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1
ABSTRACTThe topics of my dissertation involve technics and ideas common toboth functional analysis and geometry.The �rst chapter contains the solution to a problem from the spectraltheory of commuting n-tuples of operators. The question is whether one can perturba Fredholm n-tuple of operators with index zero by compact operators to get ann-tuple with exact Koszul complex. This property is true in the one dimensionalcase, namely a Fredholm operator with index zero can be compactly perturbed to aninvertible one. I prove that there exist Fredholm n-tuples of index zero that cannotbe perturbed by compact operators to an n-tuple with exact Koszul complex. I dothis by �nding an obstruction at the level of the boundary operator from the longexact sequence in cohomology.The main result of the second chapter is the proof in dimension 2 ofa conjecture of Douglas and Paulsen. The conjecture is related to the study ofinvariant subspaces for multiplication operators on the polydisk, and states thatan ideal of polynomials is relatively closed in the Hardy space topology of theunit polydisk if and only if each irreducible component of its variety intersects thepolydisk. The conjecture is proved by reducing it to a topological version of theHilbert Nullstellensatz and using an inequality for polynomials that went unnoticedbefore. The chapter also includes some Bergman space analogues of this result.The third chapter gives a positive answer to the question whether thesmooth topological quantum �eld theory of Lickorish, Blanchet, Habeger, Masbaum



2and Vogel comes from a topological quantum �eld theory with corners. I give theconstruction of a topological quantum �eld theory with corners that satis�es theaxioms of K. Walker by describing the basic data and checking its consistency. Inaddition, I give an axiomatic proof of the Lickorish invariant formula for closedthree-manifolds.
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1
CHAPTER 1COMPACT PERTURBATIONS OF FREDHOLM N-TUPLES1.1 IntroductionThe spectral theory of linear operators has its roots in the study of di�erentialequations. The spectral decomposition theorem for selfadjoint operators proved byD. Hilbert at the beginning of the century, together with the advances made inquantum physics, caused this area to become a domain of interest in itself. Thespectral decomposition theorem produced a comprehensible model for selfadjointoperators, and led to the construction of a functional calculus with measurablefunctions for these operators. Later, the study of spaces of analytic functions madenonselfadjoint phenomena become attractive to operator theorists; a spectral the-ory for arbitrary operators, together with an analytic functional calculus was thenintroduced by F. Riesz and N. Dunford. Fredholm operators appeared �rst in thestudy of a class of integral equations done by I. Fredholm, and by now are wellunderstood.The developments in the study of spaces of functions of more variables madeit possible for a multivariable operator theory to emerge. Such a theory alreadyappeared for the selfadjoint case in the works of J. von Neumann, being related tocommutative von Neumann algebras. In 1970, J. L. Taylor [37], [38], constructed aspectral theory for commuting n-tuples of operators by using the Koszul complex[28] (a tool that had already been used by the French school in complex analy-sis). Taylor de�ned the notion of spectrum, introduced analytic functional calculus,and proved that several important properties valid in the case of one operator are



2preserved in this more general setting; among these, the fact that the spectrum iscompact and nonvoid and that the spectral mapping theorem has a multivariableanalogue.In the late 70's, the notion of Fredholm n-tuples and a de�nition for the indexas the Euler characteristic of the Koszul complex were introduced. Since then a lotof properties that these notions satisfy in the case of a single operator have beenshown to be also true for commuting n-tuples. For example the index is continuous([40], [8]), invariant under compact perturbations ([8], [2]), and additive ([32]).It is a well known fact that a Fredholm operator of index zero can be perturbedwith a compact operator, in fact a �nite rank operator, to an invertible one. In [9],R. Curto asked if this remains true in the case of an n-tuple, namely if one canperturb a Fredholm n-tuple of index zero with compact operators to get an n-tuplewhose Koszul complex is exact. The purpose of this chapter is to prove the existenceof n-tuples for which this property does not hold.The results from this chapter have appeared in [14] and [15]We will start by reviewing some facts in multivariable operator theory. Letus discuss �rst the corresponding notions for a single operator.Let X be a Banach space, i. e. a vector space endowed with a norm k � kthat induces a topology in which X is complete. If T is a linear operator on Xlet kTk := supx2XkTxk=kxk. In case kTk is �nite, we say that T is a boundedoperator, and kTk is called the norm of T .Given an operator T , it is invertible if there exists an operator S with theproperty that ST = TS = I. On the other hand, one says that T is singular if thefollowing complex of Banach spaces is not exact0! X T! X ! 0: (1.1)



3As a consequence of the open mapping theorem, if T is bounded, then T is invertibleif and only if it is not singular.One de�nes the spectrum of T to be�(T ) := fz 2 Cj z � T is singularg.The spectrum is a compact nonvoid set. The number r := supfjzj z 2 �(T )g iscalled the spectral radius of T . If f is an analytic function in a neighborhood of�(T ) one can de�ne f(T ). In particular if f(z) = �akzk then f(T ) = �akT k,and if f(z) = p(z)=q(z) is a rational function having no poles inside �(T ), thenf(T ) = p(T )q(T )�1.The operator T is called Fredholm if the complex (1.1) has �nite dimensionalquotients. We de�ne indT := dimkerT�dimcokerT , which is the Euler characteris-tic of the complex. The index is continuous and invariant under perturbations withcompact operators. Let us recall that an operator is compact if it maps boundedsets from X into relatively compact sets.As an example of Fredholm operator we have the unilateral shift U+ : l2 ! l2,U+(�10 aiei) = �10 aiei+1. Another example is the operator of multiplication withthe variable on the Bergman space of the unit disk (that is the space of analytic,square integrable functions).The point of view described above makes the following construction of J. L.Taylor [37] natural.To each n-tuple T = (T1; T2; � � � ; Tn) of operators on X satisfying TiTj = TjTifor every 1 � i; j � n, one attaches a complex of Banach spaces, called the Koszulcomplex, as follows. Let �p = �p[e1; e2; � � � ; en] be the p-forms on Cn. De�ne theoperator DT : X N�p ! X N�p+1 by DT := T1NE1 + T2NE2 + � � �+ TnNEn,where Ei! := ei!, i = 1; � � � ; n.



4The Koszul complex is0! XO�0 DT! XO�1 DT! � � � DT! XO�n ! 0: (1.2)It is easy to check that D2T = 0, so this is indeed a complex.If we consider the algebraic notion of invertibility, namely the existence of theoperators S1; S2; � � � ; Sn with the property that S1T1 + S2T2 + � � �SnTn = 1, thenthe lack of an analogue of the open mapping theorem for several variables does notlet us relate the invertibility to the Koszul complex. However, because of technicalreasons, Taylor developed the whole spectral theory based on this complex. Thusan n-tuple will be called invertible if its Koszul complex is exact.Let Hp(T ) be the cohomology spaces of the complex (1.2). The n-tuple T isinvertible ifHp(T ) = 0; 0 � p � n, it will be called Fredholm if dimHp(T ) <1; 0 �p � n, in which case we de�ne its index to be indT := Pnp=0(�1)pdimHp(T ):As an example, in the case when n = 2 the Koszul complex is0! X D0T! XMX D1T! X ! 0 (1.3)where D0T (x) = (T1x; T2x) and D1T (x; y) = T2x� T1y, for any x; y 2 X . In this caseH0(T ) = kerD0T , H1(T ) = kerD1T=ranD0T , and H2(T ) = X =ranD1T .The Taylor spectrum of T , denoted by �(T ), is the set of all z = (z1; z2; � � � ; zn)inCn such that z�T = (z1�T1; z2�T2; � � � ; zn�Tn) is not invertible. It is known that�(T ) is a compact nonvoid set. For any holomorphic map f on a neighborhood ofthe spectrum one can de�ne f(T ), in particular, if f(z1; � � � ; zn) = �ai1;:::;inzi11 � � � zinn ,then f(T ) = �ai1;:::;inT i11 � � �T inn . The following result holds (see [38]).THEOREM 1.1. ( Spectral Mapping Theorem) If f : U !Cm is holomorphicon a neighborhood U of �(T ) then f(�(T )) = �(f(T )).Like every homology theory, the spectral theory for commuting n-tuples hasa long exact sequence in cohomology.



5THEOREM 1.2. If T = (T1; T2; � � � ; Tn) and T 0 = (T1; T2; � � � ; Tn; S) are com-muting tuples, then the following sequence is exact:0! H0(T 0)! H0(T ) Ŝ! H0(T )! H1(T 0)! H1(T )! � � �Hp�1(T )! Hp(T 0)! Hp(T ) Ŝ! Hp(T )! � � � (1.4)where Ŝ is the operator induced by SN 1 : X N�p ! X N�p; 0 � p � n.Let us remark that if T 0 is invertible, then Ŝ is an isomorphism at each stage.If T is Fredholm, the long exact sequence in cohomology provides an exact sequenceof �nite dimensional spaces, consequently the alternated sum of their dimensionsis zero. This shows that T 0 is a Fredholm tuple of index zero. Inductively we seethat any n-tuple that contains a Fredholm subtuple is Fredholm of index zero. Wewill look at this kind of tuples for �nding the counterexample to our perturbationproblem.The following result will also be used in the sequel.THEOREM 1.3. [32] If T = (T1; T2; � � � ; Tn) is a Fredholm n-tuple of op-erators on a Banach space, and if m = (m1; m2; � � � ; mn) 2 Nn, then Tm =(Tm11 ; Tm22 ; � � � ; Tmnn ) is also Fredholm andind(Tm) = m1m2 � � �mnindT .1.2 Finite Rank PerturbationsGiven a Fredholm operator of index zero T , it is a well known fact that one canadd a �nite rank operator R to T and make it invertible. The classical constructionis to let R be an isomorphism between the kernel and the cokernel of T . Consideringthe Koszul complex of T , that is the complex (1.1), we see that R induces a �niterank perturbation of this complex to the exact complex0! X T+R! X ! 0: (1.5)



6Similarly, the Koszul complex of a Fredholm n-tuple of index zero has a �niterank perturbation to an exact complex [8], but usually the new complex is not theKoszul complex of an n-tuple. The purpose of this section is to prove the existenceof commuting n-tuples of index zero that do not admit �nite rank perturbations tocommuting n-tuples with exact Koszul complex.LEMMA 2.1. Let (S1; S2; � � � ; Sn) be an invertible commuting n-tuple and letf : Cn ! Cm be a holomorphic function with f�1(0)=0. Then f(S1; S2; � � � ; Sn) isinvertible.PROOF: Since f�1(0)T�(S1; S2; � � � ; Sn) = ;, from the spectral mapping the-orem (Theorem 1.1) it follows that 0 is not in the spectrum of f(S1; S2; � � � ; Sn), sothis m-tuple is invertible.2LEMMA 2.2. Let (S1; S2; � � � ; Sn) be a Fredholm commuting n-tuple, withthe property that ind(S1; S2; � � � ; Sn) 6= 0. Then there exists a sequence of positiveintegers fmkgk and 0 � p0 � n such that dimHp0(Smk1 ; S2; � � � ; Sn)!1 for k !1.PROOF: By Theorem 1.3, ind(Sm1 ; S2; � � � ; Sn) = m � ind(S1; S2; � � � ; Sn), so�np=0(�1)pdimHp0(Sm1 ; S2; � � � ; Sn)!1 for k !1. It follows that�np=0dimHp0(Sm1 ; S2; � � � ; Sn) ! 1 for k ! 1; so there is a p0 such that the se-quence dimHp0(Sm1 ; S2; � � � ; Sn) is unbounded, from which the conclusion follows.2THEOREM 2.3. Let (T1; T2; � � � ; Tn) be a Fredholm commuting n-tuple withind(T1; T2; � � � ; Tn) 6= 0, and let p 2 C[z1; z2; � � � ; zn] with p(0) = 0. De�ne theoperator Tn+1 := p(T1; T2; � � � ; Tn). Then (T1; T2; � � � ; Tn; Tn+1) is Fredholm of indexzero, but there do not exist �nite rank operators R1; R2; � � � ; Rn; Rn+1 such that(T1 +R1; T2 +R2; � � � ;Tn+1 +Rn+1) is an invertible commuting (n+1)-tuple.PROOF: Suppose that such �nite rank operators exist and let Si = Ti +



