza-
tion reflecting map. Let £, be the gluing of ¥ by ¢, and D, the DAP-decomposition
induced by D. Then, for a certain labeling I of 0¥ we have

V(3g, Dy, 1) = @uericy V(E, D, (I, z, 2))
where the sum is over all labelings of C' and C' by .

(2.3) (duality) V(X, D,1)* = V(—3%, —D, ) and the identifications V (X, D, ) =
V(=%,-D,))*and V(-X, —D,l) = V(X, D, )* are mutually adjoint. Moreover, the
following conditions should be satisfied

-if (f,n) is an le-morphism between to le-surfaces, then V' (f, —n) is the adjoint
inverse of V(f,n), where we denote by f the homeomorphism induced between the
surfaces with reversed orientation.

-if g @ ag € V(E1, Dy, 1) @ V(29, Do, ly) and /1 ® B € V(=%1,—D1,11) ®
V(=Xy, =Dy, l5) then < oy ®@ g, i ® By >=< au, 1 >< g, B2 >,

-there exists a function S : £ — C* such that with the notations from axiom
(2.2) if ®rar € Brepey V(E, D, (I, z,2)) and ©,8; € @perc) V(=%, - D, (I, z,7))

then the pairing on the glued surface is given by < @,a,, @0, >= >, S(z) <
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Oy, By >, where (z = (z1, 29, -, x,) and S(z) = S(x1)S(x2) -+ S(xy);

(2.4) (empty surface) V() = C;

(2.5) (disk) If D is a disk V(D, m) = C if m = 0 and 0 otherwise;

(2.6) (annulus) If A is an annulus then V(A, (m,n)) = C if m = n and 0
otherwise;

(2.7) (disjoint union for Z) Z((M, D1, m1) U (Ms, Dy, ns)) = Z(M, Dy, m1) ®
Z(My, D, 1)

(2.8) (naturality) Let (f,0) : (My, D,n) — (Ms, f(D),n). Then
V(f|0(My,D,n))Z(My,D,n) = Z(Ms, f(D),n).

(2.9) (gluing for Z) Let (31, Dy), (X2, Dy) C (M, D, m) be disjoint, and let
(f,n): (X1, D1) = (X9, D3). Then by (2.2)
V(O(M,D,m)) = @,,,, V(E1, D1, l1) @ V(E3, Do, lo) @ V(O(M, D, m)\((X41, Dy) U
(32, Ds), 11 Uly)
hence Z(M,D,m) = @), ,, >, al(lj) ® ﬂl(j) ® vl(f)h The axiom states that

Z((M, D,m) ) = & L5 < V(fim)a” 57 > 7,

-where [ runs through all labelings of 0%;

(2.10) (mapping cylinder axiom) For (id,0) : (X, D) — (X, D) we have

Z(Tia0)) = ®iccon)id

where id; is the identity matrix in V/(X, D,l) Q V/(X, D, )*.

3.3 The Basic Data
In order to construct a TQFT with corners one needs to specify a certain
amount of information, called basic data, from which the modular functor and
partition function can be recovered via the axioms. Note that the partition function
is completely determined by the modular functor, so we only need to know that

latter. Moreover, the modular functor is determined by the vector spaces associated
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to le-disks, annuli and pairs of pants, and by the linear maps associated to le-
morphisms. An important observation is that the matrix of a morphism V(f,0),
where (f,0) : (X1,D) — (29, f(D)), is the identity matrix, so one only needs to
know the values of the functor for moves, hence for the elementary moves described
in Fig. 3.2. Of course we also need to know its value for the map C = (id, 1).

The possibility of relating our theory to the Kauffman bracket depends on the
choice of basic data. Our construction has been inspired by [30]. We will review
the notions we need from that paper and then proceed with our definitions.

Let ¥ be a surface with a collection of 2n points on its boundary (n > 0).
A link diagram in ¥ is an immersed compact 1-manifold L in ¥ with the property
that L N 0¥ = 0L, OL consists of the 2n distinguished point on 0%, the singular
points of L are in the interior of ¥ and are transverse double points, and for each
such point the “under” and “over” information is recorded.

Let A € C be fixed. The skein vector space of ¥, denoted by S(X), is defined to
be the complex vector space spanned by all link diagrams factored by the following
two relations:

a). LU(trivial closed curve)= —(A4% + A~?)L,
b). Ly = ALy + A7 L,
where Ly, L, and L3 are any three diagrams that coincide except in a small disk,

where they look like in Fig. 3.3.

