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Chapter 1

Classical Mechanics

This chapter is inspired by V.I. Arnol’d’s Mathematical Methods of Classical Mechanics,
and the students can consult this book for further details and examples. Because classical
mechanics we can “see”, it is phrased in the language of geometry. Originally geometry was
an intuitive science of points, lines, and circles, but the coordinates introduced by Descartes
were a powerful tool, and they led to differential geometry. It is in the language of differential
geometry that we will tell the story of classical mechanics, and we do it from two points of
view: the lagrangian and the hamiltonian formalism.

1.1 The Lagrangian formalism of classical mechanics

1. Lagrangian mechanics describes the motion of a system using the configuration space. A
Lagrangian mechanical system is defined by a finite dimensional manifold (which parametrizes
all possible configurations of the mechanical system) and a function on the tangent bundle
to this manifold (the Lagrangian).

A smooth n-dimensional manifold M looks locally like R
n. In formulas we will use a

local coordinate q = (q1, q2, . . . , qn). By Whitney’s embedding theorem, there is a smooth
embedding f : M → R

2n. Thus we arrive at Poincarè’s description of a manifold: a set in
R
N that is locally the graph of a map φ : Rr → R

s.

Definition. The abstract definition of a smooth manifold (due to O. Veblen) is that it is
that it is a topological space M together with an open covering (Uα)α∈A and a collection of
bijections φα : Uα → R

n such that φβ ◦ φ−1
α is smooth (whenever this map is defined).

The maps φβ ◦ φ−1
α are the changes of coordinates from one local chart to another, if the

two charts overlap.
The tangent space at a point q0 to the manifold M , Tq0

M , can be defined abstractly as
the set of equivalence classes of curves that have the same derivative at q0 in some system
of local coordinates. Concretely, it is the vector space of tangent vectors at f(q0) to f(M)
(here f is the embedding of M into some R

n. A vector is of the form d
dt
(f ◦ q)(t)|t=0, were

q(t) is a curve, t ∈ (−ǫ, ǫ), with q(0) = q0. It is customary to denote the tangent vector to
the curve q by q̇, or more precisely, the tangent vector to the curve q at point q(t) by q̇(t).

The coordinates of a vector are computed in a local chart as d
dt
(φα ◦ f ◦ q)dt. Then,

if in the local chart Uα we use coordinates x = (x1, x2, . . . , xn), we identify Tq0
M with

5



6 CHAPTER 1. CLASSICAL MECHANICS

the vector space with basis ∂/∂x1, ∂/∂x2, . . . , ∂/∂xn. Also, if in the local chart Uβ we
use coordinates y = (y1, y2, ..., yn) and we identify Tq0

M with the vector space with basis
∂/∂y1, ∂/∂y2, . . . , ∂/∂yn, then for v = (α1, α2, . . . , αn) in the coordinate chart Uα then in the
coordinate chart Uβ, v has coordinates









β1
β2
· · ·
βn









=

(

∂(φβ ◦ φ−1
α )j

∂xk

)

jk









α1

α2

· · ·
αn









.

Formally we can think that the coordinates in the chart φα are x and in the chart φβ are y,
and then the matrix for the change of coordinates of vectors is ∂y

∂x
.

The tangent bundle, TM , is the union of all tangent spaces, which is given a structure of
a smooth manifold using the charts defined by φα and the coordinates of the tangent vector
in the chart φα. The transition functions (from one coordinates system to another) are

(

φβ ◦ φ−1
α ,

(

∂(φβ ◦ φ−1
α )j

∂xk

)

jk

)

Locally it is diffeomorphic to R
n × R

n. Heuristically we think of it as being the “system of
positions and velocities of a system of several particles with constraints”.

2. Let L : TM × R → R be a smooth function, which plays the role of the Lagrangian
of the system; it is particular to the given mechanical system and it is used to describe the
evolution of the mechanical system as follows. Fix points q0 and q1 on M and consider the
infinite dimensional space of smooth curves γ given by functions of the form q : [t0, t1] →M
such that q(t0) = q0 and q(t1) = q1. On this space define the functional

Φ(γ) =

∫ t1

t0

L(q, q̇, t)dt.

Here as the variable of L you plug in the point q(t) ∈ M , the tangent vector q̇(t) to the
curve at this point, and the time t.

Hamilton’s Minimal Action Principle: The motions of a mechanical system described
by L coincide with the extrema of the functional, Φ(γ), called action.

A curve is an extremum of Φ if the “derivative” of Φ zero at this curve. This is made
precise within the framework of variational calculus.

Here we viewM as a subset of some Rn, and then consider a paths γ inM and variations
of these paths, written as γ+ δ, also in M . The differential of Φ is a linear functional F such
that

Φ(γ + δ)− Φ(γ) = F (δ) +R

where R(γ, δ) = O(δ2) (if δ and its derivative are less than ǫ in absolute value, then |R| < ǫ2).
We consider only variations in the space of paths in M that connect q0 and q1. So δ itself,
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which is a path in R
n, is zero at t0 and t1. We have

Φ(γ + δ)− Φ(γ) =

∫ t1

t0

[L(q+ h, q̇+ ḣ, t)− L(q, q̇, t)]dt

=

∫ t1

t0

[

∂L

∂q
h+

∂L

∂q̇
ḣ

]

dt+O(h2) =

∫ t1

t0

[

∂L

∂q
− d

dt

(

∂L

∂q̇

)]

hdt+O(h2).

where for the last step we used integration by parts (and the fact that h is zero at the
endpoints).

So the differential of Φ is this last integral, and the extrema of the action are those
trajectories t 7→ q(t) that satisfy the Euler-Lagrange equations:

d

dt

(

∂L

∂q̇

)

− ∂L

∂q
= 0.

3. Here is a reformulation of Newtonian mechanics (in R
n). Let L = T − V where T =

∑

jmj q̇j
2/2 is the kinetic energy and V = V (q) is the potential energy. Then

∂L

∂q̇j
=
∂T

∂q̇j
= mj q̇j,

∂L

∂qj
= −∂V

∂qj
.

We obtain Newton’s equations

mj q̈j +
∂V

∂qj
= 0,

which can be written in the more familiar form maj = Fj, were aj is the jth component of
the acceleration.

Remark 1.1.1. Newton’s equations show that the total energy E = T + V is conserved (i.e.
does not change it time).

Example 1.1.1. A free particle moving in R has L = T = mq̇2

2
. The Euler-Lagrange

equation is

d

dt
(mq̇) = 0

which is equivalent to q̈ = 0. This means we are in the presence of uniform motion.

Example 1.1.2. The harmonic oscillator with no damping has a single force acting, and
this is given by Hooke’s law: F = −kq. We (forcefully) introduce the potential V = kq2

2
.

Then

L =
mq̇2

2
− kq2

2
.

Then

∂L

∂q
= −kq, ∂L

∂q̇
= mq̇,

so we obtain the equation of the harmonic oscillator

mq̈ + kq = 0,

whose solutions are of the form q(t) = c1 cosωt+ c2 sinωt with ω =
√

k/m.
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1.2 The Hamiltonian formalism of classical mechanics

4. To pass from the Lagrangian to the Hamiltonian formulation of classical mechanics
we use the Legendre transform. This transform is still part of what is traditionally called
Lagrangian mechanics, but it establishes the transition from one formulation to the other
and turns Lagrangian mechanics into a subtheory of Hamiltonian mechanics.