7Ri, 1�i�n + 1. Applying Lemma 2.1 to the function � : Cn+1 ! Cn+1, de-�ned by �(z1; z2; � � � ; zn; zn+1) := (z1; z2; � � � ; zn; zn+1 � p(z1; z2; � � � ; zn)) we get that(S1; S2; � � � ; Sn; R) must be invertible, where R := Sn+1� p(S1; S2; � � � ; Sn): Clearly,R is a �nite rank operator. By applying again Lemma 2.1 to the function  :Cn+1 ! Cn+1;  (z1; z2; � � � ; zn; zn+1) := (zm1 ; z2; � � � ; zn; zn+1) we get that the (m+n)tuple (Sm1 ; S2; � � � ; Sn; R) is also invertible, for every positive integer m.Let fmkgk and p0 be the numbers obtained by applying Lemma 2.2 to then-tuple (S1; S2; � � � ; Sn), and let R̂ = R̂(mk; p0) be the operator induced by R onHp0(Smk1 ; S2; � � � ; Sn). Because (Smk1 ; S2; � � � ; Sn) is invertible, from the long exactsequence in cohomology it follows that R̂ must be an isomorphism for every mk.But this is impossible since dimHp0(Smk1 ; S2; � � � ; Sn) ! 1 and rank(R̂) �(np0) � rank(R). This completes the proof.2This result can be generalized as follows.PROPOSITION 2.4. Let T = (T1; T2; � � � ; Tn) be a Fredholm n-tuple withindT 6= 0, and let p 2 C[z1; z2; � � � ; zn]m be a polynomial map satisfying p(0) =0. Then the (m + n)-tuple (T; p(T )) is Fredholm of index zero, but it cannot beperturbed with �nite rank operators to an invertible (m+n)-tuple.PROOF: Suppose such a perturbation exists. As in the proof of the previoustheorem we can deduce that there exists a commuting n-tuple S1; S2; � � � ; Sn), thatis Fredholm of nonzero index and �nite rank operators F1; F2; � � � ; Fm such that(S1; S2; � � � ; Sn;F1; � � � ; Fm) is invertible.As before, from Lemma 2.1 we get that for every k, the m + n-tuple(Sk1 ; S2; � � � ; Sn; F1; � � � ; Fm) is invertible. Choose i to be minimal with the propertythat supp;kdimHp(Sk1 ; S2; � � � ; Sn; F1; � � � ; Fi) = 1. Such an i exists because of



8Lemma 2.2, and it is smaller than m since for i = m all the dimensions are zero.Let s := supp;kdimHp(Sk1 ; S2; � � � ; Sn;F1; � � � ; Fi; Fi+1) By Theorem 1.2, for ev-ery p we have a short exact sequenceHp(Sk1 ; S2; � � � ; Sn; F1; � � � ; Fi; Fi+1)! Hp(Sk1 ; S2; � � � ; Sn; F1; � � � ; Fi) F̂i+1!F̂i+1! Hp(S1; S2; � � � ; Sn; F1; � � � ; Fi) (1.6)from which it follows that rankF̂i+1 � dimHp(Sk1 ; S2; � � � ; Sn;F1; � � � ; Fi) � s. ButrankF̂i+1 � (n+ip )rankFi+1.Therefore dimHp(Sk1 ; S2; � � � ; Sn; F1; � � � ; Fi) � s + (n+ip )rankFi+1, and we getthat supp;kdimHp(Sk1 ; S2; � � � ; Sn; F1; � � � ; Fi) < 1, a contradiction. This provesthe proposition.2 1.3 The Main ExampleIn what follows we will restrict ourselves to bounded linear operators on anin�nite dimensional Hilbert space H. It is known [8] that the index of an n-tupleis invariant under compact perturbations. We will show the existence of Fredholmpairs of index zero that cannot be perturbed with compact operators to invertibleones. We start with a result about the structure of a Fredholm operator of positiveindex.LEMMA 3.1. Let T be a Fredholm operator with indT > 0. De�ne Hn =kerT n	kerT n�1. Then Hn 6= (0); n�2. Let Tn := T jkerT n. WriteTn : HnM kerT n�1 ! Hn�1M kerT n�2;Tn = 2664 An 0Bn Cn 3775 : (1.7)Then there exists n0 such that, for n > n0, An is an isomorphism.PROOF: Suppose that for some n, Hn = (0). Then kerT n = kerT n�1. HencekerT n+k = kerT n, for all k � 0. But this contradicts the fact that limn!1 indT n+k =



91. Since Hn?kerTn�1, T jHn is injective and THn T kerTn�2 = (0). This showsthat An is injective. But then the sequence fdimHngn is decreasing so it becomesstationary. Let n0 be such that for n > n0, dimHn = dimHn�1. Then for n > n0,An is an injective operator between �nite dimensional spaces of the same dimension,so it is an isomorphism.2REMARK. In the case when T is a coisometry, this result provides the Wolddecomposition for its adjoint. In this case all the subspaces Hn are isomorphic, andH0 is the wandering space of T �.LEMMA 3.2. Let T and Hn; n�2, be as in the statement of the previouslemma. If S is an operator that commutes with T , then for all n�1, kerT n is aninvariant subspace for S. Let Sn = SjkerT n,Sn : HnM kerT n�1 ! HnM kerT n�1;Sn = 2664 Xn 0Yn Zn 3775 : (1.8)Then there is n0 such that for n � n0, Xn is similar to Xn0 .PROOF: The fact that kerT n is invariant for S follows from commutativity.Let An and n0 be as in Lemma 3.1. Then ST = TS implies Sn�1Tn = TnSn; n � 2.Therefore, Xn�1An = AnXn; n � 2. For n > n0 An is an isomorphism hence Xn issimilar to Xn�1. This proves the lemma.2LEMMA 3.3. Let (T; S) be an invertible commuting pair. Then for any n,SjkerT n is an automorphism of kerT n.PROOF: Applying Lemma 2.1 to (T; S) and f : C2 ! C2, f(z1; z2) = (zn1 ; z2)we get that (T n; S) is invertible for any n. From the long exact sequence in cohomol-ogy it follows that Ŝ : H0(T n)! H0(T n) is an isomorphism. But H0(T n) = kerT n,



10and the lemma is proved.2THEOREM 3.4. Let T be a Fredholm operator with indT 6= 0. Then the pair(T; 0) is Fredholm of index zero and there do not exist compact operators K1 andK2 such that (T +K1; K2) is an invertible commuting pair.PROOF: Suppose such K1 and K2 exist. Without loss of generality we mayassume indT > 0, otherwise we take T � instead of T . We can also assume thatK1 = 0, otherwise we can denote T +K1 by T , and let K2 := K.Consider the spaces Hn; n � 2, obtained by applying Lemma 3.1 to T , andlet Kn := KjkerT n. By Lemma 3.2,Kn : HnM kerT n�1 ! HnM kerT n�1;Kn = 2664 Xn 0Yn Zn 3775 ; (1.9)have the property that Xn is similar to Xn0 for some n0 and n � n0. ApplyingLemma 3.3 we get that the operators Xn; n � 2 are isomorphisms. If we denoteby r the spectral radius of Xn0 , then since Xn0 is invertible its spectrum containsnonzero elements, so r > 0. From the fact that Xn is similar to Xn0 for n � n0, (soall X 0ns have the same spectral radius), it follows that kXnk � r.But kKjHnk = kKnjHnk � kXnk � r for n � n0. Because Hn ? Hm; n 6= m,and Hn 6= (0) for any n, it follows that K contains a diagonal that is bounded belowin norm, which contradicts the fact that K is compact. Therefore such K1 and K2cannot exist.2This gives a negative answer to Problem 3 in [9].PROBLEM. Can a Fredholm pair of index zero be compactly perturbed to aninvertible pair?



11COROLLARY 3.5. The pair (T; T ) can be perturbed by compacts to aninvertible commuting pair if and only if T can be perturbed by a compact to aninvertible operator.EXAMPLE: Let H2(D) be the Hardy space and Tz be the operator of multi-plication by the indeterminate z. Then the pair (Tz; Tz) is a Fredholm pair of indexzero that cannot be perturbed with compact operators to a pair with exact Koszulcomplex. 1.4 The Case of n-tuplesIn this section we generalize Theorem 3.1 to n-tuples. The obstruction willagain be given by the index of one of the operator coordinates of the n-tuple, andit will appear at one end of the Koszul complex. We start with a technical result.LEMMA 4.1. Let T be such that for any n, dimkerT n <1 and dimkerT n !1. If S commutes with T and the sequence fdim(kerS T kerT n)gn is bounded,then there exists a sequence of nontrivial orthogonal subspaces Hn in H such thatPHnSjHn is invertible, and for every m and n, PHnSjHn is similar to PHmSjHm.PROOF: Let Kn = kerT n 	 kerT n�1. Since dimkerT n ! 1, the spaces Knare nontrivial. Moreover, the operator PKnT jKn : Kn ! Kn�1 is injective, thereforedimKn � dimKn�1. This shows that the sequence dimKn, n 2 N is a decreasingsequence of natural numbers, so it becomes stationary. It follows that there exists anumber n0 such that for n � n0, the operator PKn�1T jKn is an isomorphism. Sincefor every n, kerT n � kerT n+1 and the sequence fdim(kerS T kerTn)gn is bounded,there exists a number n1 > n0 such that for n � n1, the operator PKnSjKn isinjective, hence invertible. Moreover, the operator PKnT jKn de�nes a similaritybetween PKnSjKn and PKn+1SjKn+1 for every n � n1. Taking Hn = Kn+n1, n � 0,



12we obtain a sequence of spaces with the desired property.2THEOREM 4.2. Let (T1; T2; � � � ; Tn) be a commuting n-tuple with T1 Fred-holm and indT1 6= 0 . If for each k, 2 � k � n, there exists an analytic function oftwo variables fk such that1. fk(0; w) = 0 implies w = 0,2. fk(T1; Tk) = Lk, Lk compact,then the n-tuple (T1; T2; � � � ; Tn) cannot be perturbed with compact operators to aninvertible n-tuple.PROOF: Suppose that such compacts K1; K2; � � � ; Kn exist. Denote Si = Ti+Ki. Then S1 is Fredholm of nonzero index, we may assume indS1 > 0. We remarkthat for every k, 2 � k � n the operator Nk = fk(S1; Sk) is compact. Considerthe analytic function f : Cn ! Cn, f(z1; z2; � � � ; zn) = (z1; f2(z1; z2); � � � ; fn(z1; zn)).Then f�1(0) = 0, and since (S1; S2; � � �Sn) is invertible, from the spectral mappingtheorem it follows that (S1; N2; � � � ; Nn) is also invertible. Let us show that this isnot possible.Let k be the smallest integer with the property that the sequencefdim(kerSm1 T kerN2 T � � �T kerNk)gm, is bounded. Such a k exists, for by thespectral mapping theorem (Sm1 ; N2; � � � ; Nn) is invertible for every m, hencekerSm1 T kerN2 T � � �T kerNn = 0. Consider the subspace H0 = kerN2 T � � �TNk�1(in case k = 2 take H0 = H). Since the operators S1; N2; � � � ; Nk commute, H0 isinvariant for S1 and Nk. Moreover, because of the minimality of k, the operatorsS1jH0 and N = NkjH0 satisfy the hypothesis of the previous lemma.Let Hm be the spaces obtained by applying the lemma. Since PH1N jH1 isinvertible, its spectral radius r is nonzero, so because of the similarity we havekPHmN jHmk � r > 0 for every m, which contradicts the fact that N is compact.



13This proves the theorem.2COROLLARY 4.3. If T is Fredholm with indT 6= 0, and k1; k2; � � � ; kn arepositive integers, then the n-tuple (T k1; T k2; � � � ; T kn) has index equal to zero, butcannot be perturbed with compact operators to an invertible n-tuple.EXAMPLE: Let Tz be the operator of multiplication by the indeterminatez, acting on the Hardy space H2(D). Then the n-tuple (Tz; Tz; � � � ; Tz) cannot becompactly perturbed to an invertible n-tuple.The following result for triples shows that the obstruction might also be pro-vided by a subtuple.PROPOSITION 4.4. If the pair (T1; T2) is Fredholm of positive index then thetriple (T1; T2; 0) is Fredholm of index zero and cannot be perturbed with compactoperators to an invertible one.PROOF: Suppose that there exist compact operatorsK1, K2 andK3 such thatthe triple (T1+K1; T2+K2; K3) is invertible. Let S1 = T1+K1 and S2 = T2+K2. ByTheorem 1.3, ind(Sn1 ; S2) = n � ind(S1; S2) = n, which shows that dimH0(Sn1 ; S2) +dimH2(Sn1 ; S2)!1 for n !1. So there is a sequence of positive integers fnkgksuch that either dimH0(Snk1 ; S2) ! 1 or dimH2(Snk1 ; S2) ! 1. Without loss ofgenerality we may assume that dimH0(Snk1 ; S2)!1. Since H0(Sn1 ; S2) = kerSn1 \kerS2 and kerSn1 � kerSn+11 we get that dim(kerSn1 \kerS2)!1 for n!1. Onthe other hand, from the spectral mapping theorem it follows that (Sn1 ; S2; K3) isinvertible for any positive integer n hence kerSn1 \ kerS2 \ kerK3 = 0. Thereforewe can apply Lemma 4.1 to the space kerS2, and to the operators S1jkerS2 andK3jkerS2. Using the same idea as in the proof of Theorem 4.2 we contradict thecompactness of K3, which proves the claim.2



14EXAMPLE: LetH2(D2) be the Hardy space on the bidisk, and let Tz1 and Tz2be the two shifts de�ned by Tz1f(z1; z2) := z1f(z1; z2), Tz2f(z1; z2) := z2f(z1; z2),f 2 H2(D2). It is well known that the pair (Tz1; Tz2) is Fredholm of index 1 [5].Therefore (Tz1 ; Tz2; 0) is a Fredholm triple of index zero that cannot be perturbedwith compact operators to a commuting invertible triple.It is still not known whether such a result is true in general.QUESTION: Let T = (T1; T2; � � � ; Tn) be a Fredholm n-tuple with indT 6= 0,and let p 2 C[z1; z2; � � � ; zn]m be a polynomial map satisfying p(0) = 0. Is it truethat the (m+ n)-tuple (T; p(T )) cannot be perturbed with compact operators to acommuting (m+ n)-tuple whose Koszul complex is exact?