X«

Figure 3.3: Diagrams for crossings
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For simplicity, from now on, whenever in a diagram we have an integer, say
k, written next to a strand we will actually mean that we have k parallel strands
there. Also rectangles (coupons) inserted in diagrams will stand for elements of the
skein space of the rectangle inserted there.

Three examples are useful to consider. The first one is the skein space of the
plane, which is the same as the one of the sphere, and it is well known that it is
isomorphic to C.

The second example is that of an annulus A with no points on the boundary.
It is also a well known fact that S(A) is isomorphic to the ring of polynomials
Cla], (if endowed with the multiplication defined by the gluing of annuli). The
independent variable « is the diagram with one strand parallel to the boundary of
the annulus. Recall from [30] that every link diagram L in the plane determines a
map

<oy o> S(A)x 1 S(A) x -0 S(A) — S(R?)
obtained by first expanding each component of L to an annulus via the blackboard
framing and then homeomorphically mapping A onto it.

The third example is the skein space of a disk with 2n points on the boundary.
If the disk is viewed as a rectangle with n points on one side and n on the opposite,
then we can define a multiplication rule on the skein space by juxtaposing rectangles,
obtaining the Temperley-Lieb algebra T'L,. Recall that T'L, is generated by the
elements 1,ey, e, -+, €, 1, where ¢; is described in Fig. 3.4.

There exists a map from TL, to S(R?) obtained by closing the elements in
TL, by n parallel arcs. This map plays the role of a quantum trace. It splits in a
canonical way as T'L, — S(A) — S(R?) by first closing the elements in an annulus

and then including them in a plane.
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o ]

Figure 3.4: Basis for T'L,,

At this moment we recall the definition of the Jones-Wenzl idempotents [43].
They are of great importance for our construction, since they mimic the behavior
of the finite dimensional irreducible representations from the Reshetikhin-Turaev
theory [34]. For this let 7 > 1 be an integer (which will be the level of our TQFT).
Let A = /"), Recall that for each n one denotes by [n] the quantized integer
(A2 — A=27) /(A2 — A°2).

The Jones-Wenzl idempotents are the unique elements f™ € TL,, 0 < n <
r — 1, that satisfy the following properties:

1 e, =0=¢ef" for0<i<n-1,

f(n)
(i
(n)

3) f"™ is an idempotent,

)
2) ) — 1) belongs to the algebra generated by e;, eq, -+ -, e,_1,
)
4) Ap = (=1)"[n +1]
where A, is the image of f(™ through the map TL, — S(R?).
In the sequel we will have to work with the square root of A,, so we make the
notation d, = i”\/m, thus A, = d2.
Following [30], in a diagram we will always denote f™ by an empty coupon
(see Fig. 3.5).
The image of f™ through the map T'L, — S(A) will be denoted by S, (o) We
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n_ M
L]

Figure 3.5: Jones-Wenzl idempotent

will also need the element w € S(A), w = 3"_2d2S,(a). Given a link diagram L in
the plane, whenever we label one of its components by w we actually mean that we
inserted w in the way described in the definition of < -,-,---,- >7. Note that one
can perform handle slides (also called second Kirby moves [26]), over components
labeled by w without changing the value of the diagram (see [30]).

Now we can define the basic data for a TQFT in level r, where r, as said,
is an integer greater than 1. Let £ = {0,1,---,r — 2}. Make the notation X =
(iv/2r)/(A? — A7?), that is X? = Y d* =< w >y, where U is the unknot with zero
framing.

Notice that by gluing two disks along the boundary we get a pairing map
S(D,2n) x 8(D,2n) — 8(S?) = C, hence we can view S(D,2n) as a set of func-
tionals acting on the skein space of the exterior. In what follows, whenever we
mention the skein space of a disk, we will always mean the skein space as a set of
functionals in this way. For example this will enable us to get rid of the diagrams
that have a strand labeled by r —1 (see also [30], [24]). The point of view is similar
to that of factoring by the bad part of a representation (the one of quantum trace
0) in the Reshetikhin-Turaev setting.

