REGULAR POLYGONS

Răzvan Gelca
Texas Tech University

Definition. A regular polygon is a polygon in which all sides are equal and all angles are equal.

Definition. A regular polygon is a polygon in which all sides are equal and all angles are equal.

Definition. A regular polygon is a polygon in which all sides are equal and all angles are equal.

Definition. A regular polygon is a polygon in which all sides are equal and all angles are equal.

Definition. A regular polygon is a polygon in which all sides are equal and all angles are equal.
-

Definition. A regular polygon is a polygon in which all sides are equal and all angles are equal.
-

Definition. A regular polygon is a polygon in which all sides are equal and all angles are equal.
-

Construct an equilateral triangle.

Construct an equilateral triangle.

Construct an equilateral triangle.

Construct an equilateral triangle.

-

Construct an equilateral triangle.

Construct a square.

Construct a square.

$$
-0
$$

∞
∞

Construct a square.
-

Construct a regular pentagon.

Theorem. (Gauss-Wantzel) A regular polygon with n sides can be constructed if an only if the odd prime factors of n are distinct Fermat primes.

This means that

$$
n=2^{m}\left(2^{2^{k_{1}}}+1\right)\left(2^{2^{k_{2}}}+1\right) \cdots\left(2^{2^{k_{t}}}+1\right)
$$

where each $2^{2^{k_{i}}}+1$ is prime and the k_{i} 's are distinct.
Examples:

- regular pentagon $5=2^{2^{1}}+1$
- regular heptadecagon $17=2^{2^{2}}+1$
- regular polygon with 2570 sides

Problem 0. What regular polygons tesselate the plane?

Problem 0. What regular polygons tesselate the plane?

Problem 0. What regular polygons tesselate the plane?

Problem 1. What regular polygons tesselate the plane?

Are there others?

Are there others?

The angles that meet at a point should add up to 360°.

Are there others?

The angles that meet at a point should add up to 360°. The angles of a regular n-gon are equal to $\frac{n-2}{n} \times 180^{\circ}$.

Are there others?

The angles that meet at a point should add up to 360°.
The angles of a regular n-gon are equal to $\frac{n-2}{n} \times 180^{\circ}$.
Hence $\frac{n-2}{n}$ multiplied by some integer should equal 2. The equality $(n-2) k=2 n$ can only hold for $n=3, k=6 ; n=4, k=4$; $n=6, k=3$.

Problem 2. Let $A B C$ be an equilateral triangle and P a point in its interior such that $P A=3, P B=4, P C=5$. Find the side-length of the triangle.

We will use the following result:
Pompeiu's Theorem. Let $A B C$ be an equilateral triangle and P a point in its plane. Then there is a triangle whose sides are $P A$, $P B, P C$.

Here is the proof:

Let us return to the original problem:

The Law of Cosines gives

$$
A B^{2}=3^{2}+4^{2}-2 \cdot 3 \cdot 4 \cdot \cos 150^{\circ}
$$

The Law of Cosines gives

$$
\begin{array}{r}
A B^{2}=3^{2}+4^{2}-2 \cdot 3 \cdot 4 \cdot \cos 150^{\circ} \\
=25+12 \sqrt{3},
\end{array}
$$

and hence

$$
A B=\sqrt{25+12 \sqrt{3}}
$$

Problem 3. Let $A B C D$ be a square and M a point inside it such that $\angle M A B=\angle M B A=15^{\circ}$. Find the angle $\angle D M C$.

Problem 4. Let $A B C D E$ be a regular pentagon and M a point in its interior with the property that $\angle M B A=\angle M E A=42^{\circ}$.
Find $\angle C M D$.

Let us return to the previous problem.
Assume that somehow we guessed that $\angle C M D=60^{\circ}$. How can we prove it?

Construct instead M such that the triangle $D M C$ is equilateral. Then $D A=D M$ and $C B=C M$. So the triangles $D A M$ and $C B M$ are isosceles. It follows that $\angle D A M=\angle D M A=75^{\circ}$, so M is the point from the statement of the problem.

Now let us return to the problem with the regular pentagon. Construct instead the point M such that the triangle $C M D$ is equilateral. Then triangle $D E M$ is isosceles, and

$$
\angle E D M=108^{\circ}-60^{\circ}=48^{\circ}
$$

Thus

$$
\angle D E M=\frac{1}{2}\left(180^{\circ}-48^{\circ}\right)=66^{\circ}
$$

We get

$$
\angle A E M=180^{\circ}-66^{\circ}=42^{\circ} .
$$

Similarly $\angle M B A=42^{\circ}$ and thus M is the point from the statement of the problem.

Problem 5. Nineteen darts hit a target which is a regular hexagon of side-length 1 . Show that two of the darts are at distance at most $\sqrt{3} / 3$ from each other.

Problem 6. Let $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6} A_{7}$ be a regular heptagon. Prove that

$$
\frac{1}{A_{1} A_{2}}=\frac{1}{A_{1} A_{3}}+\frac{1}{A_{1} A_{4}}
$$

$\angle A_{1} O A_{2}=\frac{360^{\circ}}{7}, \angle A_{1} O A_{3}=\frac{720^{\circ}}{7}, \angle A_{1} O A_{4}=\frac{1080^{\circ}}{7}$.