15
CHAPTER 2RINGS WITH TOPOLOGIES INDUCED BY SPACES OFFUNCTIONS2.1 IntroductionIn the case of the Hardy space of the unit disk, the invariant subspaces of theoperator of multiplication by the independent variable are completely characterizedby a well-known theorem of Beurling in terms of inner functions. However, in thecase of several variables, this characterization proves to be very di�cult.In the recent years, the theory of Hilbert modules developed by R. G. Dou-glas and V. Paulsen [11] provided some useful methods to approach this problem.The �rst jointly invariant subspaces for the multiplication operators studied in thiscontext were the ones that are closures of ideals of polynomials. A surprising result,the Rigidity Theorem [12], shows that unlike the one variable case (in which anytwo invariant subspaces are unitary equivalent as Hilbert modules), if two subspacesare unitary equivalent as modules, they must coincide. Another result, the char-acterization of invariant subspaces of �nite codimension done by P. Ahern and D.N. Clark (see [1]) proved also to be very natural in this setting. The techniquesinvolved come from commutative algebra and algebraic geometry.Among the ideals of polynomials in several variables, a special role is playedby those that are closed in the relative topology induced on the ring of polyno-mials by the Hardy space of the polydisk. These ideals can be put in one-to-onecorrespondence with the invariant subspaces that are their closures in the Hardyspace, thus, they can be used to \label" invariant subspaces. Several properties of



16subspaces can be proved by using their associated ideals.In what follows we will restrict ourselves to the study of closed ideals. Someresults have also been obtained in [12]; let us note in that paper the authors call theseideals contracted. Instead of doing everything the way it is usually done, namelyby considering dense rings in Hilbert modules, we will consider Noetherian ringsendowed with topologies carrying properties similar to those induced by spaces offunctions. The module can be recovered as the topological completion of the ring.Among other things, we prove that if an ideal is closed, then every prime idealassociated to it is closed as well (thus answering a question in [12]), and we provein dimension two a conjecture of Douglas and Paulsen. Our results will be obtainedby using as a major tool the primary decomposition of ideals. The results from thischapter have appeared in [17] and [20].For a better understanding of the topic let us �rst discuss the case of the ringof polynomials in one variable with the topology induced by the Hardy space ofthe unit disk D. Recall that the topology is given by the norm kfk2 := q�jakj2,where f(z) = �akzk. Let us remark that our ring is almost topological, just thatmultiplication is not continuous, only separately continuous.Let I � C[z] be an ideal. Then I is generated by some polynomial f . Letf(z) = (z � z1)(z � z2) � � � (z � zn), where z1; z2; � � � ; zn are the (non-necessarilydistinct) roots of f . Assume that z1; z2; � � � ; zr 2 D, and zr+1; � � � ; zn 62 D. It is wellknown that the closure of I is the ideal generated by (z�z1)(z�z2) � � � (z�zr), andwe see that f can be written as the product g�h, where g := (z�z1)(z�z2) � � � (z�zr)generates a closed ideal, and h = (z � zr+1) � � � (z � zn) generates a dense ideal. Inparticular I is closed if and only if all the roots of f are in D and dense if all theroots lie outside D. Reformulating, I is closed if and only if all the irreducible



17components of its zero set intersect D, and dense if its zero set is disjoint from D.If z0 2 C, the ideal Mz0 generated by (z � z0) is maximal; it is closed if andonly if z0 2 D. In this case all the powers of this ideal are closed as well. Let usremind that the I-adic topology, determined by an ideal I in a ring R (see [4]). isthe topology characterized by the fact that the closure of a set A � R is \n(A+In).Returning to our situation, we see that the Mz0-adic topology is weaker than theHardy space topology if and only if z0 2 D.If we think about D as a set of distinguished maximal ideals, then we cansay that C[z] endowed with the topology induced by the Hardy space satis�es atopological Hilbert Nullstellensatz, in the sense that an ideal is either dense, orthere is a maximal idealM 2 D that contains it. Let us now go back to the generalsetting. 2.2 Hilbert Nullstellensatz for Closed IdealsThroughout the chapter R will denote a commutative Noetherian ring withunit, endowed with a topology � for which addition is continuous and multiplicationis separately continuous in each variable.An example of such a ring is the ring C[z1; z2; � � � ; zn] of polynomials in nvariables with the topology induced by the Hardy space of the polydisk H2(Dn),or the Bergman space L2a(
) of an open set 
 � Cn. Another example is the ringO(�B) of analytic functions in a neighborhood of the closed unit ball �B� Cn withthe topology induced by L2a(B).Let us remind some basic algebraic facts. For a certain ideal I � R the radicalof I is rad(I) := ff 2 Rj 9n; fn 2 Ig. An ideal P is prime if f � g 2 P impliesthat either f 2 P or g 2 P . An ideal Q is primary if f � g 2 Q and g 62 Q impliesthat fn 2 Q for some power n. If Q is primary then P := rad(Q) is prime, and we



18say that Q is P -primary. Since R is Noetherian, every ideal I � R has a (minimal)primary decomposition I = Q1 \Q2 \ � � �Qm where each Qi is Pi-primary for someprime ideal Pi. The ideals Pi, 1 � i � m are called the prime ideals associatedto I, and we let P(I) := fP1; P2; � � � ; Pmg. A result that will be used often in thesequel is the Hilbert Nullstellensatz, which states that the set of maximal ideals ofC[z1; z2; � � � ; zn] can be canonically identi�ed with Cn.As mentioned above, the ring R is not necessarily a topological ring, and alsoit is not usually complete in the topology � . This is where the di�culty lies indeveloping such a theory. In what follows we study properties of ideals that areclosed in the topology � .LEMMA 2.1. The radical of a closed ideal is closed.PROOF: Let I be closed, and rad(I) be its radical. By Proposition 7.14 in [4]there exists an integer k such that rad(I)k � I. Let fn be a sequence of elementsin rad(I) converging to some f . We want to prove that f 2 rad(I). Since themultiplication is continuous in each variable, for every g 2 rad(I)k�1, fng ! fg,hence fg 2 I, since I is closed. This shows that in particular fg 2 I for everyg 2 rad(I)k�1. Repeating the argument we get ffng ! f 2g for any g 2 r(I)k�2,hence f 2g 2 I for g 2 rad(I)k�2. Inductively we get f rg 2 I, for g 2 r(I)k�r and0 � r � k, so fk 2 I which shows that f 2 rad(I).2If Q is P -primary, the lemma above shows that Q closed implies that P isclosed. The following result shows that this is true in a more general setting.THEOREM 2.2. If an ideal I is closed, then every prime ideal P 2 P(I) isclosed.PROOF: If I is closed and f 2 R, then the ideal (I : f) := fg 2 R; gf 2 Ig



19is closed. Indeed, if gn 2 (I : f) and gn ! g then gnf ! gf , so gf 2 I which showsthat g 2 (I : f).From Lemma 2.1 we get that rad((I : f)) is closed for every f . By Theorem4.5. in [4] every prime ideal associated to I is of this form hence it is closed.2This gives a positive answer to a question raised in [12]. The converse of thistheorem is not always true; for example, if we endow C with the topology inducedby A(D), the Dirichlet algebra of the unit disk, by choosing z0 2 @D we get thatthe ideal generated by (z � z0) is closed, but the one generated by (z � z0)2 is not.REMARK. Since the closure of an ideal is an ideal, a maximal ideal is eitherclosed or dense.Given an ideal J � R, the J-adic topology on R is the topology determinedby the powers of J , so in this topology the closure of a set A � R is \n(A + Jn).For more details the reader can consult [4].LetC := fM � R;M maximal ideal and theM-adic topology is weaker than �g.We see that C consists of those maximal ideals M for which Mn is densefor every integer n. As an example, if R = C[z1; z2; � � � ; zn], and � is inducedby the Hardy space of the polydisk, then C coincides with the polydisk, whenmaking the usual identi�cation between points and maximal ideals via the HilbertNullstellensatz. The following result is a slightly modi�ed version of Theorem 2.7in [12].THEOREM 2.3. If an ideal I has the property that for every prime P 2 P(I)there exists M2 C with P �M, then I is closed.PROOF: Let P1; P2; � � � ; Pm be the prime ideals associated to I, Pi � Mi,



20Mi 2 C. If J = M1M2 � � �Mm then the J-adic topology is weaker than � , so itsu�ces to prove that I is closed in the J-adic topology. Without loss of generalitywe may assume that I = (0), in which case the ideals Pi are the primes associatedto (0), so by Proposition 4.7 in [4] they contain all zero divisors. Now let us supposethat (0) is not closed. By Krull's Theorem ([3, Theorem 10.7]) there exists f 2 Jsuch that 1 + f is a zero divisor. It follows that there exists i such that 1 + f 2 Pi,so the unit can be written as a sum of an element in J and one in Pi. But this isimpossible since both J and Pi are contained in Mi. This proves the theorem.2DEFINITION. The pair (R; �) is said to satisfy the (topological) Hilbert Null-stellensatz if every ideal I � R is either dense, or there exists M2 C with I �M.Let us remark that if (R; �) satis�es Hilbert's Nullstellensatz then any closedideal is contained in a maximal closed ideal, which motivates the terminology. ByKrull's Theorem, (R; �) satis�es Hilbert's Nullstellensatz for every J-adic topology� . The ring C[z] with the topology induced by H2(D) or L2a(D) also satis�es thisproperty. In [33], a class of strongly pseudoconvex domains 
 for which O(�
) withthe topology induced by L2a(
) satis�es the topological Hilbert Nullstellensatz hasbeen exhibited.LEMMA 2.4. If I and J are two dense ideals in R then I � J is dense.PROOF: Let fn ! 1, n ! 1, fn 2 I. If g 2 J then fng ! g which showsthat I � J is dense in J , hence dense in R.2THEOREM 2.5. If (R; �) satis�es Hilbert's Nullstellensatz then an ideal I �R is closed if and only if every prime associated to I is closed. Moreover, theclosure of an ideal in R is equal to the intersection of its primary components thatare contained in closed maximal ideals.



21PROOF: If I is closed then every prime associated to I is closed by Theorem2.2. Conversely, if a prime associated to I is closed, then it is not dense, so it isincluded in an M 2 C. The fact that I is closed now follows from Theorem 2.3.For the second part, let �I be the closure of I in R, and let I = \mi=1Qi bea (minimal) primary decomposition of I, such that Q1; Q2; � � � ; Qr are included inmaximal ideals that are in C, hence closed, and Qr+1; Qr+2; � � � ; Qm are not, so theyare dense. Then from the �rst part of the proof we get �I� \ni=1Qi.On the other hand, by Lemma 2.4 the ideal Qr+1Qr+2 � � �Qm is dense in R,hence Qr+1Qr+2 � � �Qm(Q1 \Q2 \ � � � \Qr) is dense in Q1 \Q2 \ � � � \Qr, hence Iis dense in Q1 \Q2 \ � � � \Qr, so �I= Q1 \Q2 \ � � � \Qr.2This result shows that in a ring that satis�es the topological Hilbert Nullstel-lensatz, the closed ideals can be easily classi�ed. In particular, in the case whenR is the ring of polynomials and � is induced by the Hardy space we see that thefollowing conjecture of R. G. Douglas and V. Paulsen ([12], [31]) is equivalent tothe fact that the topological Hilbert Nullstellensatz is satis�ed.CONJECTURE. Let R = C[z1; z2; � � � ; zn] be endowed with the topologyinduced by H2(Dn). Then an ideal I is closed if and only if every irreduciblecomponent of the zero set of I intersects Dn.2.3 The Case of the BidiskIn this section we prove the above mentioned conjecture for the case of twovariables. Let us denote by T2 the 2-dimensional torus f(z1; z2) 2 C2j jzij = 1; i =1; 2g. LEMMA 3.1. If � 2 C , j�j � 1 and 1=2 < r < 1 then for any z with jzj = 1we have j(z � �)=(rz � �)j � 2.