To a disk with boundary labeled by 0 we associate the vector space V; which
is the skein space of a disk with no points on the boundary. Of course for any other

label a we put V, = 0. It is obvious that V; = C. We let (3, be the empty diagram.
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b)

Figure 3.6: Spaces associated to annuli

To an annulus with boundary components labeled by a and b we associate the
vector space Vi, which is the subspace of S(D,a + b) spanned by all diagrams of
the form indicated in Fig. 3.6. a), where in the smaller disk can be inserted any
diagram from S(D, a + b). The first condition in the definition of the Jones-Wenzl
idempotents implies that V,;, = 0 if a # b and V,, is one dimensional and is spanned
by the diagram from Fig. 3.6. b). We will denote by [3,, this diagram multiplied
by 1/d,, where we recall that d, = i“\/m. The element f3,, has the property
that paired with itself on the outside gives 1.

To a pair of pants with boundary components labeled by a, b, and ¢ we put
into correspondence the space V., which is the space spanned by all diagrams of

the form described in Fig. 3.7. a), where in the inside disk we allow any diagram

b) c)
SR

Figure 3.7: Spaces associated to pairs of pants

from S(D,a + b+ ¢).
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The reader will notice that there is some ambiguity in this definition. To make
it rigorous, we have to mark a point on the circle, from which all points are counted.
We will keep this in mind although we will no longer mention it.

The results from [24] and [30] show that V. can either be one dimensional
or it is equal to zero. The triple (a,b,¢) is said to be admissible if V,;. # 0. This
is exactly the case when a + b+ ciseven, a+b+c¢ < 2(r—2) and a < b+ ¢,
b<a+c c<a+b In this case the space V. is spanned by the triad introduced
by Kauffman [24] which is described in Fig. 3.7. b). Here the numbers z, y, z

satisfya=x+y,b=y+ 2, c= 2+ x.

o
I
o

o
D N

o XZE if n=0

{HQ«

(2) 0 if >0
' d
]

Figure 3.8: The identities of Lickorish

In [29] it is shown that if we pair the diagram from Fig. 3.7. b) with the
one corresponding to Vg, on the outside we get the complex number 6(z + y,y +
2,2+ 1) = (Dpryt!Dac Ay 1A, 1)) (Ayaci!Asya 1! Ayiy—1!), where A, =
A1Ag---A, and A_; = 1. Thus if we denote by (.. the product of this dia-
gram with (dyyldoody—1ldomy) " (dysmidasgmnldogym!) = 1/1/0(a,b,c) (with

the same convention for factorials), then [, paired on the outside with £, will
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give 1.

In diagrams, whenever we have a [, we make the notation from Fig. 3.7.
c¢). This notation is different from the one with a dot in the middle from [30] , in
the sense that we have a different normalization! We prefer this notation because it
will simplify diagrams in the future, so whenever in a diagram we have a trivalent
vertex, we consider that we have a [ inserted there. In particular, a diagram that
looks like the Greek letter § will be equal to 1 in S(R?). The elements 3, are the
analogues of the quantum Clebsch-Gordan coefficients.

In the sequel we will need the three identities described in Fig. 3.8, whose

proofs can be found in [30]. Here d,4 is the Kronecker symbol.

AL S

_Bog

5

Figure 3.9: Morphisms for pairs of pants

Let us define the dual spaces. It is natural to let the dual of Vj to be Vj,
that of V,, to be V,,, and that of V. to be V.. However the pairings will look
peculiar. This is due to the fact that we want the mapping cylinder to be satisfied.
So we let <,>: V5 x Vj — C be defined by < Gy, 8y >= 1, <,>: Ve x Vy — C

be defined by < B4, fae >= X/d?, and <,>: Vg X Vo — C be defined by
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< ﬁabm ﬁacb >= XZ/(dadde),

Figure 3.10: Fusion matrix

Before we define the morphisms associated to the elementary moves we make
the convention that for any e-morphism f we will denote V(f) also by f.

The morphisms corresponding to the three elementary moves on a pair of
pants are described in Fig. 3.9. Further, we let F': @, Vyap @ Vied — D) Vida @ Ve
be defined by F'fpup @ Bpea = Zq{ZZZ}ﬂqda ® Bgpe The coeflicients cgpeapq being given
by any of the three equal diagrams from Fig. 3.10. Note that Cupedpg = d;ldq{zz’;}

bfl’;} are the 6j-symbols.

_ - 9
S| g X ™

Figure 3.11: S-matrix

where {

Also the map S : @ Voo — @ Vpip is described in Fig. 3.11.