First we assume, as it is usually the case in real life applications, that the potential energy
depends on q only and the kinetic energy is a positive definite quadratic function in q̇. Then
L(q, q̇, t) is convex in q̇.

In general for a convex function f(x) the Legendre transform is a function g defined as
follows. For a number p, the function F (x, p) = px − f(x) has a maximum at some point
x(p). Then g(p) = F (p, x(p)).

So in our case F (q̇,p) = pq̇− L(q, q̇, t). To maximize we set its derivative with respect
to q̇) equal to 0, and get p− ∂L

∂q̇
= 0, that is p = ∂L

∂q̇
. So the Legendre transform of L (with

respect to the variable q̇) is the Hamiltonian function

H(p,q, t) = pq̇− L(q, q̇, t),

with variables p = ∂L
∂q̇

the (conjugate) momenta.
The Euler-Lagrange equations are equivalent to Hamilton’s equations

q̇ =
∂H

∂p

ṗ = −∂H
∂q

.

Indeed, q̇ = ∂H/∂p is just from definition of H, while ṗ = −∂H/∂q are the Euler-Lagrange
equations. Aha, so by introducing the momenta we turn a system of n = dimM second
order differential equations into a system of 2n first order differential equations!

In the setting of Newtonian mechanics, the Hamiltonian is H = T + V , the total energy
of the system.

Example 1.2.1. For the harmonic oscillator,

p =
∂L

∂q̇
=

∂

∂q̇

(

mq̇2

2
− kq2

2

)

= mq̇.

Hence

H =
p2

2m
+
kq2

2
.

Hamilton’s equations are

q̇ =
p

m
ṗ = −kq.
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So the second order Euler-Lagrange equation now becomes Hamilton’s system of first order
differential equations. To solve this system you set

A =

(

0 1
m

−q 0

)

.

and then write the system as dx
dt

= Ax. The solution is of the form x(t) = etAx(0), and of
course to find the exponential of the matrix you need to diagonalize it, and in the process
of diagonalization you get the same characteristic equation as for the second order equation,
etc...

5. Now we discuss a subtle point, namely the fact that one of the main differences between
the Lagrangian and the Hamiltonian point of view is that one of them happens on the tangent
bundle while the other happens on the cotangent bundle of the configuration space.

In general for a function f(x), the gradient

∂f

∂x
=

(

∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)

is a covector. You can think of it as being the differential form ∂f
∂x
dx.

Because of the chain rule

∂f

∂y
=
∂f

∂x

∂x

∂y
,

the matrix that changes the “vector” ∂f
∂x

to the “vector” ∂f
∂y

is

∂x

∂y

T

=

(

(

∂y

∂x

)−1
)T

=

(

(

∂(φβ ◦ φ−1
α )j

∂xk

)−1

jk

)T

.

We can take the union of the cotangent space at every point of the configuration space
M to produce the cotangent bundle T ∗M . This can be endowed with the structure of a
smooth manifold using the charts and the coordinates of forms. Locally T ∗M looks like
some R2n, where n is the number of degrees of freedom (parameters) of the classical system.
The transition maps from one system of coordinates to another are



φβ ◦ φ−1
α ,

(

(

∂(φβ ◦ φ−1
α )j

∂xk

)−1

jk

)T


 .

T ∗M a manifold, of even dimension.
So to conclude, the Legendre transform maps functions that depend of the position and

velocity, i.e. point and tangent vector, to functions that depend on the position and the
momentum, i.e. point and cotangent vector.

You can think of this in terms of directional derivatives as follows. If V is a vector space
and f : V → R is a function, then for v ∈ V , dfv ∈ V ∗. Indeed,

dfv(w) =
d

dt
(f(v + tw))|t=0, w ∈ V
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which is a linear functional on V . We thus get a linear map V 7→ V ∗. For f = L(q̇),
and V = Tq0

we obtain a map from Tq0
M 7→ T ∗

q0
M , which defines the Legendre transform

TM → T ∗M .
So Hamiltonian mechanics happens on the cotangent bundle of the manifold of config-

urations. If M is the manifold of configurations, we denote by T ∗M its cotangent bundle.
Locally T ∗M looks like some R2n, where n is the number of degrees of freedom (parameters)
of the classical system. Thus T ∗M is itself a manifold, of even dimension. In fact, as we will
see below, it is a manifold of special type.

We use the term phase space of the classical mechanical system to denote the cotangent
bundle of the manifold of configurations. The phase space parametrizes the positions and
momenta of the mechanical system.

Definition. A symplectic manifold is a manifold endowed with a globally defined symplectic
form. A symplectic form is a nondegenerate closed 2-form.

We could think intuitively of a nondegenerate 2-form ω as an oriented area element (it tells
us how to integrate functions on surfaces in M). A 2-form is an object that, when restricted
to a point on the manifold, it yields a bilinear antisymmetric map TqM × TqM → R, and
these bilinear maps vary smoothly with the point. A 2-form is called nondegenerate if for
every vector v 6= 0 there is a vector w such that ω(v, w) 6= 0. The form is called closed if its
differential is zero.

Theorem 1.2.1. The cotangent bundle T ∗M is a symplectic manifold with the symplectic
form

ω = dp ∧ dq =
n
∑

j=1

dpj ∧ dqj.

Proof. In local coordinates it is not hard to see that this form is nondegenerate and closed.
It is harder to see that it is well defined. To prove this, we define a 1-form. Let v be a
vector tangent to T ∗M at a point (q,p). The differential of the projection π : T ∗M → M
maps v to π∗v. Let θ(v) = p(π∗v). In local coordinates θ = pdq, so dθ = ω. Note that
dω = d2θ = 0. The form θ is called the canonical 1-form.

6. Hamiltonian mechanics can be defined on a general symplectic manifold, not necessarily
of the form T ∗M , so we allow constraints at the level of momenta as well (not just at the
level of positions).

Therefore in Hamiltonian mechanics the phase space is a pair (M,ω), where M is an
even dimensional real manifold and ω is a symplectic form on M .

Theorem 1.2.2. (Darboux) Given a symplectic manifold (M,ω), every point has a neigh-
borhood and a system of coordinates of that neighborhood in which the symplectic form is
dp ∧ dq.

So for local computations we can assume that we are in R
2n with the standard symplectic

form. For local computations we use the formulas

ω

(

∂

∂pj
,
∂

∂qk

)

= δjk, ω

(

∂

∂qj
,
∂

∂pk

)

= −δjk, ω
(

∂

∂pj
,
∂

∂pk

)

= ω

(

∂

∂qj
,
∂

∂qk

)

= 0,
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The symplectic form defines an isomorphism

Tq0
M 7→ T ∗

q0
M

by v 7→ ω(·, v) where the latter maps a vector w to ω(w, v) (there is a fancy notation:
ivω = ω(v, ·)).