22PROOF: The result follows from jz � �j � jz � �=rj. The last inequality isobvious since in the triangle formed by the points z; � and �=r the angle at � isobtuse.2LEMMA 3.2. Let p(z) = an(z � z1)(z � z2) � � � (z � zn) be such that jzij � 1.If 1=2 < r < 1 then for any z with jzj = 1, jp(z)=p(rz)j � 2n.PROOF: The result follows by applying the previous lemma to each of thefactors in the decomposition of p.2PROPOSITION 3.3. Let p 2 C[z1; z2; � � � ; zn] be a polynomial having no zerosinside Dn. Then pH2(Dn) is dense in H2(Dn).PROOF: For a �xed k and r, 1=2 < r < 1, the polynomialp(rz1; � � � ; rzk�1; zk; � � � ; zn) has no zeros in Dn, so if we consider zk as the indepen-dent variable, by Lemma 3.2 we getjp(rz1; � � � ; rzk�1; zk; � � � ; zn)=p(rz1; � � � ; rzk; � � � ; zn)j � 2degkp (2.1)for all (z1; z2; � � � ; zn) 2 Dn, and 1=2 < r < 1, where degkp is the degree of p in zk.Multiplying these inequalities for 1 � k � n we getjp(rz1; z2; � � � ; zn)=p(rz1rz2; � � � ; rzn)j � 2n�degp; 8(z1; z2; � � � ; zn) 2 Dn; 1=2 < r < 1;where degp is the total degree of p. By continuity, the same inequality holds on Tn.Let fr(z) := p(z)=p(rz), z = (z1; z2; � � � ; zn) 2 Dn. Since p has no zeros in Dnwe see that fr 2 pH2(Dn). If we show that fr ! 1 for r ! 1 in the L2-norm, thenwe are done.The set A := V (p) \Tn, where V (p) is the zero set of p, has measure zero onthe torus, and fr ! 1 uniformly on compact subsets of TnnA. For � > 0, choose Wa neighborhood of A on the torus, with measure smaller than �=(2(2m + 1)2). Alsochoose r0, 1=2 < r0 < 1, such that for r > r0, kfr � 1k22;TnnW < �=2. It follows that



23for r > r0, kfr � 1k22 < kfr � 1k2;TnnW + kfr � 1k2;W < (2m + 1)2�=(2(2m + 1)2) +�=2 = �, which proves the assertion.2REMARK. We see that the only nontrivial situations where this result appliesare those when the zero set of the polynomial touches the boundary of Dn. Hereare some examples of such polynomials: z1z2 � 1, z1 + z2 � 2, 2z1z2 + z1 + z2 + 2.THEOREM 3.4. The ring C[z1; z2], with the topology induced by the Hardyspace, satis�es the topological Hilbert Nullstellensatz.PROOF: Let us �rst prove the property for prime ideals. Using the classicalHilbert Nullstellensatz we see that the only maximal ideals in C are those corre-sponding to points in D2. Moreover, the other maximal ideals are dense. So byTheorem 2.3 we only have to show that if P is prime and V (P ) \ D2 = ;, whereV (P ) is the zero set of P , then P is dense inC[z1; z2]. Standard results in dimensiontheory (see [4]) show that P is either maximal or principal. Indeed the maximallength of a chain of nonzero prime ideals containing P is 2. If we have P0 � P thenP is maximal and the result follows easily. If P � P1 then P must be principalsince if P is generated by g1; g2; � � � ; gk we can take g1 to be irreducible ( using thefact that P is prime), and then the ideal generated by g1 is included in P , so itmust coincide with P . The density in the second case follows from Proposition 3.3.If I is an arbitrary ideal having no zeros in D2, let us show that it is dense. IfP1; P2; � � � ; Pm are the primes associated to it then from what has been establishedabove it follows that each Pi is dense. By Proposition 7.14 in [4] there exists aninteger k such that (P1 � P2 � ::: � Pn)k � I. It follows from Lemma 2.4 that I itselfis dense in C[z1; z2], which proves the theorem.2As a direct consequence of this result and Theorem 2.5 we get



24COROLLARY 3.5. Let C[z1; z2] be endowed with the topology induced bythe Hardy space. Then an ideal is closed if and only if each of the irreduciblecomponents of its zero set intersects D2.COROLLARY 3.6. If I is a principal ideal in C[z1; z2; � � � ; zn] and we endowthis ring with the topology induced by the Hardy space, then I is closed if and onlyif each algebraic component of its zero set intersects Dn.2.4 The Case of Reinhardt DomainsIn the sequel we are going to describe another situation in which the topolog-ical Hilbert Nullstellensatz is true. Following [10] we introduce the pseudoconvexdomains in C2
p;q := fz = (z1; z2) 2 C2 j jz1jp + jz2jq < 1g; (1 � p; q <1).A study of the Bergman spaces of these domains has been done in [10]. Wewill prove that C[z1; z2] with the topology induced by the L2-norm on 
p;q satis�esthe topological Hilbert Nullstellensatz. This will be done in two stages. First, weprove that C coincides with the set of maximal ideals coming from points in 
p;q,and the other maximal ideals are dense. Then, we prove a density result analogousto Proposition 3.3, and conclude that the Nullstellensatz holds. We start with sometechnical results.LEMMA 4.1. If 0 � a � 1 then the seriesXm;n�00BB@ m+ nm 1CCA am(1� a)n (2.2)diverges.PROOF: By symmetry, we can assume a < 1. We have



25Xm;n�00BB@ m + nm 1CCA am(1� a)n =Xp�0Xq�p0BB@ pq 1CCA aq(1� a)p�q ==Xp�0(1� a)pXq�p0BB@ pq 1CCA aq(1� a)p�q ==Xp�0(1� a)pXq�p0BB@ pq 1CCA ( a1� a)q =Xp�0(1� a)p � 1(1� a)p =1:2COROLLARY 4.2. If 0 � a � 1 then the seriesXm;n>00BB@ 2(m+ n)� 22m� 1 1CCA a2m�1(1� a)2n�1 (2.3)diverges.Let B denote the beta function, de�ned by B(r; s) := �(r)�(s)=�(r + s),r; s > 0.By [6], B(r; s) = Z 10 tr�1(1� t)s�1dt; (r; s > 0):LEMMA 4.3. If (z1; z2) 2 @
p;q then the seriesXr1;r2�0 jz1j2r1jz2j2r2B(2r1+2p ; 2r2+2q + 2)diverges.PROOF: Since B(r; s) is a decreasing function in r and s, by taking thesubseries corresponding to indices with the property that pm � r1 � pm + 1 andqn � r2 � qn+ 1 we get the inequalityXr1;r2�0 jz1j2r1 jz2j2r2B(2r1+2p ; 2r2+2q + 2) � jz1jp+2jz2jq+2 Xm;n�0 jz1j(2m�1)pjz2j(2n�1)qB(2m; 2n) : (2.4)



26Since jz1jq = 1� jz2jp the sum of the latter series is equal toXm;n�0(jz1jp)2m�1(1� jz1jp)2n�1=B(2m; 2n):Applying Corollary 4.2 for a = jz1jp, and using the fact thatB(2m; 2n) = (2m� 1)!(2n� 1)!=(2m+ 2n� 1)! < 1=(2(m+n)�22m�1 )(since �(k) = (k � 1)! for k a positive integer) we get the desired result.2Recall that C is the set of maximal ideals M with the property that the M-adic topology is weaker than the Bergman space topology, and that by the classicalHilbert Nullstellensatz it can be identi�ed with a subset of C2.PROPOSITION 4.4. If we endow the ring C[z1; z2] with the topology inducedby L2(
p;q), then C = 
p;q, and if M 62 C then M is dense.PROOF: By Theorem 4.9 c) and Example 5.2 in [10], an ideal M = (z1 �w1; z2 � w2) is dense in C[z1; z2] with the L2-norm if and only if2(�)2p Xr1;r2�0(r2 + 1) jw1j2r1jw2j2r2B(2r1+2p ; 2r2+2q + 1) : (2.5)diverges.By Lemma 4.3 this series diverges if (w1; w2) 2 @
p;q, so if w1; w2 62 
p;q theideal M is dense.It is not di�cult to check that Mm is closed whenever (w1; w2) 2 
p;q andm 2 N. Indeed, if we consider a polydisk centered in (w1; w2) contained in 
p;q, thetopology � induced by the L2-norm on this polydisk is weaker than the one inducedby the L2-norm on 
p;q, and the ideals Mn are all closed in this topology, so theyare also closed in � . It follows that C = 
p;q, and if M 62 C then M is dense.2The following result is analogous to Proposition 3.3.PROPOSITION 4.5. Let 
 be a bounded, complete Reinhardt domain and



27let p 2 C[z1; z2; � � � ; zn] be a polynomial having no zeros in 
. Then pL2a(
) is densein L2a(
).PROOF: Since the Reinhardt domain is complete, for any r, 1=2 < r < 1,p(rz) has no zeros inside 
. The proof of Proposition 3.3 applies mutatis mutandisto show that fr(z) := p(z)=p(rz) is a family of functions in L2a(
) that is uniformlybounded. Since this family converges uniformly on compacts to 1, it follows that itconverges in L2a(
) to 1, which proves the density.2THEOREM 4.6 The ring C[z1; z2] with the topology induced by L2a(
p;q)satis�es the topological Hilbert Nullstellensatz. In particular C[z1; z2] with thetopology induced by L2a(B) satis�es the topological Hilbert Nullstellensatz.PROOF: The proof is similar to that of Theorem 3.4; the second part of thestatement follows from the fact that B = 
2;2.2We now prove an analogous for the ring of germs of analytic functions in theneighborhood of the unit ball. Let us denote by B2 the open unit ball in C2 and byO(B2) the ring of germs of analytic functions de�ned in a neighborhood of B2. Wewant to prove the topological Hilbert Nullstellensatz for O(B2) with the topologyinduced by the Bergman space. For k � 1, denote by Sk the unit sphere in Rk+1and by D the unit disk in the plane. We will need the following technical result.LEMMA 4.7. Let f 2 O(B2), f not identically equal to zero. Then thereexists a transformation � : C2 ! C2 such that f � �(0; ei�) 6= 0 for all � 2 [0; 2�).PROOF: For S3 = @B2 consider the Hopf �brationS1 ! S3 �! S2where we recall that the projection � is given by the equivalence relation (a; b) �(�a; �b) for j�j = 1. If we denote by V (f) the zero set of f , then V (f) \ S3 has



28dimension at most one, hence �(V (f) \ S3) has dimension at most one. It followsthat there exists x 2 S2n�(V (f) \ S3). Let (a; b) 2 C2, jaj2 + jbj2 = 1 with theproperty that �(a; b) = x. Then f(aei�; bei�) 6= 0 for all � 2 [0; 2�). If we choose� = 0BB@ �b a��a b 1CCA then f � � satis�es the desired property.2PROPOSITION 4.8. Let f 2 O(B2) be an analytic function having no zerosin B2. Then the space fL2a(B2) is dense in L2a(B2).PROOF: By Lemma 4.7 we may assume that if (w1; w2) 2 B2 and w1 = 0 thenf(w1; w2) 6= 0. Let us show that there exists C > 0 such that for every 1=2 < r < 1and (z1; z2) 2 B2, jf(z1; z2)=f(rz1; z2)j < C.Fix (w1; w2) 2 B2, and assume that w1 6= 0. Note that f(z; w2) is not identi-cally zero as a function of z1, otherwise (0; w2) would be a zero for f lying inside ofB2. Thus there exists a > 0 such that w1 2 aD and f(�; w2) is de�ned in a neigh-borhood of aD and has no zeros on aS1 = fz j jzj = ag. It follows that f(�; w2) hasa �nite number of zeros in aD, say m, counting multiplicities. By Rouch�e's and hasno zeros on aS1 = fz j jzj = ag. It follows that f(�; w2) has a �nite number of zerosin aD, say m, counting multiplicities. By Rouch�e's Theorem there is a compactneighborhood K of w2 such that aD�K is contained in the domain of f , and forevery z2 2 K, f(�; z2) has exactly m zeros in aD, counting multiplicities, and nozero on aS1. Thus on aD�K we can write f(z1; z2) = pz2(z1)gz2(z1) where for eachz2, pz2(z1) is a polynomial of degree m and gz2(z1) is an analytic function having nozeros in aD. Another application of Rouch�e's Theorem and the maximum modulusprinciple shows that gz2 depends continuously on z2.It follows that for 1=2 � r � 1 the family fgz2(rz1)gr is bounded away from



29zero, hence C1 = sup1=2�r�1supaD�Kjgz2(z1)=gz2(rz1)j <1:By Proposition 3.2 for 1=2 � r � 1 and (z1; z2) 2 aD�K \B2jpz2(z1)=pz2(rz1)j � 2m:Thus there exists a neighborhood U of (w1; w2) and a constant C2 > 0 suchthat for 1=2 < r < 1 and (z1; z2) 2 U \B2jf(z1; z2)=f(rz1; z2)j < C2:If w1 = 0 then f(z1; z2) 6= 0 in a neighborhood of (w1; w2), thus a similarinequality holds there. From the compactness of B2 it follows that there exists aconstant C > 0 such that for 1=2 < r < 1 and (z1; z2) 2 B2, jf(z1; z2)=f(rz1; z2)j <C. As in the proof of Proposition 4.5, the family hr(z1; z2) = f(z1; z2)=f(rz1; z2)is in fL2a(B2) and tends to 1 as r! 1, so the conclusion follows.2THEOREM 4.9. The ring O(B2) with the topology induced by L2a(B2) satis-�es the topological Hilbert Nullstellensatz.PROOF: The ring O(B2) is Noetherian [36], and has dimension 2. Indeed, ifthere existed distinct prime ideals P0 � P1 � P2 � P3, by localizing at a maximalideal M � P3 we would get a chain of four distinct prime ideals in the local ringOM, which would contradict the fact that the latter ring has dimension 2. So theproof of Theorem 3.4. applies to give the desired conclusion.2COROLLARY 4.10. Let O(B2) be endowed with the topology induced by theBergman space. Then an ideal is closed if and only if each irreducible componentof its zero set intersects the unit ball.