The maps A, D and P are given by relations of the form A(x ® f,.) = =,
D(Baao ® Bo) = Pua and P(z ® y) = y @ ). The map C' is the multiplication by
the value of the diagram described in Fig. 3.12. a). Note that Lemma 4 in [30]

implies that the inverse of C' is the multiplication by the diagram from Fig. 3.12.
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a b)

30

W

)

X‘H

Figure 3.12: Framing adjusting morphism

b). Finally, S(a) = d?/X, a € L.

REMARK. The reader should note that the crossings from all these diagrams
are negative. We make this choice because, returning to the analogy with vec-
tor spaces, all the maps we defined behave like changes of basis rather than like

morphisms.

3.4 The Compatibility Conditions
In order for the basic data to give rise to a well defined TQFT, it has to
satisfy certain conditions. A list of such conditions has been exhibited in [41], by
making use of techniques of Cerf theory similar to those from [22]. The first group
of relations, the so called Moore-Seiberg equations, are the conditions that have to

be satisfied in order for the modular functor to exist. They are as follows:

1. at the level of a pair of pants:

a) Ty Bys = By3Ty, TyBog = BysTs, T3Bys = By3Ty, where T, = RTiR™" and
Ty = R7'T\R,

b) B3; = T1T2_1T3_1,

c) R? =1,

d) RBy3R?Bo3RBy3 R =1,

2. relations defining inverses:

a) PI2F? =1

I

b) Ty ' By S? =1,
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3. relations coming from “codimension 2 singularities”:
a) P FRA pE) R P2 R FE) R F(12) = 1
b) TV F B, FB§3)FB§3) =1,

¢) C'By Ty STy STy 'S = 1,

d) RV(R®)='FSOFBY By = FSOTA(T) ' BYF,
4. relations involving annuli and disks:

a) F(B" @ B°) = " @

b) Agu)Dém) _ D2D§13),

c) A2 AG3) = A(23) 402)

p P %
AS] B :dg A B
p 0—

Figure 3.13: First recombination formula

5. relations coming from duality:

-for any elementary move f, one must have f* = f, where f* is the adjoint
of fwith respect to the pairing, and f is the morphism induced by f on the surface
with reversed orientation,

6. relations expressing the compatibility between the pairing, and moves A
and D:

a) < B, By >=S(m)~!

b) < BR’, 8" >=5(0)"'S(m)~"

In addition one also has to consider two conditions that guarantee that the

partition function is well defined.
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p p p p
2 2 0 _
— A B =
A B | =djdl
p p P P P~
0 2
d2(d5| A B |+xdd A| | B >=d A B
p\ -0 c0 ¢ p
p

Figure 3.14: Proof of Lemma 4.1

7. a) S(m) = Som where [Syy]s,, is the matrix of move S on the torus (which
can be thought as the punctured torus capped with a disk),

b) F(B™ @ 48" = @ S(m)~'S(n) " idym, where id,,,, is the identity matrix
in (V;)mn)* & Vmn-

In all these relations, the superscripts in parenthesis indicate the index of
the elementary surface(s) on which the map acts, and the subscripts indicate the

number of the boundary component.

AL Ao -« Am = g2™2 AL Ao b o | A

P p p pLM

Figure 3.15: Second recombination formula

We will prove that our basic data satisfies these relations. For the proof we
will need a contraction formula similar to the tensor contraction formula that one

encounters in the case of TQFT’s based on representations of Hopf algebras (see

[39], [13], [18]).
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r-2 bz
> @ A2
p=0 P a % % 2

Figure 3.16: Bessel type formula

LEMMA 4.1. For any A, B € T L, the equality from Fig. 3.13 holds.

PROOF: The proof is contained in Fig. 3.14. In this chain of equalities the first
one is trivial, the second one holds because the sum that appears in the third term is
trivial (by the first property of Jones-Wenzl idempotents, since such an idempotent
lies on the strand labeled by c¢; more explanations about this phenomenon can be

found in [L1] and [R]), and the last equality follows from identity (2) in Fig. 3.8.0
LEMMA 4.2. If A}, Ay, ---, A, € TL, then the identity from Fig. 3.15 holds.
PROOF: Follows by induction from Lemma 4.1.0.

THEOREM 4.1. Suppose that A; € S(D, a; +bi+az~+1 +bi+1), 1=1,2,--+,m,
where a; and b; are integers with a,,.1 = a; and b,,.1 = b;. Then the identity

described in Fig. 3.16 holds.

