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Definition. A regular polygon is a polygon in which all sides are

equal and all angles are equal.
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Construct an equilateral triangle.
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Construct a square.
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Construct a square.



Construct a regular pentagon.



Theorem. (Gauss-Wantzel) A regular polygon with n sides

can be constructed if an only if the odd prime factors of n are

distinct Fermat primes.

This means that

n = 2m(22k1
+ 1)(22k2

+ 1) · · · (22kt
+ 1),

where each 22ki + 1 is prime and the ki’s are distinct.

Examples:

• regular pentagon 5 = 221
+ 1

• regular heptadecagon 17 = 222
+ 1

• regular polygon with 2570 sides



Problem 0. What regular polygons tesselate the plane?
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The angles that meet at a point should add up to 360◦.
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The angles that meet at a point should add up to 360◦.

The angles of a regular n-gon are equal to n−2
n × 180◦.



Are there others?

The angles that meet at a point should add up to 360◦.

The angles of a regular n-gon are equal to n−2
n × 180◦.

Hence n−2
n multiplied by some integer should equal 2. The equal-

ity (n− 2)k = 2n can only hold for n = 3, k = 6; n = 4, k = 4;

n = 6, k = 3.



Problem 2. Let ABC be an equilateral triangle and P a point

in its interior such that PA = 3, PB = 4, PC = 5. Find the

side-length of the triangle.



We will use the following result:

Pompeiu’s Theorem. Let ABC be an equilateral triangle and

P a point in its plane. Then there is a triangle whose sides are PA,

PB, PC.



Here is the proof:



Here is the proof:



Here is the proof:



Here is the proof:



Here is the proof:



Let us return to the original problem:
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Let us return to the original problem:



The Law of Cosines gives

AB2 = 32 + 42 − 2 · 3 · 4 · cos 150◦



The Law of Cosines gives

AB2 = 32 + 42 − 2 · 3 · 4 · cos 150◦

= 25 + 12
√

3,

and hence

AB =

√
25 + 12

√
3.



Problem 3. Let ABCD be a square and M a point inside it

such that ∠MAB = ∠MBA = 15◦. Find the angle ∠DMC.











Problem 4. Let ABCDE be a regular pentagon and M a point

in its interior with the property that ∠MBA = ∠MEA = 42◦.

Find ∠CMD.



Let us return to the previous problem.

Assume that somehow we guessed that ∠CMD = 60◦. How can

we prove it?



Construct instead M such that the triangle DMC is equilateral.

Then DA = DM and CB = CM . So the triangles DAM and

CBM are isosceles. It follows that ∠DAM = ∠DMA = 75◦, so

M is the point from the statement of the problem.



Now let us return to the problem with the regular pentagon. Con-

struct instead the point M such that the triangle CMD is equilat-

eral. Then triangle DEM is isosceles, and

∠EDM = 108◦ − 60◦ = 48◦.



Thus

∠DEM =
1

2
(180◦ − 48◦) = 66◦.

We get

∠AEM = 180◦ − 66◦ = 42◦.

Similarly ∠MBA = 42◦ and thus M is the point from the state-

ment of the problem.



Problem 5. Nineteen darts hit a target which is a regular hexagon

of side-length 1. Show that two of the darts are at distance at most√
3/3 from each other.









Problem 6. Let A1A2A3A4A5A6A7 be a regular heptagon.

Prove that
1

A1A2
=

1

A1A3
+

1

A1A4
.







∠A1OA2 =
360◦

7
, ∠A1OA3 =

720◦

7
, ∠A1OA4 =

1080◦

7
.



A1A2 = 2R sin
180◦

7
, A1A3 = 2R sin

360◦

7
, A1A4 = 2R sin

540◦

7
.



So we have to prove that

1

sin 180◦
7

=
1

sin 360◦
7

+
1

sin 540◦
7

.

Rewrite as

sin
360◦

7
sin

540◦

7
= sin

180◦

7
sin

360◦

7
+ sin

180◦

7
sin

540◦

7
.



Now we use the formula

2 sin a sin b = cos(a− b)− cos(a + b).



So we have to prove that

1

sin 180◦
7

=
1

sin 360◦
7

+
1

sin 540◦
7

.

Rewrite as

sin
360◦

7
sin

540◦

7
= sin

180◦

7
sin

360◦

7
+ sin

180◦

7
sin

540◦

7
.

... to write this as

− cos
900◦

7
+ cos

180◦

7
= cos

180◦

7
− cos

540◦

7
+ cos

360◦

7
− cos

720◦

7
.



We are left with showing that

cos
540◦

7
+ cos

720◦

7
− cos

900◦

7
− cos

360◦

7
= 0.

Note that 7× 180◦ = 1260◦ and cos(180◦ − x) = − cos x. Hence

the left-hand side is zero, as desired.



There is a more elegant way to write this, which makes the solution

more natural.



There is a more elegant way to write this, which makes the solution

more natural.

Use 180◦ = π.



1

sin π
7

=
1

sin 2π
7

+
1

sin 3π
7

sin
2π

7
sin

3π

7
= sin

π

7
sin

2π

7
+ sin

π

7
sin

3π

7

− cos
5π

7
+ cos

π

7
= cos

π

7
− cos

3π

7
+ cos

2π

7
− cos

4π

7

cos
3π

7
+ cos

4π

7
− cos

5π

7
− cos

2π

7
= 0

This is the same as

cos
3π

7
+ cos

(
π − 3π

7

)
− cos

5π

7
− cos

(
π − 5π

7

)
= 0

Now use cos(π − x) = − cos x to conclude that this is true.



Problem 7. A regular octagon of side-length 1 is dissected into

parallelograms. Find the sum of the areas of the rectangles in the

dissection.
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Problem 7. A regular octagon of side-length 1 is dissected into

parallelograms. Find the sum of the areas of the rectangles in the

dissection.

Answer: 2.













Problem 8. Let A1A2A3 . . . A12 be a regular dodecagon. Prove

that A1A5, A4A8, and A3A6 intersect at one point.



First let us recall the construction of a regular dodecagon.





































Problem 9. On a circle of diameter AB choose points C, D,E on

one side of AB and F on the other side such that
_

AC=
_

CD=
_

BE=

20◦ and
_

BF= 60◦. Prove that FM = FE.



Problem 9. On a circle of diameter AB choose points C, D,E on

one side of AB and F on the other side such that
_

AC=
_

CD=
_

BE=

20◦ and
_

BF= 60◦. Prove that FM = FE.

Where is the regular polygon in this problem???

























Problem 10. For what n does there exists an n-gon in the plane

all of whose vertices have integer coordinates?
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Problem 10. For what n does there exists an n-gon in the plane

all of whose vertices have integer coordinates?

Are there other regular polygons besides the square?



For n > 6, start with the smallest such polygon...



and produce a smaller one.



If there is a regular n-gon with vertices of integer coordinates, the

center has rational coordinates.

By changing the scale we can assume that the center has integer

coordinates as well.

Several 90◦ rotations around the center produce a regular polygon

with 12 or 20 sides with vertices of integer coordinates, which we

know cannot exits.