Now we develop a formalism for observable quantities. This will bring us closer to
the points of view of quantum mechanics. In classical mechanics we can see the particle,
so we can determine its position and velocity precisely, or, in the present formalism, its
position and momentum. Then we associate various quantities that are physically relevant
and sometimes arise from conservation laws, such as angular momentum, total energy, kinetic
energy, etc. But in quantum mechanics we cannot see particles. All we can do is set up
some experiment which detects the existence of the particle and its “quantum” properties.
Usually the outcome of the experiment is some data. We can reason the same way in the
classical world, and think that what we measure are some numerical quantities that depend
on the state of the particle. We thus are looking at functions of (p,q). We now develop the
formalism for these functions.

The symplectic form associates to each function f a Hamiltonian vector field Xf defined
as the inverse through this isomorphism of df , that is

df = ω(·,Xf ).

In local coordinates

Xf =

(

∂f

∂p

)T
∂

∂q
−
(

∂f

∂q

)T
∂

∂p
.

There is a fancy way of writing this using the notation iXω = ω(X, ·). Then Xf is defined
by

df = −iXf
ω.

Example 1.2.2. For the coordinate functions qj, pj, we have

Xqj = − ∂

∂pj
, Xpj =

∂

∂qj
.

7. There is a Poisson bracket for smooth functions on the symplectic manifold M which is
defined by

{f, g} = −ω(Xf ,Xg).

In local coordinates

{f, g} = −ω(Xf ,Xg) = −ω(
∑

j

∂f

∂pj

∂

∂qj
− ∂f

∂qj

∂

∂pj
,
∑

k

∂g

∂pk

∂

∂qk
− ∂g

∂qk

∂

∂pk
)

= −
∑

jk

∂f

∂pj

∂g

∂pk
ω(

∂

∂qj
,
∂

∂qk
) +

∑

jk

∂f

∂pj

∂g

∂qk
ω(

∂

∂qj
,
∂

∂pk
)

+
∑

jk

∂f

∂qj

∂g

∂pk
ω(

∂

∂pj
,
∂

∂qk
)−

∑

jk

∂f

∂qj

∂g

∂qk
ω(

∂

∂pj
,
∂

∂pk
)

=

(

∂f

∂q

)T
∂g

∂p
−
(

∂f

∂p

)T
∂g

∂q
.



12 CHAPTER 1. CLASSICAL MECHANICS

Theorem 1.2.3. The Poisson bracket satisfies

1. {af + bg, h} = a{f, h}+ b{g, h} for a, b constants and f, g functions;

2. {f, g} = −{g, f};

3. {fg, h} = {f, h}g + f{g, h}.

4. (The Jacobi identity) {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

The conditions can be checked by working in local coordinates. The four conditions
define in general what is called a Poisson bracket structure on C∞(T ∗M). The first, second,
and fourth conditions define a Lie bracket structure.

Definition. A manifold whose algebra of functions is endowed with a Poisson bracket is
called a Poisson manifold.

Example 1.2.3. Not all Poisson manifolds are symplectic. For example R
3 (which is not

symplectic because it has odd dimension), has the a Poisson bracket defined by

{f, g} = 〈x,∇fx ×∇gx〉 .

Recall that a Lie algebra is a vector space endowed with a Lie bracket (an antisymmetrical
bilinear 2-form satisfying the Jacobi identity).

Example 1.2.4. The Heisenberg Lie algebra H(Rn) is the algebra generated by the coordi-
nate and momentum functions q1, q2, . . . , qn, p1, p2, . . . , pn, satisfying

{qj, qk} = {pj, pk} = 0, {pj, qk} = −δjk.

These equations are the canonical commutation relations for the classical positions and
momenta. This can be modeled using matrices as

qj =





0 eTj 0
0 0 0
0 0 0



 , pk =





0 0 0
0 0 ek
0 0 0



 , 1 =





0 0 1
0 0 0
0 0 0



 ,

We can also think of the Poisson bracket infinitesimally, as a Lie bracket of Hamiltonian
vector fields:

[Xf ,Xg] = X{f,g}.

Using the Poisson bracket we can write Hamilton’s equations as

q̇j = {qj, H}, ṗj = {pj, H}.

In general, if f(p,q) is a function of position and momentum, which we interpret as
a observable (i.e. measurable) quantity then its value, as the particle moves along the
trajectory (q,p), satisfies the system of first order partial differential equations

df

dt
= {f,H}.
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This is the general form of Hamilton’s equations. This formula can be proved as follows

df

dt
=
df

dp
ṗ+

df

dq
q̇ = − df

dp

∂H

∂q
+
df

dq

∂H

∂p
= {f,H}.

where we have used Hamilton’s equations.

8. Diffeomorphisms of the symplectic manifold that preserve the symplectic form are called
symplectomorphisms. So φ :M →M is a symplectomorphism if φ∗ω = ω. (Here phi∗ω is the
pull back of ω defined as phi∗ωx(X, Y ) = ωx(dφx(X), dφx(Y )), where dφx(X) is the push for-
ward of the vector X defined by φx(γ

′(0)) = (φ ◦ γ)′(0).) Symplectomorphisms also preserve
the Poisson bracket, so they preserve the Hamiltonian formalism. Symplectomorphisms are
therefore the “isomorphisms” of classical mechanics.

Example 1.2.5. For a free 1-dimensional particle, the phase space is T ∗
R = R

2 with
coordinates q the position and p the momentum. The symplectic form is dp ∧ dq. This is
the same as the area element in the plane, taken with the sign that specifies orientation.

The linear transformations that preserve area and orientation form the group

SL(2,R) =

{(

a b
c d

)

| ad− bc = 1

}

,

which are therefore the linear syplectomorphisms.
Indeed, if φ is the symplectomorphism defined by the matrix (abcd), then the pullback of ω

through φ is the symplectic form φ∗ω defined by the condition

φ∗ω

(

∂

∂p
,
∂

∂q

)

= ω

(

a
∂

∂p
+ b

∂

∂q
, c
∂

∂p
+ d

∂

∂q

)

= adω

(

∂

∂p
,
∂

∂q

)

+ bcω

(

∂

∂q
,
∂

∂p

)

= ad− bc = 1 = ω

(

∂

∂p
,
∂

∂q

)

.

Example 1.2.6. For n free 1-dimensional particles, the phase space is T ∗
R
n = R

2n, with co-
ordinates q = (q1, q2, . . . , qn) (positions) and p = (p1, p2, . . . , pn) (momenta). The symplectic
form is dp ∧ dq =

∑

j dpj ∧ dqj.
The linear transformations that preserve the symplectic form are the elements of the

symplectic group

Sp(2n,R) =

{

h ∈ GL(2n,R) |hT
(

0 In
−In 0

)

h =

(

0 In
−In 0

)}

.

A particular example of symplectomorphisms, which play an important role in mechanics,
are Hamiltonian flows. Let H(p,q) be a time-independent Hamiltonian function and let XH

be its associated vector field.
The Hamiltonian flow defined by H is a family of diffeomorphisms φt :M →M indexed

by some interval I containing 0 such that for every x ∈M , φt(x) : I →M is defined by the
differential equation

d

dt
φt(x) = (XH)φt(x),
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where the right term denotes the vector (of the vector field) at the point φt(x).
Note that the uniqueness of the solution to the differential equation implies φt(φs(x)) =

φt+s(x). Thus the Hamiltonian flow is a one parameter group of diffeomorphisms.