PROOF: By Lemma 4.2, the left hand side is equal to the expression described
in Fig. 3.17. a).

On the other hand, if p # ¢, by using the identity (2) from Fig. 3.8, we get
the chain of equalities from Fig. 3.17, where the last one follows from the fact that
on the strand labeled by c there is a Jones-Wenzl idempotent and using the first
property of these idempotents.

As a consequence of this fact we get that our expression is equal to the one
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Figure 3.18: Bottle neck type identity

from Fig. 3.16. b), and then by applying the identity (2) from Fig. 3.6 several

times we get the desired result.O.

i a
2 oo M
2
e b N
b

a

Figure 3.19: Proof of 2. a), first part

We can proceed with proving the compatibility conditions. The proofs are
similar to the ones in [13] and [18], but one should note that they are simpler.
First, the relations on a pair of pants are obviously satisfied. This can be seen at
first glance for 1.a) and 1.c), then 1.d) is the third Reidemeister move, and 1.b) is
equivalent to 1.c) (see [13] or Chap. VI in [39]).

For the proof of 2. a) we write FPF Bpu ® Bpea = >_g CabedpqBaab @ Bgea- Since
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we have a matrix multiplication here we see that the coefficient cypeapq is given by
the diagram from Fig. 3.19.

By using Theorem 4.1 this becomes the expression from Fig. 3.20. Using
identity (1) from Fig. 3.8. wee see that this is equal to d,, multiplied by the Greek

letter  diagram, therefore is equal to d,, and the identity is proved.

o \

Figure 3.20: Proof of 2. a), second part

For 2. b) we have that T; ' B3;'S?8,4, is equal to the first term in Fig. 3.21.
We get the chain of equalities from this figure by pulling first the strand labeled by
w down and using the identity (2) from Fig. 3.8, and then using identity (3) from

Fig. 3.8. The last term is equal to (.

D
> @b = 3 '.l
b X b,c x2
3

Figure 3.21: Proof of 2. b)

Now we describe the proof of the pentagon identity. We are interested in com-

puting the coefficient of Bsge @ Bset ® Brap in F12 RA) F23) R(2) p(12) R(2) p(23) R(2) p(12)
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Figure 3.22: Coefficient for pentagon

Bpab @ Bpge @ Byde- Again, by using the formula for matrix multiplication we get that

this coefficient is described in Fig. 3.22.

Figure 3.23: Proof of pentagon, first part

By doing a flip in the third, fourth and fifth factor we get the first term from
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p < b
(o
2 c S -
o b))
d. d.5_ 3 d2 i c < \,
A e :

Figure 3.24: Proof of pentagon, second part

the equality shown in Fig. 3.23, which is further transformed into the second by
applying three times 1. b). Apply Theorem 4.1 to contract with respect to u, then
continue like in Fig. 3.24, namely pull the strand of a over, then apply Theorem
4.1 for the sum over v and then use for the last equality formula (1) in Fig. 3.8.
Finally, if we use Theorem 4.1 once more and then formula (1) in Fig. 3.8, we get
dpt0qs times a diagram of the form of letter §. Hence the final answer is d,,0,, and
the identity is proved.

In order for the F-triangle to hold we have to show that the coefficient of
Baab @ Byea in TSV FBSY FBY FBSY Bh00Bpea is 0p. The coefficient is given in Fig.
3.25.

We transform the second factor as shown in Fig. 3.26 by first doing two flips
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Figure 3.25: Coefficient for F-triangle

and then using 1. b) twice. Then contract the product via Theorem 4.1 to get the
first term from the equality from Fig. 3.27, then transform it into the second by

using again 1. b). As before, this is equal to d,,.

Figure 3.26: Middle factor for F-triangle

d
P P
4 @9 %dq®q
Q/Q/’O/q a

Figure 3.27: Proof of F-triangle

In the case of the S-triangle, it is not hard to see that C ' B3 Ty STy ' STy ' S Baa
is equal to the expression from Fig. 3.28. Lemma 3 in [L1] enables us to do Kirby
moves over components labeled by w, so we get the first term from Fig. 3.29, which

is equal to the second one by Lemma 4 in [30]. From here we continue like in the

proof of 2. b).
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Figure 3.28: Coefficient for S-triangle

d.d dady
a‘b e
TG b X°
| ]

Figure 3.29: Proof of S-triangle

Let us prove 3. d). We have to show that the coefficient of (4. ® Byaa in
FPSOTO(TY1BY Bpab @ Bype 1s the same as the coefficient of this vector in
R(l)(R(z))_lFS(l)FB%)Bé?ﬁpab ® Byhe- For the first one we have the sequence of
equalities from Fig. 3.30, where the second equality is obtained by contracting via
Theorem 4.1. For the second one we have the equalities from Fig. 3.31, where at
the first step we used a combination of a flip and 1.b) and at the second step we
contracted. By moving strands around the reader can convince himself that the two
are equal.