302.5 Ideals of Finite CodimensionNow let us suppose that R is also a k-algebra, where k is an algebraicallyclosed �eld, and that the scalar multiplication is continuous (not just separatelycontinuous). By the classical Hilbert Nullstellensatz ([3, Corollary 5.24]), R=M e=kfor every maximal ideal M. Let us also assume that the family C de�ned rightbefore the statement of Theorem 2.3. consists of all closed maximal ideals. Thusin this case a maximal ideal M is either dense, or the M-adic topology is weakerthen the topology of R.EXAMPLE. If we consider C[z1; z2; � � � ; zn] with the topology induced byH2(Dn) then the condition above is satis�ed. In this case we have C = Dn.In a similar way as we proved Theorem 2.3 we can establish the followingresult.LEMMA 5.1. Given an ideal I whose associated prime ideals are maximal, Iis closed if and only if every maximal ideal belonging to I is closed.LEMMA 5.2. An ideal I � R has �nite codimension in R if and only if everyprime ideal belonging to I is maximal.PROOF: Let I = Q1 \Q2 \ � � � \Qm, Qi Mi-primary. By Proposition 7.14 in[4] there exists an integer n such that Mni � Qi, so (M1M2 � � �Mm)n � I. SincedimR=(M1M2 � � �Mm)n <1, I has �nite codimension.For the converse, let P be a prime ideal belonging to I. Then P has �nitecodimension as well, so R=P is an integral domain that is �nite over k, and since kis algebraically closed we must have R=P e=k, therefore P is maximal.2Let fR be the closure of R in the topology � . Since multiplication is onlyseparately continuous, fR is no longer a ring, but it is an R-module. Each element



31x 2 R induces a continuous multiplication morphism Tx on fR. We shall denote byeI the closure in fR of an ideal I in R, to avoid confusion with �I , the closure of I inR. Clearly eI is a closed submodule of fR. Also, if Y � fR is a closed submodule,then Y \R is an ideal that is closed in R.DEFINITION. (see [4], page 58) A submodule Y � fR is called primary in fRif Y 6= fR and every zero-divisor in fR=Y is nilpotent.( An element x 2 R is calleda zero-divisor if the morphism induced by Tx on fR=Y has nontrivial kernel, andnilpotent if this morphism is nilpotent).REMARK. If Y � fR is primary then (Y : fR) := fx 2 R j TxfR � Y g isprimary, so P := r((Y : fR)) is prime. We say that Y is P -primary. Moreover,(Y : fR) = Y \R so Y \ R is also P -primary.Although every ideal in R has a primary decomposition, this is not true ingeneral for the submodules of fR. For example in the case of the module H2(D thezero sets of primary submodules consist of a single point, thus a closed submodulewhose zero set inside the unit disk is in�nite does not have a primary decomposition.Such a submodule can arise from a Blaschke product. The next result shows thatclosed submodules of fR of �nite codimension admit primary decompositions.THEOREM 5.3. There is a one-to-one correspondence between ideals in Rwhose associated prime ideals are maximal and closed in R, and closed submodulesin fR of �nite codimension, given by the maps I ! eI and Y ! Y \ R. Moreover,if I = Q1 \ Q2 \ � � � \ Qm is a (minimal) primary decomposition for I, then eI =eQ1 \ eQ2 \ � � � \ eQm is a (minimal) primary decomposition for eI.PROOF: By Lemmas 5.1 and 5.2 we have to show that the maps indicatedabove establish a one-to-one correspondence between ideals of �nite codimension



32that are closed in the topology of R and closed submodules of �nite codimensionin fR. If Y is a closed submodule of fR of �nite codimension then R=(Y \R) e=fR=Ysince the canonical map R ! fR=Y is surjective, R being dense in fR and fR=Ybeing �nite dimensional, and the kernel of this map is Y \ R. On the other handfR= g(Y \R) e=R=(Y \ R), hence Y = g(Y \R). Also for every ideal I � R that isclosed in the topology of R, eI \R = I, so the two maps are inverses of one another,and the one-to-one correspondence is proved.Let I = Q1 \ Q2 \ � � � \ Qm be a primary decomposition of I. Then eI �eQ1\ eQ2\� � �\ eQm, and since eI\R = eQ1\ eQ2\� � �\ eQm\R = Q1\Q2\� � �Qm = I,by the �rst part of the proof the two must be equal.In the commutative diagram below the horizontal arrows are isomorphismsR=Qif!fR= eQi?Tx Tx?R=Qif!fR= eQiso the fact that Qi is a primary ideal (hence a primary R-module as well) impliesthat eQi is a primary submodule of fR.If the primary decomposition of I is minimal let us show that the corre-sponding decomposition for eI is also minimal. Suppose that there exists j such thateI = eQ1\� � � eQj�1\\ eQj+1\� � �\ eQm. Then I = eI\R = Q1\� � �\Qj�1\Qj+1\� � �\Qm,which contradicts the minimality of the primary decomposition of I. The proof thetheorem is complete.2From the previous proof it follows that the associated primes of I and eI coin-cide. Corollary 4.11 in [4] shows that in this case the minimal primary decomposition



33is unique.REMARK. In the case when the topology on R comes from a norm, the �rstpart of the theorem is contained in [8], Corollary 2.8.EXAMPLES. 1. For the case R = C[z1; z2; � � � ; zn] and fR = H2(Dn) Theo-rem 5.3 already appears in the work of Ahern and Clark [1]. The primary closedC[z1; z2; � � � ; zn]-submodules of �nite codimension of H2(Dn) are those closed sub-modules Y for which there exists a point � 2 Dn and a number m 2 N such that Ycontains the space of functions f that satisfy (@m=@zm1 @m=@zm2 � � �@m=@zmn f)(�) = 0.2. If B is the unit ball in Cn, R = O(�B) and fR = L2a(B) then C = B, andif M is a maximal ideal corresponding to a point in @B then M is dense in L2a(B)(see [17]). This shows that the conditions listed at the beginning of this sectionare satis�ed, so Theorem 5.3 holds. The primary closed O(�B)-modules of �nitecodimension have the same description as in the previous example.
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CHAPTER 3TOPOLOGICAL QUANTUM FIELD THEORY WITH CORNERSBASED ON THE KAUFFMAN BRACKET3.1 IntroductionIn 1984 V.F.R. Jones [23] discovered a polynomial invariant for knots in threedimensional space. The de�nition of this invariant was purely combinatorial andtopologists started to look for a geometric explanation of its existence. The �rstmajor progress was made by E. Witten [44] who described a construction of thisinvariant by making use of the Feynman path integral from quantum �eld theory.As he pointed out, the Jones polynomial is related to a new set of topologicalthree manifold invariants. However, his approach lacks a rigorous mathematicalfoundation, since the construction uses an integral over the space of all connections.M.F. Atiyah noted [3] that if the path integral existed, it had to satisfy acertain number of axioms. According to Atiyah, a topological quantum �eld theory(TQFT) consists of a functor from the category of surfaces to that of �nite dimen-sional vector spaces, and a partition function that associates to each three manifolda vector in the vector space of its boundary. This theory is multiplicative withrespect to disjoint union, and the invariants of cobordisms multiply like matricesunder composition of cobordisms. Moreover, it has no dynamics, i.e. the invariantof the mapping cylinder of a surface is the identity matrix.A �rst example of a TQFT that satis�es Atiyah's axioms and is related to theJones polynomial was produced by Reshetikhin and Turaev in [34], and makes useof the representation theory of Hopf algebras. Then, an alternative construction



35based on geometric techniques has been worked out by Kohno in [27]. A combi-natorial approach based on skein spaces associated to the Kau�man bracket [25],another polynomial invariant closely related to the Jones polynomial, was exhibitedby Lickorish in [30] and [29] and by Blanchet, Habegger, Masbaum, and Vogel in [5].All these theories are smooth, in the sense that manifolds can be glued only alongclosed surfaces in their boundary, and as a consequence, the axioms are not su�cientto enable the computation of invariants from the ones of very simple manifolds.In an attempt to give a more axiomatic approach to such a theory, and also tomake it easier to handle, K. Walker described in [41] a system of axioms for a TQFTin which one allows gluings along surfaces with boundary, a so called TQFT withcorners. He also described the minimal amount of initial information (basic data)that one needs to know in order to be able to recover the whole theory from axioms.He based his theory on the decompositions of surfaces into disks, annuli and pairsof pants, and along with the mapping class group of a surface he considered thegroupoid of transformations of these decompositions.Following partial work from [41], in [13] and [18] we exhibited a TQFT withcorners associated to the Reshitikhin-Turaev theory. We mention that in this con-struction one encounters a sign problem at the level of the groupoid of transforma-tions of decompositions. The presence of this sign problem was due to the fact [21]that the theory was based on the Jones polynomial, whose skein relation is de�nedfor oriented links.In this chapter we describe the construction of a TQFT with corners thatunderlies the smooth TQFT of Lickorish [30], [29]. It is based on the skein theoryof the Kau�man bracket. Note that since the Kau�man bracket is de�ned for unori-ented links, we will not encounter any sign problem this time. The main elements



36involved in our construction are the Jones-Wenzl idempotents [43], which appearedin the work of Jones on the index of subfactors. They are the analogues of the irre-ducible representations of irreducible representations of the quantum deformationsof sl(2; C) (see [34]). Regarding the computations, we make the observation thatin our case they will be done either in the skein space of the plane, or in that of thedisk with points on the boundary, although the spaces associated to closed surfacesare skein spaces of handlebodies [29], [35].In Section 2 we review the de�nitions from [41]. Section 3 starts with a reviewof facts about skein spaces and then proceeds with the description of the basic data.In Section 4 we prove that the basic data gives rise to a well de�ned TQFT. Asa main device involved in the proof we exhibit a tensor contraction formula. Inthe �fth section we generalize to surfaces with boundary a well known formula forthe invariant of the product of a closed surface with a circle. Next we show thatthe invariants of 3-manifolds with boundary have a distinguished vector componentwhich satis�es the Kau�man bracket skein relation. As a consequence, we computethe invariant of the complement of a regular neighborhood of a link, and explainhow the invariants of closed manifolds arise when doing surgery on such links.The results from this section have appeared in [16], citesaptesprezece, [19],[21]. 3.2 Facts About TQFT's With CornersA TQFT with corners is one that allows gluings of 3-manifolds along surfacesin their boundary that themselves have boundary. In order to be able to understandsuch a theory we must �rst brie
y describe its objects, the extended surfaces and3-manifolds. For an extensive discussion we recommend [41]. The adjective \ex-tended" comes from the way the projective ambiguity of the invariants is resolved,



37which is done, as usually, via an extension of the mapping class group. All surfacesand 3-manifolds throughout the paper are supposed to be piecewise linear, compactand orientable.In order to ful�ll the needs of a TQFT with corners, the concept of ex-tended surface will involve slightly more structure than the usual Lagrangian space,namely the decomposition into disks, annuli and pairs of pants (shortly DAP-decomposition).DEFINITION. A DAP-decomposition of a surface � consists of- a collection of disjoint simple closed curves in the interior of � that cut �into elementary surfaces: disks, annuli, and pairs of pants, and an ordering of theseelementary surfaces;- a numbering of the boundary components of each elementary surface �0 by1 if �0 is a disk, 1 and 2 if �0 is an annulus, and 1,2 and 3 if �0 is a pair of pants;- a parametrization of each boundary component C of �0 by S1 = fzj jzj =1g (the parametrization being compatible with the orientation of �0 under theconvention \�rst out");- �xed disjoint embedded arcs in �0 joining ei� (where � > 0 is small) on thej-th boundary component to e�i� on the j + 1-st (modulo the number of boundarycomponents of �0). These arcs will be called seams.An example of a DAP-decomposition is shown in Fig 3.1. Two decompositionsare considered identical if they coincide up to isotopy. We also make the conventionthat whenever we talk about the decomposition curves we also include the boundarycomponents of the surface as well.DEFINITION. An extended surface (abbreviated e-surface) is a pair (�; D)
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Figure 3.1: DAP-decompositionwhere � is a surface and D is a DAP-decomposition of �.Let us note that in the case of smooth TQFT's one is only interested in theLagrangian subspace spanned by the decomposition curves of D in H1(�). In ourcase, we will be interested in the decomposition itself, since we can always arrangethe gluing to be along a collection of elementary subsurfaces in the boundary of the3-manifold. We emphasize that the DAP-decomposition plays the same role as thebasis plays for a vector space.If we change the orientation of a surface, the DAP-decomposition should bechanged by reversing all orientations and subsequently by permuting the numbers2 and 3 in the pairs of pants.In what follows, we will call a move any transformation of one DAP-decompositioninto another. By using Cerf theory [7] one can show that any move can be writtenas a composition of the elementary moves described in Fig. 3.2 and their inverses,together with the permutation map P that changes the order of elementary surfaces.In the sequel T1 will be called a twist, R rotation, the maps A and D contractionsof annuli, respectively disks, and their inverses expansions of annuli and disks.DEFINITION. An extended morphism (shortly e-morphism) is a map betweentwo e-surfaces (f; n) : (�1; D1) ! (�2; D2) where f is a homeomorphism and n is