Theorem 1.2.4. The Hamiltonian flow defines a one parameter group of symplectomor-
phisms which conserve H.

Proof. As a consequence of the definition, each observable varies under the flow by the
Hamilton equation df/dt = {f,H}. So the conservation of the energy follows from

dH

dt
=

(

∂H

∂q

)T
dq

dt
+

(

∂H

∂p

)T
dp

dt
=

(

∂H

∂q

)T

q̇+

(

∂H

∂p

)T

ṗ

=

(

∂H

∂q

)T
∂H

∂p
−
(

∂H

∂p

)T
∂H

∂q
= 0.

This is the same as

dH

dt
= {H,H} = 0.

To show that Hamiltonian flows are symplectomorphisms, let us prove that

d

dt
φ∗ω = 0.

We have

d

dt
φ∗ω = φ∗

t lim
h→0

h−1[φ∗
hω − ω] = φ∗

tLXH
ω.

So let us check that

LXH
ω = lim

h→0
h−1[φ∗

hω − ω] = 0.

We use the Cartan formula

LX = iX ◦ d+ d ◦ iX,

to get

LXH
ω = iXH

◦ dω + dω(XH , ·) = 0− d2H = 0.

Cartan’s formula can be proved as follows. Both sides satisfy the “product rule” so they
are derivations. So it suffices to check on functions, where it is trivial, and on 1-forms:

[iXd+ diX]df = diX(df) = d[iX(df)] = d(X(f)) = dLX(f) = LXdf.

Here is a different way to check that Hamiltonian flows are symplectomorphisms. Con-
sider a surface Σ. It suffices to show that

∫

Σ

ω =

∫

φt(Σ)

ω
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Using Stokes’ Theorem we can write

∫

φt(Σ)

ω −
∫

Σ

ω =

∫

FΣ

dω = 0,

where FΣ is the “flow” of Σ between time 0 and time t. So the “area element” is preserved.

In the 2-dimensional case this shows that the Hamiltonian flow conserves the area (Li-
ouville’s Theorem).

Example 1.2.7. The torus T2 = S1×S1 = R
2/Z2 is a symplectic manifold with symplectic

form dp ∧ dq, where (p, q) mod 1 are the coordinates of the point on the torus.
Let us consider the Hamiltonian function H(p, q) = sin 2πp. Then

XH = 2π cos 2πp
∂

∂q
.

The Hamiltonian flow is

φt(p, q) = 2π(tq mod 1) cos 2πp.

On the other hand the family of translations

φt(p, q) = (p+ t, q)

which preserve the symplectic structure, are not a Hamiltonian flow. Indeed, we should have

∂H

∂p
= 0 and

∂H

∂q
= −1,

which would imply H = −q + C, C = const. But this function is not well defined on the
torus!

The map (p, q) 7→ (−q, p) is also a symplectomorphism, but it is not part of a one-
parameter group, so it does not arise from a Hamiltonian flow.
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Chapter 2

“Matrix Mechanics” - A First
Encounter with Quantum Mechanics

“I think I can safely say that nobody understands quantum mechanics.” (Richard Feynman)

This chapter and the rest of the course are heavily inspired by Brian Hall’s book Quantum
Theory for Mathematicians, L.D. Faddeev and O.A. Yakubovskii Lectures on Quantum
Mechanics for Mathematics Students, as well as on the lecture notes I took in the class
of Alejandro Uribe at University of Michigan.

2.1 Problems that have led to the discovery of quan-

tum mechanics

1. One should start with a quote by Lord Kelvin: “There is nothing new to be discovered
in physics now, all that remains is more and more precise measurement”. This was the
universally accepted truth at the end of the 19th century. But then, as more and more
precise measurements were made, problems started to appear.

There was the Michaelson-Morley experiment detecting the speed of light. It showed
that the speed of light was always the same regardless of the orientation and the motion of
the reference frame. To solve this inconsistency of physics, Einstein formulated a new set of
postulates that fundamentally changed our understanding of physics at macroscopic level.

But then there were several experiments that raised questions about the microscopic
world.

• The black body radiation is a first example where classical theory of physics produces
nonsense. A black body is an object that emits radiation only when heated. An
example is a stove element that turns red when heated. Experiments and classical
physics predict that the black body emits electromagnetic radiation in all wavelengths,
and the power of the radiation emitted by the black body is proportional to λ−4, where
λ is the wavelength. Thus as the frequency of the radiation increases, so does the power
of the radiation, tending towards infinity (this is known as the utraviolet catastrophe).

Experiments verify this law at low frequencies, but as the frequencies grow, the law
fails badly. The problem was solved by Max Planck. In 1894, he has been comissioned

17
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by the industry to increase the efficiency of light bulbs. This led him to the study of
black body radiation. To predict correctly the radiation emitted by a black body, he
had to postulate, in year 1900, what has since been known as Planck’s law:

E = hnν,

namely that in a certain frequency, the energy emitted can only be an integer multiple
of a certain quantity. Moreover, that quantity is proportional to the frequency. He
called this assumption “an act of despair”, but... it works.

• The photoelectric effect is a phenomenon in which a material emits electrons when light
is shone upon it. A curious discovery was made at the end of 19th century, namely
that the intensity of the electric current generated by the photoelectric effect does not
depend on the intensity of light, but on the color of the light. Albert Einstein explained
this in 1905 by making use of Planck’s law: light can only be emitted in quanta, called
photons, and only one photon with enough energy could make the material eject one
electron, thus producing the observed effect.

• The distribution of spectral lines of the hydrogen atom is governed by a formula that
was partially found by Johann Balmer in 1885, and then in its full extent by Johannes
Rydberg in 1888. This formula gives the reciprocals of the wavelengths of the light
emitted by the hydrogen atom as

λ−1 = RH

(

1

m2
− 1

n2

)

,

where RH is a constant, and m < n vary among the positive integers. This distribution
of spectral lines was explained in 1913 by the model of the atom given by Niels Bohr.

2. Starting with the Rydberg formula, let us see how “matrix mechanics”. I will present
you the explanation given by Werner Heisenberg in his book The Physical Principles of the
Quantum Theory, as it is always advised to learn the great ideas directly from the great
masters who have discovered them.

First, let us place ourselves in the classical setting from the end of 19th century. The
view was that the hydrogen atom has a nucleus surrounded by electrons, and the motion of
the electrical charges which are the electrons produces, according to Maxwell’s equations,
electromagentic waves. These electromagnetic waves is what we see in the spectrum. Now,
the classical theory predicts that the motion of an electron should produce electromagnetic
waves in one fundamental frequency together with harmonics in frequencies that are integer
multiples of this fundamental frequency. Basically you have some periodic phenomenon
which creates periodic waves, and these waves can be expanded into a Fourier series. The
first sinusoidal wave of the expansion gives the fundamental frequency, and the others are
the harmonics.