The groups of relations 4, 5, and 6 are straightforward. Also, we see that the
function S has been chosen such that 7.a) holds. Let’s prove 7.b). Here is the place
where we see why we normalized the pairing the way we did. We have to prove that

d2,d2 X2 F Bomm @ Bonn = BplmdndyX 7> Bonm @ Bymn- We see in Fig. 3.32 that this
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a

Figure 3.30: Left hand side for FSF-identity

is true.

Figure 3.31: Right hand side for FSF-identity
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3.5 Properties of Invariants of 3-manifolds
We begin this section with the generalization of Theorem 8 from [30] (see also

Proposition 10.1 in [5]) to surfaces with boundary.

PROPOSITION 5.1. Let ¥ be a surface of genus ¢ with n boundary compo-
nents, and let D be the DAP-decomposition of ¥ x S' whose decomposition circles

are the components of 9¥ x {1} and whose seams are of the form {z} x S', with

x € 0X. Then
Z(E X Sl: D, O) = ‘ Z . leaj?:"':jn/ﬁjljl ® ﬁj2j2 Q- & ﬁjnjn
J1:925 5 )n
where ji, j9, -+ -, j, run over all labelings of 0¥ and ¢;, j, ..., is the number of ways

of labeling the diagram in Fig. 3.33 with integers i, such that at each node we have

an admissible triple.

:m@:m
X X
m p

Figure 3.32: Compatibility for partition function

[ 2g+n-2C>i 2g+n-1 ©i3g+n_3
Q . 7

I

‘ ‘ [ g+n-1 i 2g-n-3

[ 2 i g-1 i g i g+l i g+n-2

Figure 3.33: Diagram for Proposition 5.1.

PROOQOFEF: Consider on ¥ a DAP-decomposition Dy with decomposition curves
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as shown in Fig. 3.34. Put on ¥ x I the DAP-decomposition D’ that coincides
with Dy on ¥ x {1}, with —Djy on —% x {0}, and on 0¥ x I there are no extra
decomposition circles, and the seams are vertical (i.e. of the form {z} x I).

It follows that (X x I, D’,0) is the mapping cylinder of (id,0) (with vertical
annuli no longer contracted like in the definition of the mapping cylinder from

Section 2). The mapping cylinder axiom implies that

Z(Xx1,D'0)= ® 005, g reejn Binjn @ Biojo @ -+ @ B i
J1sg2,dn

where id; is the identity endomorphism on V(X, Dy, (j1, J2, 4 Jn))-

1,42, 0n

If we glue the ends of ¥ x I via the identity map we get the e-3-manifold from

the statement. The gluing axiom implies that in the formula above the identity

matrices get replaced by their traces. Therefore

Z(Ex S D,0)= & dimV(Z, Do, (j1,J2, "+ Jn)) Bjrjs ® Biajo @+ ++ ® Birin

J1sg2sdn

Figure 3.34: Surface for Proposition 5.1.

On the other hand the gluing axiom for V' implies that

dimV (3, Do, (41, J2, * =+ Jn)) = Cjyjaserjm» Which proves the proposition.O

The following result shows that the Kauffman bracket not only determines
our TQFT, but also can be recovered from it. It is an analogue of Theorem 1.1 in
[21] which showed the presence of the skein relation of the Jones polynomial in the

context of the Reshetikhin-Turaev TQFT. Before we state the theorem we have to
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introduce some notation.

Let us assume that the three e-manifolds (M, Dy,0), (My, Dy, 0) and
(Ms, D3, 0) are obtained by gluing to the same e-manifold the genus 2 e-handlebodies
from Fig. 3.35 respectively, where the gluing occurs along the “exterior” punctured
spheres. Note that the three handlebodies have the same structure on the “exterior”

spheres, so they produce the same change of framing (if any) when gluing.