39an integer.
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Figure 3.2: Elementary moves
Note that such an e-morphism can be written as a composition of a homeo-morphism (f; 0) : ((�1; D1)! (�2; f(D1)), a move (�2; f(D1))! (�2; D2) and themorphism (0; n) : (�2; D2)! (�2; D2). Note also that the moves from Fig 2.2 havethe associated homeomorphism equal to the identity.The set of e-morphisms is given a groupoid structure by means of the followingcomposition law. For (f1; n1) : (�1; D1) ! (�2; D2) and (f2; n2) : (�2; D2) !(�3; D3) let(f2; n2)(f1; n1) := (f2f1; n1 + n2 � �((f2f1)�L1; (f2)�L2; L3)where � is Wall's nonadditivity function [42] and Li � H1(�i) is the subspace



40generated by the decomposition curves of Di, i = 1; 2; 3.Let us now review some facts about extended 3-manifolds.DEFINITION. The triple (M;D; n) is called an extended 3-manifold (e-3-manifold) if M is a 3-manifold, D is a DAP-decomposition of @M and n 2 Z.The boundary operator, disjoint union and mapping cylinder are de�ned inthe canonical way, namely @(M;D; n) = (@M;D), (M1; D1; n1) t (M2; D2; n2) =(M1 tM2; D1 tD2; n1+n2) and for (f; n) : (�1; D1)! (�2; D2), I(f;n) = (If ; D; n),with the only modi�cation that in If we identify the boundary components of ��1with those of �2 that they get mapped onto, thus @If = ��1[�2 and D = D1[D2.More complicated is the gluing of e-3-manifolds, which is done as follows.DEFINITION. Let (M;D; n) be an e-3-manifold and (�1; D1) and (�2; D2)be two disjoint surfaces in its boundary. Let (f;m) : (�1; D1) ! (�2; D2) be ane-morphism. De�ne the gluing of (M;D; n) by (f;m) to be(M;D; n)(f;m) := (Mf ; D0; m+ n� �(K;L1 � L2;��))where Mf is the gluing of M by f , D0 is the image of D under this gluing, � isWall's nonadditivity function, K is the subspace of H1(@M) spanned by the kernelof H1(�1 [ �2)! H1(M), @�1 and @�2, Li are the subspaces of H1(�i) generatedby the decomposition curves of Di and �� = f(x;�f�(x)); x 2 H1(�1)g.For a geometric explanation of this de�nition see [41].In order to de�ne a TQFT we also need a �nite set of labels L, with a dis-tinguished element 0 2 L. Consider the category of labeled extended surfaces(le-surfaces) whose objects are e-surfaces with the boundary components labeled byelements in L (le-surfaces), and whose morphisms are the e-morphisms that pre-serve labeling (called labeled extended morphism and abbreviated le-morphisms).



41An le-surface is thus a triple (�; D; l), where l is a labeling function.Following [Wa] we de�ne a TQFT with label set L to consist out of-a functor V from the category of le-surfaces to that of �nite dimensionalvector spaces, called modular functor,-a partition function Z that associates to each 3-manifold a vector in thevector space of its boundary.The two should satisfy the following axioms:(2.1) (disjoint union)V (�1t�2; D1tD2; l1tl2) = V (�1; D1; l1)NV (�2; D2; l2);(2.2) (gluing for V ) Let (�; D) be an le-surface, C;C 0 two subsets of boundarycomponents of (�), and g : C ! C 0 the homeomorphism which is the parametriza-tion re
ecting map. Let �g be the gluing of � by g, and Dg the DAP-decompositioninduced by D. Then, for a certain labeling l of @� we haveV (�g; Dg; l) = Lx2L(C) V (�; D; (l; x; x))where the sum is over all labelings of C and C 0 by x.(2.3) (duality) V (�; D; l)� = V (��;�D; l) and the identi�cations V (�; D; l) =V (��;�D; l)� and V (��;�D; l) = V (�; D; l)� are mutually adjoint. Moreover, thefollowing conditions should be satis�ed-if (f; n) is an le-morphism between to le-surfaces, then V ( �f;�n) is the adjointinverse of V (f; n), where we denote by �f the homeomorphism induced between thesurfaces with reversed orientation.-if �1 
 �2 2 V (�1; D1; l1)NV (�2; D2; l2) and �1 
 �2 2 V (��1;�D1; l1)NV (��2;�D2; l2) then < �1 
 �2; �1 
 �2 >=< �1; �1 >< �2; �2 >,-there exists a function S : L ! C� such that with the notations from axiom(2.2) if �x�x 2 Lx2L(C) V (�; D; (l; x; x)) and �x�x 2 Lx2L(C) V (��;�D; (l; x; x))then the pairing on the glued surface is given by < �x�x;�x�x >= Px S(x) <



42�x; �x >, where (x = (x1; x2; � � � ; xn) and S(x) = S(x1)S(x2) � � �S(xn);(2.4) (empty surface) V (;) = C;(2.5) (disk) If D is a disk V (D; m) = C if m = 0 and 0 otherwise;(2.6) (annulus) If A is an annulus then V (A; (m;n)) = C if m = n and 0otherwise;(2.7) (disjoint union for Z) Z((M1; D1; n1) t (M2; D2; n2)) = Z(M1; D1; n1)
Z(M2; D2; n2);(2.8) (naturality) Let (f; 0) : (M1; D; n)! (M2; f(D); n). ThenV (f j@(M1; D; n))Z(M1; D; n) = Z(M2; f(D); n).(2.9) (gluing for Z) Let (�1; D1), (�2; D2) � @(M;D;m) be disjoint, and let(f; n) : (�1; D1)! (�2; D2). Then by (2.2)V (@(M;D;m)) = Ll1;l2 V (�1; D1; l1) 
 V (�2; D2; l2) 
 V (@(M;D;m)n((�1; D1) [(�2; D2); l1 [ l2)hence Z(M;D;m) = Ll1;l2Pj �(j)l1 
 �(j)l2 
 
(j)l1;l2 . The axiom states thatZ((M;D;m)(f;n)) = �lPj < V (f; n)�(j)l ; �(j)l > 
(j)ll ,-where l runs through all labelings of @�1;(2.10) (mapping cylinder axiom) For (id; 0) : (�; D)! (�; D) we haveZ(I(id;0)) = �l2L(@�)idlwhere idl is the identity matrix in V (�; D; l)NV (�; D; l)�.3.3 The Basic DataIn order to construct a TQFT with corners one needs to specify a certainamount of information, called basic data, from which the modular functor andpartition function can be recovered via the axioms. Note that the partition functionis completely determined by the modular functor, so we only need to know thatlatter. Moreover, the modular functor is determined by the vector spaces associated



43to le-disks, annuli and pairs of pants, and by the linear maps associated to le-morphisms. An important observation is that the matrix of a morphism V (f; 0),where (f; 0) : (�1; D) ! (�2; f(D)), is the identity matrix, so one only needs toknow the values of the functor for moves, hence for the elementary moves describedin Fig. 3.2. Of course we also need to know its value for the map C = (id; 1).The possibility of relating our theory to the Kau�man bracket depends on thechoice of basic data. Our construction has been inspired by [30]. We will reviewthe notions we need from that paper and then proceed with our de�nitions.Let � be a surface with a collection of 2n points on its boundary (n � 0).A link diagram in � is an immersed compact 1-manifold L in � with the propertythat L \ @� = @L, @L consists of the 2n distinguished point on @�, the singularpoints of L are in the interior of � and are transverse double points, and for eachsuch point the \under" and \over" information is recorded.Let A 2 C be �xed. The skein vector space of �, denoted by S(�), is de�ned tobe the complex vector space spanned by all link diagrams factored by the followingtwo relations:a). L[(trivial closed curve)= �(A2 + A�2)L,b). L1 = AL2 + A�1L3,where L1; L2 and L3 are any three diagrams that coincide except in a small disk,where they look like in Fig. 3.3.
L1 L2

L
3Figure 3.3: Diagrams for crossings



44For simplicity, from now on, whenever in a diagram we have an integer, sayk, written next to a strand we will actually mean that we have k parallel strandsthere. Also rectangles (coupons) inserted in diagrams will stand for elements of theskein space of the rectangle inserted there.Three examples are useful to consider. The �rst one is the skein space of theplane, which is the same as the one of the sphere, and it is well known that it isisomorphic to C.The second example is that of an annulus A with no points on the boundary.It is also a well known fact that S(A) is isomorphic to the ring of polynomialsC[�], (if endowed with the multiplication de�ned by the gluing of annuli). Theindependent variable � is the diagram with one strand parallel to the boundary ofthe annulus. Recall from [30] that every link diagram L in the plane determines amap < �; �; � � � ; � >L: S(A)� : S(A)� � � � : S(A)! S(R2)obtained by �rst expanding each component of L to an annulus via the blackboardframing and then homeomorphically mapping A onto it.The third example is the skein space of a disk with 2n points on the boundary.If the disk is viewed as a rectangle with n points on one side and n on the opposite,then we can de�ne a multiplication rule on the skein space by juxtaposing rectangles,obtaining the Temperley-Lieb algebra TLn. Recall that TLn is generated by theelements 1; e1; e2; � � � ; en�1, where ei is described in Fig. 3.4.There exists a map from TLn to S(R2) obtained by closing the elements inTLn by n parallel arcs. This map plays the rôle of a quantum trace. It splits in acanonical way as TLn ! S(A)! S(R2) by �rst closing the elements in an annulusand then including them in a plane.
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i+1
i+2
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1

Figure 3.4: Basis for TLnAt this moment we recall the de�nition of the Jones-Wenzl idempotents [43].They are of great importance for our construction, since they mimic the behaviorof the �nite dimensional irreducible representations from the Reshetikhin-Turaevtheory [34]. For this let r > 1 be an integer (which will be the level of our TQFT).Let A = ei�=(2r). Recall that for each n one denotes by [n] the quantized integer(A2n � A�2n)=(A2 � A�2):The Jones-Wenzl idempotents are the unique elements f (n) 2 TLn, 0 � n �r � 1, that satisfy the following properties:1) f (n)ei = 0 = eif (n), for 0 � i � n� 1,2) (f (n) � 1) belongs to the algebra generated by e1; e2; � � � ; en�1,3) f (n) is an idempotent,4) �n = (�1)n[n+ 1]where �n is the image of f (n) through the map TLn ! S(R2).In the sequel we will have to work with the square root of �n so we make thenotation dn = inq[n + 1], thus �n = d2n.Following [30], in a diagram we will always denote f (n) by an empty coupon(see Fig. 3.5).The image of f (n) through the map TLn ! S(A) will be denoted by Sn(�) We
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nFigure 3.5: Jones-Wenzl idempotentwill also need the element ! 2 S(A), ! = Pr�2n=0 d2nSn(�). Given a link diagram L inthe plane, whenever we label one of its components by ! we actually mean that weinserted ! in the way described in the de�nition of < �; �; � � � ; � >L. Note that onecan perform handle slides (also called second Kirby moves [26]), over componentslabeled by ! without changing the value of the diagram (see [30]).Now we can de�ne the basic data for a TQFT in level r, where r, as said,is an integer greater than 1. Let L = f0; 1; � � � ; r � 2g. Make the notation X =(ip2r)=(A2 � A�2), that is X2 = P d4n =< ! >U , where U is the unknot with zeroframing.Notice that by gluing two disks along the boundary we get a pairing mapS(D; 2n) � S(D; 2n) ! S(S2) = C, hence we can view S(D; 2n) as a set of func-tionals acting on the skein space of the exterior. In what follows, whenever wemention the skein space of a disk, we will always mean the skein space as a set offunctionals in this way. For example this will enable us to get rid of the diagramsthat have a strand labeled by r� 1 (see also [30], [24]). The point of view is similarto that of factoring by the bad part of a representation (the one of quantum trace0) in the Reshetikhin-Turaev setting.To a disk with boundary labeled by 0 we associate the vector space V0 whichis the skein space of a disk with no points on the boundary. Of course for any otherlabel a we put Va = 0. It is obvious that V0 = C. We let �0 be the empty diagram.
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Any

a

b

a
b)

a)