But the Balmer series contradicts this. We do not see a Fourier series expansion. Let us
examine this closely.
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In classical mechanics we observe functions on the phase space of the system. But what
do we observe in the case of quantum theory? Well, for the hydrogen atom we observe its
spectral lines, or more precisely, the frequencies given by the formula

ν(m,n) =
RH

m2
− RH

n2
= Tm − Tn.

These satisfy the Rydberg-Ritz combination principle:

ν(m, k) + ν(k, n) = ν(mn).

Planck’s law tells us that energy is emitted in quanta, and that the energy of one quantum
of light is proportional to the frequency: E = hν.

Thus what we observe are energies of quanta of light, and we have a sequence of numbers
W1,W2, . . . such that

ν(m,n) =
1

h
(Wn −Wm).

We arrange the observed values ν(mn) in an infinite matrix.
Now we observe several waves with certain frequencies and certain amplitudes. These

waves can be represented by exponential functions, and the amplitudes by real numbers.
Using the above intuition we arrange these waves corresponding to the spectral lines as a
matrix these in an array:

(

q(m,n)e2πiν(m,n)t
)

, m, n.

This departs from the classical situation where a wave is decomposed into elementary os-
cillations by the Fourier transform, but then in the model the elementary oscillations are
summed (with the inverse Fourier transform).

So, instead of the sum of elementary oscillations, here we have a matrix of elementary
oscillations. Now, ν(m,m) = 0, and moreover, we can allow ν(m,n) = −ν(n,m) because of
the differences, so that the entries of the matrix are defined for all pairs of integers.

...
The axioms of quantum mechanics are phrased based on these speculations. They define

an abstract mathematical formalism, which tells us how to predict the results of particular
experiments, and it turns out that these predictions match the results of the experiments. We
should point out that the mathematical formalism of quantum mechanics is more amorphous
than that of classical mechanics; once the general axioms are established there are many
fixes and guesses that have to be applied to particular situations. Moreover, one should
realize that the mathematics of quantum mechanics is not a rephrasing in rigorous terms of
common language and intuition. While it comes from our intuition of the world, it introduces
mathematical tools that we cannot identify with our senses.

2.2 The axioms of quantum mechanics

3. The states of a quantum system are in one-to-one correspondence with complex lines in
a separable complex Hilbert space.
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A Hilbert space is first a C-vector space H endowed with a map 〈, 〉 : H ×H → C, called
inner product, that is linear in the first variable, satisfies 〈φ, φ〉 ≥ 0 with equality if and only
if ψ = 0, and 〈φ, ψ〉 = 〈ψ, φ〉. The inner product defines a norm ‖φ‖ =

√

〈φ, φ〉 and the
norm induces the distance between φ and ψ as ‖φ− ψ‖. With this distance we can define a
metric space structure on H, and for H to be a Hilbert space we require it to be complete as
a metric space, namely that every Cauchy sequence has a convergent subsequence. A good
example is the Hilbert space L2(R) with the inner product 〈f, g〉 =

∫

f(t)g(t)dt.
The quantum phase space is

PH = {[ψ] |ψ ∈ H\{0}} where [ψ] = {λψ |λ ∈ C
∗}.

4. The observables are self-adjoint operators on the Hilbert space.
To define the concept of a self-adjoint operator, the key ingredient is the Riesz lemma.

This lemma states that every continuous linear functional φ : H → C is of the form φ 7→
〈φ, ψ〉.

Now we look at densely defined linear operators, namely at linear operators A that are
defined on some dense subspace D(A) ⊂ H (here D(A) is called the domain of A). Whenever
the linear functional φ 7→ 〈Aφ, ψ〉 is continuous on the dense subset D(A) it can be extended,
by continuity to the whole H, and then by the Riesz representation theorem it is of the form
φ 7→ 〈φ, ξ〉. Then we can define A∗ψ = ξ. This is the adjoint of A and its domain is the set
of all ψ for which this construction works.

A : H → H, is self-adjoint if

• A is symmetric, that is 〈Aψ, φ〉 = 〈ψ,Aφ〉,

• A is densely defined (D(A) = H).

• D(A∗) = D(A).

Example 2.2.1. If A is continuous and symmetric than A is selfadjoint.

Example 2.2.2. If H = L2(R) and A = i d
dx

then A is self-adjoint without being continuous.

5. Recall that the spectrum of an operator is the complement of the set of complex numbers
λ for which the operator λI − A is continuous and has a continuous inverse (where I is the
identity operator). If A is continuous, it is known that the spectrum is compact (i.e. closed
and bounded in C) and it is also known that for any operator the spectrum is nonempty.
Unlike the case of matrices, it might be that the space of a continuous operator is not discrete,
or that the spectrum of an operator that is not continuous is unbounded.

We focus now on observables with discrete spectrum. If A is an observable with discrete
spectrum, then A is diagonalizable. So

Aψj = λjψj,

where ψj, j ∈ J , is an orthonormal basis.
In this situation,

• An observation of A always results in some λj for some j.
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• If ψ =
∑

j cjψj and the system is in state [ψ] and you observe A, the probability of

obtaining the result λj is |c2j |/||ψ||2.
Consequently, if you measure A repeatedly with the system in state ψ, the average of the

measurements is 〈Aψ, ψ〉 /‖ψ‖2 (the expected value of the observable):

Exp(A)[ψ] =
1

‖ψ‖2
∑

j

λj|cj|2.

6. If A and B are quantum observables, then AB is the quantum observable: “observe B
then observe A then multiply the resulting numbers”.

Then

1

i~
(AB −BA) =

1

i~
[A,B]

is the self-adjoint measure of the lack of commutativity of observations.

7. Here is a new look at states. We determine that the system is in a certain state by
performing experiments. In those experiments we measure certain observables. In classical
mechanics, a given state yields always the same measurement for the observable. In quantum
mechanics this is not the case. So each state ω of the system associates to a given quantum
observable a probability distribution (and we have explained above what it is for observables
that have discrete spectrum). So for an observable A the state ω defines a map E 7→ ωA(E)
from the Borel sets in R to [0, 1] such that

ωA(⊔Ej) =
∑

j

ωA(Ej), ωA(∅) = 0, ωA(R) = 1.

We should also have a relationship of the form: if observable B is equal to f(A) for some
function f , then ωB(E) = ωA(f

−1(E)).
Note that a convex combination of probability measures is a probability measure, so if

ω = tω1,A + (1 − t)ω2,A then ω should also correspond to a state, and we let this state be
tω1 + (1 − t)ω2. A state that can be decomposed this way is called a mixed state, a state
that cannot be decomposed this way is called a pure state.

The expected value of an observable A is

ω(A) =

∫ ∞

−∞
λdωA(λ).

Physical intuition suggests we should have the following properties

ω(cI) = c

ω(αA+ βB) = αω(A) + βω(B)

ω(A2) = ω(A∗A) ≥ 0

ω(A) ∈ R.