Figure 3.35: Extended genus 2 handlebodies

The “interior” annuli of the handlebodies are part of the boundaries of our 3-
manifolds. The gluing axiom implies that V (0M;, D;) splits as a direct sum V; @ V/,
where V; is the subspace corresponding to the labeling of the ends of the annuli by
1. Moreover, the gluing axiom for Z implies that Z(M;, D;,0) also splits as v; @ v!
where v; € V; and v, € V/. On the other hand the spaces Vi, V;, and V; are
canonically isomorphic. Indeed, they have a common part, to which the vector
spaces corresponding to the two annuli with ends labeled by 1 are attached via the
map r — * ® 11 ® B11. Thus vy, vo and v3 can be thought as lying in the same
vector space. With this convention in mind, the following result holds.

THEOREM 5.1. The vectors v1, v9, and v3 satisfy the Kauffman bracket skein
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relation

V1 = A'UQ + Ail’Ug.

Proof: By the gluing axiom for Z we see that it suffices to prove the theorem
in the case where M;, M, and Mj coincide with the three handlebodies (i.e. when
the manifold to which they get glued is empty).

The first e-manifold is obtained by first taking the mapping cylinder of the
homeomorphism on a pair of pants that takes the “right leg” over the “left leg”
as shown in Fig. 3.36 (it should be distinguished from a move in the sense that it

(1)

really maps one seam into the other), then composing it with the move Bgé , and

finally by expanding two annuli via moves of type A~!.

S C/

Figure 3.36: Map on a pair of pants

We get
vy = 3233011 ® Bo11 @ i1 @ Bi1 + 3233211 ® Ba11 ® f11 @ Bii

where for z € V. we denote by & the vector in (Vg,.)* with the property that
< z,z >= 1. By the definition of the pairing Bon = d?X 2(3y; and BQH =
d2dy X =2 3511. The computation of Byzf11 and Basfs1; is described in Fig. 3.37.

Hence
vy = —APdT X7 Bon @ fonr ® B @ B + AT dida X Bt @ Bt @ Bi1 @ B

The second manifold can be obtained by gluing along a disk the mapping

cylinders of two annuli. The mapping cylinder of an annulus has the invariant
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Byafo11 = @ (A @ @ (-A )@ -A 8011
Baaorr = =2 = (A +A1 - A" By,
/8(2,1,1) /6(2,1,1) /0(2,1,1)

Figure 3.37: Skein computation

Dafloa ® Baa = Pad2X Bug @ faa, S0 after expanding a disk and gluing the two
copies together we get ®,,d2di X 2 Boaa @ Bord @ Baa ® Bp- But we are only interested
in the component of the invariant for which @ = b = 1, hence v, = d{X 3301 ®
Borr & B ® B

Finally, the third e-manifold is the mapping cylinder of the identity with two
expanded annuli, hence

vy = —diX 7 fo11 ® Bor1 ® i1 ® Py + didaX a1t ® a1 ® Bui ® Pur.
The conclusion follows by noting that the diagram that gives the value of

d? = A, is the unknot, hence d? = — A% — A=2.0

As a consequence of the theorem we will compute the formula for the invariant

of the complement of a regular neighborhood of a link.

PROPOSITION 5.2. Let L be a framed link with £ components, and M
be the complement of a regular neighborhood of L. Consider on OM the DAP-
decomposition D whose decomposition curves are the meridinal circles of L (one

for each component) and whose seams are parallel to the framing (see Fig. 3.38.a)).

Then

1
Z(M,D,O):— Z <Sn1(a)asn2(a)aasnk(a) >L ﬂnlnl ®ﬂngng®ﬁnknk

N
where the sum is over all labels, and < -,-,---,- > is the link invariant defined in
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Section 3.

PROOF: We assume that L is given by a diagram in the plane with the black-
board framing. When L is the unknot the invariant can be obtained from Propo-
sition 5.1 applied to the case where ¥ is a disk, so in this situation Z(M, D,0) =
1/X¥,d?,, and the formula holds. By taking the connected sum of k copies of
the complement of the unknot, and using the gluing axiom for Z we see that the
formula also holds for the trivial link with &£ components. Let us prove it in the
general case. Put Z(M,D,0) = 1/X 3, 11, n, Cringeong Bniny @ Bronse @« Brgny,- We
want to prove that

Cryngeemy, =< Sy (@), Spy (@), - -+, Sp, () > . (3.1)

Since by Theorem 5.1, ¢q1..; and < Si(a), Si(a), -+, Si(«) >, satisfy both
the Kauffman bracket skein relation, the equality holds when all indices are equal
to 1. If some of the indices are equal to 0, the corresponding link components can
be neglected (by erasing them in the case of the link, and by gluing inside solid
tori in the trivial way in the case of the 3-manifold). Therefore the equality holds
ifn;=0,1,i=1,2,--- k.