Figure 3.6: Spaces associated to annuliTo an annulus with boundary components labeled by a and b we associate thevector space Vab which is the subspace of S(D; a + b) spanned by all diagrams ofthe form indicated in Fig. 3.6. a), where in the smaller disk can be inserted anydiagram from S(D; a + b). The �rst condition in the de�nition of the Jones-Wenzlidempotents implies that Vab = 0 if a 6= b and Vaa is one dimensional and is spannedby the diagram from Fig. 3.6. b). We will denote by �aa this diagram multipliedby 1=da, where we recall that da = iaq[a+ 1]. The element �aa has the propertythat paired with itself on the outside gives 1.To a pair of pants with boundary components labeled by a, b, and c we putinto correspondence the space Vabc, which is the space spanned by all diagrams ofthe form described in Fig. 3.7. a), where in the inside disk we allow any diagramfrom S(D; a + b + c).
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xy

zFigure 3.7: Spaces associated to pairs of pants



48The reader will notice that there is some ambiguity in this de�nition. To makeit rigorous, we have to mark a point on the circle, from which all points are counted.We will keep this in mind although we will no longer mention it.The results from [24] and [30] show that Vabc can either be one dimensionalor it is equal to zero. The triple (a; b; c) is said to be admissible if Vabc 6= 0. Thisis exactly the case when a + b + c is even, a + b + c � 2(r � 2) and a � b + c,b � a + c, c � a + b. In this case the space Vabc is spanned by the triad introducedby Kau�man [24] which is described in Fig. 3.7. b). Here the numbers x, y, zsatisfy a = x + y, b = y + z, c = z + x.
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a,d
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 c
d

(1)

(2)

(3) if n=0

0              if n>0
2
c

da

Figure 3.8: The identities of LickorishIn [29] it is shown that if we pair the diagram from Fig. 3.7. b) with theone corresponding to Vacb on the outside we get the complex number �(x + y; y +z; z + x) = (�x+y+z!�x�1!�y�1!�z�1!)= (�y+z�1!�z+x�1!�x+y�1!), where �n =�1�2 � � ��n and ��1 = 1. Thus if we denote by �abc the product of this dia-gram with (dx+y+z!dx�1!dy�1!dz�1!)�1(dy+z�1!dz+x�1!dx+y�1!) = 1=q�(a; b; c) (withthe same convention for factorials), then �abc paired on the outside with �acb will



49give 1.In diagrams, whenever we have a �abc we make the notation from Fig. 3.7.c). This notation is di�erent from the one with a dot in the middle from [30] , inthe sense that we have a di�erent normalization! We prefer this notation because itwill simplify diagrams in the future, so whenever in a diagram we have a trivalentvertex, we consider that we have a � inserted there. In particular, a diagram thatlooks like the Greek letter � will be equal to 1 in S(R2). The elements �abc are theanalogues of the quantum Clebsch-Gordan coe�cients.In the sequel we will need the three identities described in Fig. 3.8, whoseproofs can be found in [30]. Here �ad is the Kronecker symbol.
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c
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23B

Figure 3.9: Morphisms for pairs of pantsLet us de�ne the dual spaces. It is natural to let the dual of V0 to be V0,that of Vaa to be Vaa, and that of Vabc to be Vacb. However the pairings will lookpeculiar. This is due to the fact that we want the mapping cylinder to be satis�ed.So we let <;>: V0 � V0 ! C be de�ned by < �0; �0 >= 1, <;>: Vaa � Vaa ! Cbe de�ned by < �aa; �aa >= X=d2a, and <;>: Vabc � Vacb ! C be de�ned by



50< �abc; �acb >= X2=(dadbdc).
pdp qd = d dp q = dpdq
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Figure 3.10: Fusion matrixBefore we de�ne the morphisms associated to the elementary moves we makethe convention that for any e-morphism f we will denote V (f) also by f .The morphisms corresponding to the three elementary moves on a pair ofpants are described in Fig. 3.9. Further, we let F : Lp Vpab
 Vpcd !Lp Vqda 
 Vqbcbe de�ned by F�pab 
 �pcd = Pqfbcpadqg�qda 
 �qbc The coe�cients cabcdpq being givenby any of the three equal diagrams from Fig. 3.10. Note that cabcdpq = d�1p dqfbcpadqgwhere fbcpadqg are the 6j-symbols.
  S

p
a a

p
a

bb
a bdd

X
=Figure 3.11: S-matrixAlso the map S : LVpaa !LVpbb is described in Fig. 3.11.The maps A, D and P are given by relations of the form A(x 
 �aa) = x,D(�aa0 
 �0) = �aa and P (x 
 y) = y 
 x). The map C is the multiplication bythe value of the diagram described in Fig. 3.12. a). Note that Lemma 4 in [30]implies that the inverse of C is the multiplication by the diagram from Fig. 3.12.
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a) b)

1
1
XX

ω
ωFigure 3.12: Framing adjusting morphismb). Finally, S(a) = d2a=X, a 2 L.REMARK. The reader should note that the crossings from all these diagramsare negative. We make this choice because, returning to the analogy with vec-tor spaces, all the maps we de�ned behave like changes of basis rather than likemorphisms. 3.4 The Compatibility ConditionsIn order for the basic data to give rise to a well de�ned TQFT, it has tosatisfy certain conditions. A list of such conditions has been exhibited in [41], bymaking use of techniques of Cerf theory similar to those from [22]. The �rst groupof relations, the so called Moore-Seiberg equations, are the conditions that have tobe satis�ed in order for the modular functor to exist. They are as follows:1. at the level of a pair of pants:a) T1B23 = B23T1, T2B23 = B23T3, T3B23 = B23T2, where T2 = RT1R�1 andT3 = R�1T1R,b) B223 = T1T�12 T�13 ,c) R3 = 1,d) RB23R2B23RB23R2 = 1,2. relations de�ning inverses:a) P (12)F 2 = 1,b) T�13 B�123 S2 = 1,



523. relations coming from \codimension 2 singularities":a) P (13)R(2)F (12)R(2)F (23)R(2)F (12)R(2)F (23)R(2)F (12) = 1,b) T (1)3 FB(1)23 FB(1)23 FB(1)23 = 1,c) C�1B�123 T�23 ST�13 ST�13 S = 1,d) R(1)(R(2))�1FS(1)FB(2)23 B(1)23 = FS(2)T (2)3 (T (2)1 )�1B(2)23 F ,4. relations involving annuli and disks:a) F (�mnp 
 �p0p ) = �0mm 
 �npm ,b) A(12)2 D(13)3 = D2D(13)3 ,c) A(12)A(23) = A(23)A(12),
= A B A  B

p p

dp
2

p

pFigure 3.13: First recombination formula5. relations coming from duality:-for any elementary move f , one must have f+ = �f , where f+ is the adjointof fwith respect to the pairing, and �f is the morphism induced by f on the surfacewith reversed orientation,6. relations expressing the compatibility between the pairing, and moves Aand D:a) < �mm ; �mm >= S(m)�1b) < �m0m ; �m0m >= S(0)�1S(m)�1.In addition one also has to consider two conditions that guarantee that thepartition function is well de�ned.
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cFigure 3.14: Proof of Lemma 4.17. a) S(m) = S0m where [Sxy]x;y is the matrix of move S on the torus (whichcan be thought as the punctured torus capped with a disk),b) F (�mm0 
�nn0 ) = LS(m)�1S(n)�1idpmn where idpmn is the identity matrixin (Vpmn)�NVpmn.In all these relations, the superscripts in parenthesis indicate the index ofthe elementary surface(s) on which the map acts, and the subscripts indicate thenumber of the boundary component.
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p p p
A1 A2 Am A1 A2 AmFigure 3.15: Second recombination formulaWe will prove that our basic data satis�es these relations. For the proof wewill need a contraction formula similar to the tensor contraction formula that oneencounters in the case of TQFT's based on representations of Hopf algebras (see[39], [13], [18]).
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mFigure 3.16: Bessel type formulaLEMMA 4.1. For any A;B 2 TLp the equality from Fig. 3.13 holds.PROOF: The proof is contained in Fig. 3.14. In this chain of equalities the �rstone is trivial, the second one holds because the sum that appears in the third term istrivial (by the �rst property of Jones-Wenzl idempotents, since such an idempotentlies on the strand labeled by c; more explanations about this phenomenon can befound in [L1] and [R]), and the last equality follows from identity (2) in Fig. 3.8.2LEMMA 4.2. If A1; A2; � � � ; Am 2 TLp then the identity from Fig. 3.15 holds.PROOF: Follows by induction from Lemma 4.1.2.THEOREM 4.1. Suppose that Ai 2 S(D; ai+bi+ai+1+bi+1), i = 1; 2; � � � ; m,where ai and bi are integers with am+1 = a1 and bm+1 = b1. Then the identitydescribed in Fig. 3.16 holds.PROOF: By Lemma 4.2, the left hand side is equal to the expression describedin Fig. 3.17. a).On the other hand, if p 6= q, by using the identity (2) from Fig. 3.8, we getthe chain of equalities from Fig. 3.17, where the last one follows from the fact thaton the strand labeled by c there is a Jones-Wenzl idempotent and using the �rstproperty of these idempotents.As a consequence of this fact we get that our expression is equal to the one
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Figure 3.17: Proof of Theorem 4.1.
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2 = 0Figure 3.18: Bottle neck type identityfrom Fig. 3.16. b), and then by applying the identity (2) from Fig. 3.6 severaltimes we get the desired result.2.
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qFigure 3.19: Proof of 2. a), �rst partWe can proceed with proving the compatibility conditions. The proofs aresimilar to the ones in [13] and [18], but one should note that they are simpler.First, the relations on a pair of pants are obviously satis�ed. This can be seen at�rst glance for 1.a) and 1.c), then 1.d) is the third Reidemeister move, and 1.b) isequivalent to 1.c) (see [13] or Chap. VI in [39]).For the proof of 2. a) we write FPF�pab 
 �pcd = Pq cabcdpq�qab 
 �qcd. Since



56we have a matrix multiplication here we see that the coe�cient cabcdpq is given bythe diagram from Fig. 3.19.By using Theorem 4.1 this becomes the expression from Fig. 3.20. Usingidentity (1) from Fig. 3.8. wee see that this is equal to �pq multiplied by the Greekletter � diagram, therefore is equal to �pq and the identity is proved.
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d   dp qFigure 3.20: Proof of 2. a), second partFor 2. b) we have that T�13 B�123 S2�paa is equal to the �rst term in Fig. 3.21.We get the chain of equalities from this �gure by pulling �rst the strand labeled by! down and using the identity (2) from Fig. 3.8, and then using identity (3) fromFig. 3.8. The last term is equal to �aa.
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0Figure 3.21: Proof of 2. b)Now we describe the proof of the pentagon identity. We are interested in com-puting the coe�cient of �sde
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�rab in F (12)R(2)F (23)R(2)F (12)R(2)F (23)R(2)F (12)
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Figure 3.22: Coe�cient for pentagon�pab
�pqc
�qde. Again, by using the formula for matrix multiplication we get thatthis coe�cient is described in Fig. 3.22.
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Figure 3.24: Proof of pentagon, second partthe equality shown in Fig. 3.23, which is further transformed into the second byapplying three times 1. b). Apply Theorem 4.1 to contract with respect to u, thencontinue like in Fig. 3.24, namely pull the strand of a over, then apply Theorem4.1 for the sum over v and then use for the last equality formula (1) in Fig. 3.8.Finally, if we use Theorem 4.1 once more and then formula (1) in Fig. 3.8, we get�pt�qs times a diagram of the form of letter �. Hence the �nal answer is �pt�qs andthe identity is proved.In order for the F-triangle to hold we have to show that the coe�cient of�qab 
 �qcd in T (1)3 FB(1)23 FB(1)23 FB(1)23 �pab�pcd is �pq. The coe�cient is given in Fig.3.25. We transform the second factor as shown in Fig. 3.26 by �rst doing two 
ips
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qFigure 3.25: Coe�cient for F-triangleand then using 1. b) twice. Then contract the product via Theorem 4.1 to get the�rst term from the equality from Fig. 3.27, then transform it into the second byusing again 1. b). As before, this is equal to �pq.
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=Figure 3.27: Proof of F-triangleIn the case of the S-triangle, it is not hard to see thatC�1B�123 T�23 ST�13 ST�13 S�aais equal to the expression from Fig. 3.28. Lemma 3 in [L1] enables us to do Kirbymoves over components labeled by !, so we get the �rst term from Fig. 3.29, whichis equal to the second one by Lemma 4 in [30]. From here we continue like in theproof of 2. b).
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bFigure 3.29: Proof of S-triangleLet us prove 3. d). We have to show that the coe�cient of �qdc 
 �qda inFS(2)T (2)3 (T (2)1 )�1B(2)23 F �pab 
 �pbc is the same as the coe�cient of this vector inR(1)(R(2))�1FS(1)FB(1)23 B(2)23 �pab 
 �pbc. For the �rst one we have the sequence ofequalities from Fig. 3.30, where the second equality is obtained by contracting viaTheorem 4.1. For the second one we have the equalities from Fig. 3.31, where atthe �rst step we used a combination of a 
ip and 1.b) and at the second step wecontracted. By moving strands around the reader can convince himself that the twoare equal.The groups of relations 4, 5, and 6 are straightforward. Also, we see that thefunction S has been chosen such that 7.a) holds. Let's prove 7.b). Here is the placewhere we see why we normalized the pairing the way we did. We have to prove thatd2md2nX�2F�0mm 
 �0nn = �pdmdndpX�2�pnm
 �pmn. We see in Fig. 3.32 that this