Now we would like to have enough observables to be able to separate states, so let us
assume that all self-adjoint operators are quantum observables. Extend by linearity ω to
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all operators, and in particular to the C∗ algebra of bounded linear operators. Then we
have a positive linear functional on the C∗ algebra of bounded linear operators on H (whose
operator norm is equal to 1). In fact every positive linear functional of norm 1 should be
thought of as a (mixed) state. The pure states are precisely the linear functionals of the form

A 7→ 〈Aψ, ψ〉 ,
for some ψ ∈ H of norm 1.

Well, we are only concerned with pure states, we call these simply states, and hence the
first axiom of quantum mechanics. Note that ψ 7→ eiθψ does not change the state, this is
why we work with PH.

In general, for a not necessarily diagonalizable operator A, the expected value of A in the
state ψ (‖ψ‖ = 1) is 〈Aψ, ψ〉.
8. A consequence of de Broglie’s formula p = h

λ
is the Heisenberg uncertainty principle. Let

us formulate the Heisenberg uncertainty principle in dimension 1. If q is the position and p
is the momentum then

∆q∆p ≥ h,

where ∆q and ∆p are In other words, the standard deviations σq and σp satisfy

σqσp ≥
~

2
.

Theorem 2.2.1. Two operators that satisfy the canonical commutation relation

PQ−QP = −i~I
satisfy the Heisenberg uncertainty principle

σQσP ≥ ~

2
.

Proof. The standard deviation of the observable A in state ψ (here ψ is a unit vector) is

σ2
A =

〈

(A− Aavg)
2ψ, ψ

〉

=
〈

A2ψ, ψ
〉

− 〈Aψ, ψ〉2 ,
where Aavg = 〈Aψ, ψ〉. Now we mimic the proof of the Cauchy-Schwarz inequality. We first
assume Pavg = Qavg = 0, by translating P and Q by some multiples of the identity operator.
Then we start with

〈(Q+ itP )ψ, (Q+ itP )ψ〉 ≥ 0, ‖ψ‖ = 1, α ∈ R,

and rewrite it as
〈

Q2ψ, ψ
〉

+ t2
〈

P 2ψ, ψ
〉

+ it 〈(QP − PQ)ψ, ψ〉 ≥ 0.

This is the same as

t2
〈

P 2ψ, ψ
〉

− t~ 〈ψ, ψ〉+
〈

Q2ψ, ψ
〉

≥ 0.

This is a quadratic in t which is nonnegative, so its discriminant is nonpositive. We get

〈

P 2ψ, ψ
〉 〈

Q2ψ, ψ
〉

≥ ~
2

4
.

For the last step we used 〈ψ, ψ〉 = 1. The conclusion follows by taking the square root.
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Remark 2.2.1. We have more generally, for two observables A and B measured in state ψ
the inequality

σAσB ≥ ~

2
| 〈{A,B}~ψ, ψ〉 |

where

{A,B}~ =
1

i~
[A,B],

is the quantum Poisson bracket.

9. We need to explain the name quantum Poisson bracket. If there is an association of
operators P,Q to the classical observables (coordinate functions on the phase space) p and
q, then the linear map from the Heisenberg Lie algebra to the space of linear operators on
H, L(H), defined by

p 7→ P, q 7→ Q, 1 7→ I

is a Lie algebra isomorphism onto the image, if we endow L(H) with the Lie bracket {·, ·}~.

2.3 In search of a nice quantization scheme

10. Quantum mechanics should be obtained by using the intuition of classical mechanics
and classical mechanics should be the large scale behavior of quantum mechanics. Thus
there should exists an algorithm for passing from classical mechanics to quantum mechanics
(aiding our understanding of quantum mechanics) and an algorithm for passing from quan-
tum mechanics to classical mechanics (which should allow us to recover the mechanics we
already know).

The quantization “algorithm” should associate

• to the classical phase space a Hilbert space;

• to classical observables self-adjoint operators on the Hilbert space.

This association should satisfy Dirac’s quantization conditions, as outlined by Paul Dirac
in 1926 in Proc. Royal Soc. London A:

(1) op(1) = I, where I is the identity operator;

(2) if f = c1f1 + c2f2 then op(f) = c1op(f1) + c2op(f2);

(3) (the correspondence principle) op({f, g}) = 1
i~
[op(f), op(g)] (!);

(4) the representation of quantum observables on the Hilbert space is irreducible.

There is one model for which this “algorithm” is specified as an axiom, the Heisenberg
quantization conditions:
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• C∞(Rn × R
n) becomes L2(Rn);

• the coordinate function qj becomes the operator Qj =Mqj of multiplication by qj;

• the momentum function pj becomes the operator Pj = −i~ ∂
∂qj

.

The choice of these operators is quite intuitive, the position operator is the multiplication
by the position function, and the momentum is the instantaneous translation (the exponential
of the differentiation operator is translation). Unfortunately both operators are unbounded.
This means that they are discontinuous maps on L2(R) and in particular they are not defined
everywhere. One should point out that the “eigenvalues” of Mqj are Dirac’s delta functions
and they are not in the Hilbert space. Can we do any better?

Clearly finite dimensional operators don’t work, because if [Qj , Pj ] = i~I then

0 = trace([Qj, Pj ]) = trace(i~I) = i~ dimH.

Before the proof, let us recall that a continuous linear operator A : H → H is also called a
bounded operator, and for a good reason: The ǫ− δ definition of continuity on metric spaces
implies that a linear operator A : H → H is continuous if and only if there is C > 0 such
that ‖Ax‖ ≤ C‖x‖ for all x. The infimum of all C with this property is called the norm of
A and is denoted by ‖A‖. The norm satisfies ‖A+B‖ ≤ ‖A‖+ ‖B‖ and ‖AB‖ ≤ ‖A‖‖B‖.
Bounded operators are nice, for one thing because they are defined everywhere not just on
a dense subset, but also because there is a rich theory of bounded linear operators. But we
have the following result.

Theorem 2.3.1. (Wintner-Wielandt) The relation PQ − QP = −i~I cannot be satisfied
by bounded linear operators P and Q.

Proof. Assume that this is possible and set A = Q, B = i/~P . Then AB − BA = I. We
prove by induction that

AnB −BAn = nAn−1.

This is clearly true for n = 1. If we assume that this is true for n, then for n+ 1 we have

An+1B − BAn+1 = An(AB −BA) + (AnB − BAn)A = An + nAn−1A = (n+ 1)An.

Then

n‖An−1‖ = ‖AnB − BAn‖ ≤ 2‖An‖‖B‖ ≤ 2‖An−1‖‖A‖‖B‖.

So n ≤ 2‖A‖‖B‖ for all positive integers n. This is clearly impossible.

So this definition of the position and momentum seems to be the best choice we have.
In fact there is a “theorem” due to M. Stone saying that this is the “only” choice. We will
make this theorem precise in the guise of the Stone-von Neumann theorem.

11. We therefore have the Lie algebra isomorphism onto the image

H(Rn) → L(L2(Rn)), f 7→ op(f).
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Can this be extended to a Lie algebra isomorphism onto the image from the Lie algebra
C∞(Rn × R

n) or in general from the Lie algebra of smooth functions on the phase space of
a classical system to the algebra of linear operators on the Hilbert space of the associated
quantum system?

The question is how to extend the definition to functions of pj, qj.

