A Short Proof of a Result on Polynomials by Răzvan Gelca

In this note we want to present a short proof of a result that appeared in [1]. For a polynomial $f(x)=\prod_{1}^{n}\left(x-x_{i}\right)$, with distinct real roots $x_{1}<x_{2}<\cdots<x_{n}$, we let $d=\delta(f)=\min _{i}\left(x_{i+1}-x_{i}\right)$ and $g(x)=f^{\prime}(x) / f(x)=\sum_{1}^{n} 1 /\left(x-x_{i}\right)$. If k is a real number then the roots of the polynomial $f^{\prime}-k f$ are also real and distinct.

PROPOSITION. If for some j, y_{0} and y_{1} satisfy $y_{0}<x_{j}<y_{1} \leq y_{0}+d$ then y_{0} and y_{1} are not zeros of f and $g\left(y_{0}\right)<g\left(y_{1}\right)$.

PROOF: The hypothesis implies that for all $i, y_{1}-y_{0} \leq d \leq x_{i+1}-x_{i}$. Hence for $1 \leq i \leq j-1$ we have $y_{0}-x_{i} \geq y_{1}-x_{i+1}>0$ and so $1 /\left(y_{0}-x_{i}\right) \leq 1 /\left(y_{1}-x_{i+1}\right)$; similarly for $j \leq i \leq n-1$ we have $y_{1}-x_{i+1} \leq y_{0}-x_{i}<0$ and again $1 /\left(y_{0}-x_{i}\right) \leq 1 /\left(y_{1}-x_{i+1}\right)$.

Finally $y_{0}-x_{n}<0<y_{1}-x_{1}$, so $1 /\left(y_{0}-x_{n}\right)<0<1 /\left(y_{1}-x_{1}\right)$, and the result follows by addition of these inequalities.

COROLLARY. $\delta\left(f^{\prime}-k f\right)>\delta(f)$.
PROOF: If y_{0} and y_{1} are zeros of $f^{\prime}-k f$ with $y_{0}<y_{1}$ then they are separated by a zero of f and satisfy $g\left(y_{0}\right)=g\left(y_{1}\right)=k$. Hence from the proposition we can not have $y_{1} \leq y_{0}+d$, so $y_{1}-y_{0}>d$ as required.
[1]. Walker, P., Separation of the zeros of polynomials, Amer. Math. Monthly (100)(1993)272273.

Răzvan Gelca
Department of Mathematics
The University of Iowa
Iowa City, Ia 52242 USA
E-mail: rgelca@math.uiowa.edu

Institute of Mathematics
of the Romanian Academy
P.O.Box 1-764

70700 Bucharest Romania