61
d   d   d   dp   q   c   d

X
Σ
t

dt
2 p

a

b
b

c

 t t

c

a

b
d

q

p   q   c   dd   d   d   d

X
Σ
t

d2
t

p

a

b
b

c

b
d

t t
q

c
a

=

=

p   q   c   dd   d   d   d

X

c

a

p qb dFigure 3.30: Left hand side for FSF-identityis true.
d   d   d   dp   q   c   d

X
Σ d
t t

2

p
a

b
b

c

t
t

b
a

c

d

q

d   d   d   dp   q   c   d Σ
t

dt
2

p

 =

a

b b

c

t t
b

a

c

q

d
 =

d   d   d   dp   q   c   d
X p

d

q
c

b

a

X

Figure 3.31: Right hand side for FSF-identity



623.5 Properties of Invariants of 3-manifoldsWe begin this section with the generalization of Theorem 8 from [30] (see alsoProposition 10.1 in [5]) to surfaces with boundary.PROPOSITION 5.1. Let � be a surface of genus g with n boundary compo-nents, and let D be the DAP-decomposition of �� S1 whose decomposition circlesare the components of @� � f1g and whose seams are of the form fxg � S1, withx 2 @�. ThenZ(�� S1; D; 0) = Xj1;j2;���;jn cj1;j2;���;jn�j1j1 
 �j2j2 
 � � � 
 �jnjnwhere j1; j2; � � � ; jn run over all labelings of @� and cj1;j2;���;jn is the number of waysof labeling the diagram in Fig. 3.33 with integers ik such that at each node we havean admissible triple.
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63as shown in Fig. 3.34. Put on � � I the DAP-decomposition D0 that coincideswith D0 on � � f1g, with �D0 on �� � f0g, and on @� � I there are no extradecomposition circles, and the seams are vertical (i.e. of the form fxg � I).It follows that (� � I;D0; 0) is the mapping cylinder of (id; 0) (with verticalannuli no longer contracted like in the de�nition of the mapping cylinder fromSection 2). The mapping cylinder axiom implies thatZ(�� I;D0; 0) = Oj1;j2;���;jn idj1;j2;���;jn�j1j1 
 �j2j2 
 � � � 
 �jnjnwhere idj1;j2;���;jn is the identity endomorphism on V (�; D0; (j1; j2; � � � ; jn)).If we glue the ends of �� I via the identity map we get the e-3-manifold fromthe statement. The gluing axiom implies that in the formula above the identitymatrices get replaced by their traces. ThereforeZ(�� S1; D; 0) = Oj1;j2;���;jn dimV (�; D0; (j1; j2; � � � ; jn))�j1j1 
 �j2j2 
 � � � 
 �jnjn
. . .

. . .Figure 3.34: Surface for Proposition 5.1.On the other hand the gluing axiom for V implies thatdimV (�; D0; (j1; j2; � � � ; jn)) = cj1;j2;���;jn, which proves the proposition.2The following result shows that the Kau�man bracket not only determinesour TQFT, but also can be recovered from it. It is an analogue of Theorem 1.1 in[21] which showed the presence of the skein relation of the Jones polynomial in thecontext of the Reshetikhin-Turaev TQFT. Before we state the theorem we have to



64introduce some notation.Let us assume that the three e-manifolds (M1; D1; 0), (M2; D2; 0) and(M3; D3; 0) are obtained by gluing to the same e-manifold the genus 2 e-handlebodiesfrom Fig. 3.35 respectively, where the gluing occurs along the \exterior" puncturedspheres. Note that the three handlebodies have the same structure on the \exterior"spheres, so they produce the same change of framing (if any) when gluing.
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2 2Figure 3.35: Extended genus 2 handlebodiesThe \interior" annuli of the handlebodies are part of the boundaries of our 3-manifolds. The gluing axiom implies that V (@Mi; Di) splits as a direct sum ViLV 0i ,where Vi is the subspace corresponding to the labeling of the ends of the annuli by1. Moreover, the gluing axiom for Z implies that Z(Mi; Di; 0) also splits as vi � v0iwhere vi 2 Vi and v0i 2 V 0i . On the other hand the spaces V1, V2 and V3 arecanonically isomorphic. Indeed, they have a common part, to which the vectorspaces corresponding to the two annuli with ends labeled by 1 are attached via themap x ! x 
 �11 
 �11. Thus v1, v2 and v3 can be thought as lying in the samevector space. With this convention in mind, the following result holds.THEOREM 5.1. The vectors v1, v2, and v3 satisfy the Kau�man bracket skein



65relation v1 = Av2 + A�1v3:Proof: By the gluing axiom for Z we see that it su�ces to prove the theoremin the case where M1, M2 and M3 coincide with the three handlebodies (i.e. whenthe manifold to which they get glued is empty).The �rst e-manifold is obtained by �rst taking the mapping cylinder of thehomeomorphism on a pair of pants that takes the \right leg" over the \left leg"as shown in Fig. 3.36 (it should be distinguished from a move in the sense that itreally maps one seam into the other), then composing it with the move B(1)23 , and�nally by expanding two annuli via moves of type A�1.
Figure 3.36: Map on a pair of pantsWe getv1 = B23�̂011 
 �011 
 �11 
 �11 +B23�̂211 
 �211 
 �11 
 �11where for x 2 Vabc we denote by x̂ the vector in (Vabc)� with the property that< x; x̂ >= 1. By the de�nition of the pairing �̂011 = d21X�2�011 and �̂211 =d21d2X�2�211. The computation of B23�011 and B23�211 is described in Fig. 3.37.Hencev1 = �A3d21X�2�011 
 �011 
 �11 
 �11 + A�1d21d2X�2�211 
 �211 
 �11 
 �11:The second manifold can be obtained by gluing along a disk the mappingcylinders of two annuli. The mapping cylinder of an annulus has the invariant
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 �aa = �ad2aX�1�aa 
 �aa, so after expanding a disk and gluing the twocopies together we get �a;bd2ad2bX�2�0aa
�0bb
�aa
�bb: But we are only interestedin the component of the invariant for which a = b = 1, hence v2 = d41X�2�011 
�011 
 �11 
 �11.Finally, the third e-manifold is the mapping cylinder of the identity with twoexpanded annuli, hencev3 = �d21X�2�011 
 �011 
 �11 
 �11 + d21d2X�2�211 
 �211 
 �11 
 �11:The conclusion follows by noting that the diagram that gives the value ofd21 = �1 is the unknot, hence d21 = �A2 � A�2.2As a consequence of the theorem we will compute the formula for the invariantof the complement of a regular neighborhood of a link.PROPOSITION 5.2. Let L be a framed link with k components, and Mbe the complement of a regular neighborhood of L. Consider on @M the DAP-decomposition D whose decomposition curves are the meridinal circles of L (onefor each component) and whose seams are parallel to the framing (see Fig. 3.38.a)).ThenZ(M;D; 0) = 1X Xn1n2���nk < Sn1(�); Sn2(�); � � � ; Snk(�) >L �n1n1 
 �n2n2 
 � � ��nknkwhere the sum is over all labels, and < �; �; � � � ; � >L is the link invariant de�ned in



67Section 3.PROOF: We assume that L is given by a diagram in the plane with the black-board framing. When L is the unknot the invariant can be obtained from Propo-sition 5.1 applied to the case where � is a disk, so in this situation Z(M;D; 0) =1=X�nd2n�nn and the formula holds. By taking the connected sum of k copies ofthe complement of the unknot, and using the gluing axiom for Z we see that theformula also holds for the trivial link with k components. Let us prove it in thegeneral case. Put Z(M;D; 0) = 1=XPn1n2���nk cn1n2���nk�n1n1 
 �n2n2 
 � � ��nknk : Wewant to prove that cn1n2���nk =< Sn1(�); Sn2(�); � � � ; Snk(�) >L : (3.1)Since by Theorem 5.1, c11���1 and < S1(�); S1(�); � � � ; S1(�) >L satisfy boththe Kau�man bracket skein relation, the equality holds when all indices are equalto 1. If some of the indices are equal to 0, the corresponding link components canbe neglected (by erasing them in the case of the link, and by gluing inside solidtori in the trivial way in the case of the 3-manifold). Therefore the equality holdsif ni = 0; 1, i = 1; 2; � � � ; k.For a tuple n = (n1; n2; � � � ; nk) let �(n) = maxfniji = 1; 2; � � � ; kg and �(n) =cardfij ni = �(n)g. We will prove (1) by induction on (�(n); �(n)), where the pairsare ordered lexicographically. Suppose that the property is true for all links and alltuples n0 with (�(n0); �(n0)) < (�(n); �(n)) and let us prove it for (�(n); �(n)).Let M0 be the product of a pair of pants with a circle. Put on M0 a DAP-decomposition D0 as described in Proposition 5.1. ThenZ(M0; D0; 0) = Xmnp �mnp�mm 
 �nn 
 �ppwhere �mnp = 1 if (m;n; p) is admissible and 0 otherwise.Assume that in the tuple n = (n1; n2; � � � ; nk), nk = �(n). Glue M0 to M
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Figure 3.38: Link complementsalong the k-th torus of M such that in the gluing process the DAP-decompositionsof the two tori overlap. We get an e-3-manifold (M1; D1; 0) that is nothing but themanifold associated to the link L0 obtained from L by doubling the last component(see Fig. 3.38.b)).Let Z(M1; D1; 0) = 1=X�dm1m2���mk ;mk+1�m1m1 
 �m2m2 
 � � ��mk+1mk+1. Thegluing axiom, together with relation 6.a) from Section 3 imply that dm1;m2;���;mk+1 =Pp �mkmk+1pcm1;m2;���;mk�1;p. In particulardn1;n2;���;nk�1;nk�1;1 = cn1;n2;���;nk�2 + cn1;n2;���;nk:Applying the induction hypothesis we getcn1n2���nk =< Sn1(�); � � � ; Snk�1(�); Snk�1(�); � >L0 � < Sn1(�; � � � ; Snk�1(�);Snk�2(�) >L :But < Sn1(�; � � � ; Snk�1(�); Snk�1(�); � >L0=< Sn1(�; � � � ; Snk�1(�); �Snk�1(�) >Land since Snk(�) = �Snk�1(�) � Snk�2(�) (see [30]), we obtain the equality in (1)and the proposition is proved.2REMARK. As an easy consequence of this result one can give a short proofof the formula for the colored Jones polynomials of cable knots.COROLLARY. If M is a closed 3-manifold obtained by performing surgery



69on the framed link L with k components, thenZ(M; 0) = X�k�1C�� < !; !; � � � ; ! >Lwhere � is the signature of the linking matrix of L.PROOF: We may assume that L is given by a link diagram in the plane and itsframing is the blackboard framing. Let (M1; D1; 0) be the e-3-manifold associatedto L as in the statement of Proposition 5.2. Consider the e-manifold (M2; D2; 0)where M2 is the solid torus and D2is described in Fig. 3.39. Applying Proposition5.2 to the unknot we see that the invariant of this e-manifold is 1=X�nd2n�nn.
1

2Figure 3.39: Extended solid torusIf we glue k copies of this manifold to M1 such that the DAP-decompositionsoverlap we get M . In the gluing process the framing changes by ��(L1; L2; L3)(see Section 1) where L1 is the kernel of H1(@M1)! H1(M1), L2 is the Lagrangianspace spanned in H1(@M) by the meridinal circles of the link, and L3 is the onespanned by the curves that give the framing. It is a standard result in knot theorythat ��(L1; L2; L3) = �, the linking matrix of L. Using the gluing axiom for Z wegetZ(M;�) = X�k�1 Xn1;n2;���;nk d2n1d2n2 � � �d2nk < Sn1(�); Sn2(�); � � � ; Snk(�) >L== X�k�1 < !; !; � � � ; ! >Lhence Z(M; 0) = X�k�1C�� < !; !; � � � ; ! >L :2



70We make the remark that this gives the invariants of 3-manifolds as normalizedin [30].A similar argument, based again on the skein relation for the invariants ofthree manifolds from Theorem 5.1, can be used to prove the formula for the quantuminvariant of three manifolds with boundary. The TQFT with corners can also beused for the proof of the formulas of Rozansky for the invariants of Seifert �beredspaces and for a more direct approach to the theory of Turaev-Viro modules in thecontext of cyclic covers of complements of knots. We also consider that the aboveideas can be followed to construct a universal TQFT.
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