Example 2.3.1. The operator associated to the kinetic energy of one particle is

op

(

3
∑

j=1

1

2m
p2j

)

=
3
∑

j=1

1

2m
op(p2j) = guess =

3
∑

j=1

1

2m
op(pj)

2 = − ~
2

2m
∆,

where ∆ is the Laplacian, ∆ =
∑3

j=1
∂2

∂x2j
. This is the quantum kinetic energy.

Using intuition, we can define the quantum Hamiltonian of a Newtonian system as

op(H) = op(T ) + op(V ) = − ~
2

2m
∆+ op(V ) = − ~

2

2m
∆+MV (x).

But we run into a big problem when trying to define op(pjqk). The problem is that the
naive definition op(qjpk) = op(qj)op(pk) fails because the latter product is not a self-adjoint
operator. So we can try

op(qjpk) =
1

2
(op(qj)op(pk) + op(pk)op(qj)) .

But then how should we quantize qmj p
n
k . Should we average over all possible ways to write

the product? And is Dirac’s quantization condition (3) still satisfied? As the following result
shows, this works for quadratic polynomials.

Proposition 2.3.1. The quantization scheme from the Lie algebra of quadratic polynomials
on R

2n in the variables q1, q2, . . . , qn, p1, p2, . . . , pn, defined by

op(1) = I, op(qj) =Mqj , op(pj) = −i~ ∂
∂qj
,

op(qjqk) =Mqjqk , op(pjpk) = −~
2 ∂2

∂qj∂qk
, op(qjpk) = −i~

(

Mqj
∂
∂qk

+ 1
2
δjk

)

acting on L2(R2n), which are then extended linearly to the Lie algebra of quadratic polyno-
mials, satisfies Dirac’s quantization conditions (1), (2), (3).

Proof. Conditions (1) and (2) are straightforward by the linearity requirement. Condition (3)
is straightforward for Poisson brackets of functions depending only on qj’s or only on pj’s. For
the others the computations are tedious but involve just differentiation and multiplication.
Here is an example:

{qjpk, pℓ} = δjℓpk.

and

1

i~
[op(qjpk), op(pℓ)] = −

[

−i~
(

Mqj

∂

∂qk
+
δjk
2

)

∂

∂qℓ
+

∂

∂qℓ
i~

(

Mqj

∂

∂qk
+
δjk
2

)]

= −i~δjℓ
∂

∂qk
= op(pk).
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12. But we should not get too excited!

Theorem 2.3.2. (The Weak No-Go Groenewold Theorem) The above quantization scheme
cannot be extended to polynomials of degree less than or equal to 4.

Proof. (following Mark J. Gotay) For all quadratic polynomials R1(x) and all cubic polyno-
mials R2(x) we must have

op(R2(qj)) = R2(op(qj)), op(R2(pj)) = R2(op(pj))

op(R1(qj)pk) =
1

2
[R1(op(qj))op(pk) + op(pk)R1(op(qj))]

op(qjR1(pk)) =
1

2
[op(qj)R1(op(pk)) +R1(op(pk))op(qj)].

Again all situations can be checked in a similar fashion and we only check the case
R(qj) = q3j . Write op(q3j ) = op(qj)

3 + T . Then {q3j , qk} = 0 and {q3j , pk} = −3q2j δjk implies
that T commutes with all op(qk), op(pk), k = 1, 2, . . . , n. But then T also commutes with
op(qj)op(pk) + op(pk)op(qj). Then

−op(q3j ) =
1

3
op({pjqj, q3j}) =

1

3i~
[op(pjqj), op(q

3
j )]

=
1

3i~

[

1

2
(op(qj)op(pj) + op(pj)op(qj), op(qj)

3 + T

]

=
1

6i~
[op(qj)op(pj) + op(pj)op(qj), op(qj)

3] = −op(qj)
3.

With this fact at hand, consider the equality

1

9
{q3j , p3j} =

1

3
{q2jpj, p2jqj}

(

= q2jp
2
j

)

.

Quantizing the equality we obtain

1

9
[op(qj)

3, op(pj)
3] =

1

3
[op(q2jpj), op(p

2
jqj)].

The left-hand side is

−i~3
(

M2
qj

∂

∂q2j
+ 2Mqj

∂

∂qj
+

2

3
I

)

while the right-hand side is

1

3

(

op(q2jpj)op(p
2
jqj)− op(p2jqj)op(q

2
jpj)

)

.

This is a bit messy, so we compute separately

op(q2jpj) =
1

2

(

op(qj)
2op(pj) + op(pj)op(qj)

2
)

= − i~
2

(

Mq2j

∂

∂qj
+

∂

∂qj
Mq2j

)

= −i~
(

M2
qj

∂

∂qj
+Mqj

)

,
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and

op(p2jqj) =
1

2

(

op(pj)
2op(qj) + op(qj)op(pj)

2
)

= −~
2

(

∂

∂qj
+Mqj

∂2

∂q2j

)

.

So the right-hand side is

−i~3
(

M2
qj

∂

∂q2j
+ 2Mqj

∂

∂qj
+

1

3
I

)

.

And they don’t coincide.

We would like to use this symmetric quantization scheme. To this end, let us note that
the error is of the order of ~2 (this after dividing by 1

i~
). And ~ is already very small, and

~
2 is even smaller. We are led to allow an error in Dirac’s third condition. It is nowadays

standard to let the correspondence principle be

• (3) op({f, g}) = 1
i~
[op(f), op(g)] +O(~).

This modification will allow the construction of a quantization scheme, as we will see
below, but it will also permit the coexistence of an entire menagerie of non-equivalent quan-
tization schemes.

2.4 Weyl quantization

13. This quantization method was introduced by Hermann Weyl in 1931. Let us consider
first the 1-dimensional case.

Definition. For monomials in the position q and momentum p the Weyl quantization is
defined by

op(qmpn) =
1

(m+ n)!

∑

σ

σ(op(q), . . . , op(q), op(p), . . . , op(p))

where the sum is taken over all possible permutations of m + n objects and σ of m copies
op(q) and n copies of op(p) means the product of those op(q) and op(p) multiplied in the
order specified by σ. Weyl quantization is then extended linearly to all polynomials.

Proposition 2.4.1. Weyl quantization satisfies

op(aq + bp)m) = (a op(q) + b op(p))m.

Proof. This is just an easy consequence of the definition. Note for example that

(a op(q) + b op(p))3 = a3op(q)3 + a2b op(q)2op(p) + a2b op(q)op(p)op(q) + a2b op(p)op(q)2

+ ab2op(q)op(p)2 + ab2op(p)op(q)op(p) + ab2op(p)2op(2) + b3op(p)3

= op(a3q3) + 3op(a2bq2p) + 3op(ab2qp2) + op(p3) = op((aq + bp)3).
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This means that we can define the quantization of a power series in aq+bp as well through
a limiting process, if the partial sums of operators converges. In particular we can define

op
(

e2πi(aq+bp)
)

=
∞
∑

m=0

1

m!
[2πi(a op(q) + b op(p)]m = e2πi(aop(q)+bop(p)).

