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In this note we want to present a short proof of a result that appeared in [1]. For a polynomial

f(x) =
∏n

1 (x−xi), with distinct real roots x1 < x2 < · · · < xn, we let d = δ(f) = mini(xi+1−xi)
and g(x) = f ′(x)/f(x) =

∑n
1 1/(x− xi). If k is a real number then the roots of the polynomial

f ′ − kf are also real and distinct.

PROPOSITION. If for some j, y0 and y1 satisfy y0 < xj < y1 ≤ y0 + d then y0 and y1 are

not zeros of f and g(y0) < g(y1).

PROOF: The hypothesis implies that for all i, y1−y0 ≤ d ≤ xi+1−xi. Hence for 1 ≤ i ≤ j−1

we have y0 − xi ≥ y1 − xi+1 > 0 and so 1/(y0 − xi) ≤ 1/(y1 − xi+1); similarly for j ≤ i ≤ n− 1

we have y1 − xi+1 ≤ y0 − xi < 0 and again 1/(y0 − xi) ≤ 1/(y1 − xi+1).

Finally y0 − xn < 0 < y1 − x1, so 1/(y0 − xn) < 0 < 1/(y1 − x1), and the result follows by

addition of these inequalities.

COROLLARY. δ(f ′ − kf) > δ(f).

PROOF: If y0 and y1 are zeros of f ′ − kf with y0 < y1 then they are separated by a zero of

f and satisfy g(y0) = g(y1) = k. Hence from the proposition we can not have y1 ≤ y0 + d, so

y1 − y0 > d as required.
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