For a tuple n = (nq,ng, - -+, ng) let u(n) = maz{n;|i =1,2,---, k} and v(n) =
card{i| n; = p(n)}. We will prove (1) by induction on (u(n), v(n)), where the pairs
are ordered lexicographically. Suppose that the property is true for all links and all
tuples n’ with (u(n'), v(n')) < (u(n),v(n)) and let us prove it for (u(n),v(n)).

Let My be the product of a pair of pants with a circle. Put on M, a DAP-

decomposition Dy as described in Proposition 5.1. Then

Z(My, Dy, 0) = > bmnpBmm @ Ban @ By

mnp
where 0pnp, = 1 if (m,n,p) is admissible and 0 otherwise.

Assume that in the tuple n = (ny,ng, -+, ng), npy = p(n). Glue My to M
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Figure 3.38: Link complements

along the k-th torus of M such that in the gluing process the DAP-decompositions
of the two tori overlap. We get an e-3-manifold (M;, Dy, 0) that is nothing but the
manifold associated to the link L’ obtained from L by doubling the last component
(see Fig. 3.38.b)).

Let Z(My,D;,0) = 1/ XXdm,my-mpmpr1 Brim: @ Bmoms @ - By yimys,- The

gluing axiom, together with relation 6.a) from Section 3 imply that d,, m,..

Mpy —
2 p Ompmys . pCmi,ma,ymy_,p- 11 particular
Any g 1 mp—1,0 = Cnynayemp—2 T Cnyngeeemg -
Applying the induction hypothesis we get
Cryngeony =< Sy (@), Sy, (@), Sy (@), > — < Sp (v, -+, S, (@),
Sny—2(a) > .

But < Sy, (a0, -+, S, (@), Sn,—1(), a0 >p=< Sy, (a0, -+, Sn,_, (), aSy,—1(a) >L

and since Sy, (@) = aSy,—1(a) — Sy, —2() (see [30]), we obtain the equality in (1)

and the proposition is proved.O

REMARK. As an easy consequence of this result one can give a short proof

of the formula for the colored Jones polynomials of cable knots.

COROLLARY. If M is a closed 3-manifold obtained by performing surgery
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on the framed link L with & components, then
Z(M,0)=X"F1C7 <w,w,-,w>p

where ¥ is the signature of the linking matrix of L.

PROOF: We may assume that L is given by a link diagram in the plane and its
framing is the blackboard framing. Let (M7, Dy, 0) be the e-3-manifold associated
to L as in the statement of Proposition 5.2. Consider the e-manifold (Ms, Dy, 0)
where M, is the solid torus and D,is described in Fig. 3.39. Applying Proposition

5.2 to the unknot we see that the invariant of this e-manifold is 1/X3,,d2 3.

Figure 3.39: Extended solid torus

If we glue k copies of this manifold to M; such that the DAP-decompositions
overlap we get M. In the gluing process the framing changes by —o(Ly, Lo, L3)
(see Section 1) where L, is the kernel of Hy(0OM,y) — Hy(M;), L, is the Lagrangian
space spanned in H;(OM) by the meridinal circles of the link, and Lj is the one
spanned by the curves that give the framing. It is a standard result in knot theory
that —o(Ly, Ly, L3) = o, the linking matrix of L. Using the gluing axiom for Z we
get

Z(M,0)=X""*" Y & dy, - di < Sp (@), Spy(@), -+, Spy (@) >1=

n1 “no
T1,M2, N

hence

Z(M,0)=X"*"1C7" <w,w, -, w>y .0
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We make the remark that this gives the invariants of 3-manifolds as normalized
in [30].

A similar argument, based again on the skein relation for the invariants of
three manifolds from Theorem 5.1, can be used to prove the formula for the quantum
invariant of three manifolds with boundary. The TQFT with corners can also be
used for the proof of the formulas of Rozansky for the invariants of Seifert fibered
spaces and for a more direct approach to the theory of Turaev-Viro modules in the
context of cyclic covers of complements of knots. We also consider that the above

ideas can be followed to construct a universal TQFT.
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