$A_{1} A_{2}=2 R \sin \frac{180^{\circ}}{7}, \quad A_{1} A_{3}=2 R \sin \frac{360^{\circ}}{7}, \quad A_{1} A_{4}=2 R \sin \frac{540^{\circ}}{7}$.

So we have to prove that

$$
\frac{1}{\sin \frac{180^{\circ}}{7}}=\frac{1}{\sin \frac{360^{\circ}}{7}}+\frac{1}{\sin \frac{540^{\circ}}{7}}
$$

Rewrite as

$$
\sin \frac{360^{\circ}}{7} \sin \frac{540^{\circ}}{7}=\sin \frac{180^{\circ}}{7} \sin \frac{360^{\circ}}{7}+\sin \frac{180^{\circ}}{7} \sin \frac{540^{\circ}}{7} .
$$

Now we use the formula

$$
2 \sin a \sin b=\cos (a-b)-\cos (a+b) .
$$

So we have to prove that

$$
\frac{1}{\sin \frac{180^{\circ}}{7}}=\frac{1}{\sin \frac{360^{\circ}}{7}}+\frac{1}{\sin \frac{540^{\circ}}{7}}
$$

Rewrite as

$$
\sin \frac{360^{\circ}}{7} \sin \frac{540^{\circ}}{7}=\sin \frac{180^{\circ}}{7} \sin \frac{360^{\circ}}{7}+\sin \frac{180^{\circ}}{7} \sin \frac{540^{\circ}}{7} .
$$

... to write this as
$-\cos \frac{900^{\circ}}{7}+\cos \frac{180^{\circ}}{7}=\cos \frac{180^{\circ}}{7}-\cos \frac{540^{\circ}}{7}+\cos \frac{360^{\circ}}{7}-\cos \frac{720^{\circ}}{7}$.

We are left with showing that

$$
\cos \frac{540^{\circ}}{7}+\cos \frac{720^{\circ}}{7}-\cos \frac{900^{\circ}}{7}-\cos \frac{360^{\circ}}{7}=0
$$

Note that $7 \times 180^{\circ}=1260^{\circ}$ and $\cos \left(180^{\circ}-x\right)=-\cos x$. Hence the left-hand side is zero, as desired.

There is a more elegant way to write this, which makes the solution more natural.

There is a more elegant way to write this, which makes the solution more natural.

$$
\text { Use } 180^{\circ}=\pi .
$$

$$
\begin{gathered}
\frac{1}{\sin \frac{\pi}{7}}=\frac{1}{\sin \frac{2 \pi}{7}}+\frac{1}{\sin \frac{3 \pi}{7}} \\
\sin \frac{2 \pi}{7} \sin \frac{3 \pi}{7}=\sin \frac{\pi}{7} \sin \frac{2 \pi}{7}+\sin \frac{\pi}{7} \sin \frac{3 \pi}{7} \\
-\cos \frac{5 \pi}{7}+\cos \frac{\pi}{7}=\cos \frac{\pi}{7}-\cos \frac{3 \pi}{7}+\cos \frac{2 \pi}{7}-\cos \frac{4 \pi}{7} \\
\cos \frac{3 \pi}{7}+\cos \frac{4 \pi}{7}-\cos \frac{5 \pi}{7}-\cos \frac{2 \pi}{7}=0
\end{gathered}
$$

This is the same as

$$
\cos \frac{3 \pi}{7}+\cos \left(\pi-\frac{3 \pi}{7}\right)-\cos \frac{5 \pi}{7}-\cos \left(\pi-\frac{5 \pi}{7}\right)=0
$$

Now use $\cos (\pi-x)=-\cos x$ to conclude that this is true.

Problem 7. A regular octagon of side-length 1 is dissected into parallelograms. Find the sum of the areas of the rectangles in the dissection.

Problem 7. A regular octagon of side-length 1 is dissected into parallelograms. Find the sum of the areas of the rectangles in the dissection.

Problem 7. A regular octagon of side-length 1 is dissected into parallelograms. Find the sum of the areas of the rectangles in the dissection.

Answer: 2.

9)

Problem 8. Let $A_{1} A_{2} A_{3} \ldots A_{12}$ be a regular dodecagon. Prove that $A_{1} A_{5}, A_{4} A_{8}$, and $A_{3} A_{6}$ intersect at one point.

First let us recall the construction of a regular dodecagon.

8

-

-

Problem 9. On a circle of diameter $A B$ choose points C, D, E on one side of $A B$ and F on the other side such that $A C=C D=B E=$ 20° and $B F=60^{\circ}$. Prove that $F M=F E$.

Problem 9. On a circle of diameter $A B$ choose points C, D, E on one side of $A B$ and F on the other side such that $A C=C D=B E=$ 20° and $B F=60^{\circ}$. Prove that $F M=F E$.

Where is the regular polygon in this problem???
0

Problem 10. For what n does there exists an n-gon in the plane all of whose vertices have integer coordinates?

Problem 10. For what n does there exists an n-gon in the plane all of whose vertices have integer coordinates?

Problem 10. For what n does there exists an n-gon in the plane all of whose vertices have integer coordinates?

Are there other regular polygons besides the square?

For $n>6$, start with the smallest such polygon...

and produce a smaller one.

If there is a regular n-gon with vertices of integer coordinates, the center has rational coordinates.

By changing the scale we can assume that the center has integer coordinates as well.

Several 90° rotations around the center produce a regular polygon with 12 or 20 sides with vertices of integer coordinates, which we know cannot exits.