This operator is defined by

op
(

e2πi(aq+bp)
)

ψ = lim
N→∞

N
∑

m=0

1

m!
[2πi(a op(q) + b op(p))]mψ

for all smooth functions ψ ∈ L2(R), whenever the series converges in L2(R).
But now a miracle happens! The operator A = a op(q)+b op(p) is self-adjoint, so U = eiA

can be extended to a unitary operator on the entire Hilbert space. Recall that a unitary
operator is one that is continuous, one-to-one, onto, and preserves the Hilbert space norm
(in fact it preserves the inner product). Said differently, U is unitary if it is bounded and
UU∗ = U∗U = I. That U preserves the inner product follows from

〈

eiAψ1, e
iAψ2

〉

=
〈

ψ1, e
−iAeiAψ2

〉

= 〈ψ1, ψ2〉 .
Here we used the fact that (iA)∗ = −iA and then applied it term by term to the series
expansion of the exponential. Now extend U to the entire Hilbert space. Its inverse is the
continuous extension e−iA, so we have U : H → H unitary.

We conclude that although a op(q)+b op(p) is not a bounded operator and is only defined
on a dense subset of the Hilbert space, op

(

e2πi(aq+bp)
)

is a unitary operator that is defined
everywhere.

14. Now we can define Weyl quantization in R
2n. We first do it for exponential functions:

op
(

e2πi(a
Tq+pTp)

)

= e2πi(a
Top(q)+bTop(p)),

where op(q) = (op(q1), op(q2), . . . , op(qn)) and op(p) = (op(p1), op(p2), . . . , op(pn)).
Then for f ∈ C∞(Rn × R

n,C) expand f into elementary oscillations using the Fourier
transform and replace each oscillation (exponential function) by its Weyl quantization. This
means that we set

f̂(a,b) =

∫

R2n

f(q,p)e−2πi(aTq+bTp)dqdp,

so that

f(q,p) =

∫

R2n

f̂(a,b)e2πi(a
Tq+bTp)dadb,

and then set

op(f) =

∫

R2n

f̂(a,b)e2πi(a
Top(q)+bTop(p))dadb.

The fact that the exponential operators are unitary makes the convergence issues parallel
those in the real-valued case.

15. As we explained before we have the following result.
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Proposition 2.4.2. If R1 and R2 are polynomials of total degree at most 2 in q1, q2, . . . , qn,
p1, p2, . . . , pn, then

op({R1, R2}) =
1

i~
[op(R1), op(R2)].

We also know that this condition fails for certain polynomials of degree 3, by the weak
form of the Groenewold No-Go Theorem.

Theorem 2.4.1. (Groenewold’s No-Go Theorem) There exists no linear map from the Lie
algebra of polynomials of degree at most 4 to the Lie algebra of differential operators (with
bracket 1

i~
[·, ·] that extends the quantization scheme for the Heisenberg Lie algebra.

Proof. Here is a sketch of the proof. Let

D =
∑

k

fk(q)

(

∂

∂q

)k

.

The first observation is that if D commutes with all operators of the form Mqj and
∂
∂qj

, then

it is a multiple of the identity operator.
One can show that every polynomial of degree at most 2 is a linear combination of Poisson

brackets of polynomials of degree at most 2, and every polynomial of degree at most 3 is a
linear combination of Poisson brackets of polynomial of degree at most 3. Then like in the
first step in the proof of Theorem 2.2.2, we deduce that the quantization scheme coincides
with Weyl quantization for polynomials of total degree less than or equal to 3.

And then we redo the last step on the proof of Theorem 2.2.2.

2.5 A menagerie of quantizations

First let us fix the notation: aj = aj11 a
j2
2 · · · ajnn . Here is a list of important quantization

schemes:

1. Pseudodifferential operator quantization:

op(qjpk) = op(q)jop(p)k.

2. Symmetrized pseudodifferential operator quantization:

op(qjpk) =
1

2
(op(q)jop(p)k + op(p)kop(q)j).

3. Weyl quantization:

op((aTq+ bTp)m) = (aTop(q) + bTop(p))m.

4. Wick quantization:

op((q+ ip)j(op(q− ip)k) = (op(q)− iop(p))k(op(q) + iop(p))j.

5. Anti-Wick quantization, also known as Toeplitz quantization:

op((q+ ip)j(op(q− ip)k) = (op(q) + iop(p))j(op(q)− iop(p))k.
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Chapter 3

The Heisenberg Group

3.1 The Heisenberg group

16. It is now time to have our first encounter with Lie groups (named after Sophus Lie)
and their representations. Lie groups lie at the intersection of algebra and geometry. They
are both

· groups: they have a multiplication that is associative, has an identity element, and
every element has an inverse

· manifolds: locally they look like Rn (well, the manifold can also be infinite dimensional
but in this class we do not care about that case)
Moreover, the algebraic and geometric aspects are related by the fact that multiplication:
(x, y) 7→ xy and the operation of taking the inverse: x 7→ x−1 are continuous.

Since Lie groups are manifolds, they have tangent spaces at each point, and in particular
at the origin. The multiplication of the Lie group induces an operation on the tangent space
at the origin, called Lie bracket, which is the infinitesimal form of the multiplication of the
Lie group. The Lie bracket (X, Y ) 7→ [X, Y ] satisfies the same properties that the Poisson
bracket satisfies (see Theorem 1.2.3).

Returning to Lie groups, Cayley has noticed that every group is a group of transfor-
mations. But we do not like transformations (i.e. bijections of sets) at large, we prefer
transformations of some geometric space, such as R

n. So then the bigger question arises
whether groups can be described as groups of linear transformations of a vector space. Well,
sometimes they can, sometimes they cannot. We make a compromise: study the homomor-
phisms from our group to a group of linear transformations. This is called representation
theory; we say that our group is represented on a vector space, the homomorphism is called
a representation.

While Lie groups arose in classical physics, quantum theory has a surprisingly deep
connection to Lie groups and their representation theory.

17. We can also start with a Lie algebra of linear transformations of a vector space. Its
elements are linear transformations and the Lie bracket is the commutator [A,B] = AB−BA.
Then the exponentials

eA = I +
1

1!
A+

1

2!
A2 + · · ·+ 1

n!
An + · · ·

31
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form a group because by the Baker-Campbell-Hausdorff formula

eAeB = eA+B+c(A,B)

where c(A,B) is an expression obtained from A and B by applying only addition and com-
mutators. So the exponent on the right also lies in the Lie algebra, and thus we are in the
presence of a group. The Lie algebra is a vector space, so it has a manifold structure, and
the exponential is a local diffeomorphism, inducing a manifold structure on the group of
exponentials. Thus we obtain a Lie group.

If we start with the Heisenberg Lie algebra generated by the position and momentum
operators, then the associated Lie group is the Heisenberg Lie group. More precisely, we
start with the Lie algebra spanned as a real vector space by

Qj = 2πiMqj , Pj = 2π~
∂

∂qj
, I,

acting on L2(Rn). We exponentiate these as dictated by Weyl quantization. What we obtain
is a Lie group. This is the Heisenberg group.

18. So let us study the Heisenberg group, which is determined by the Weyl quantizations
of the exponential functions.

Let us denote

exp(aTQ+ bTP+ tI) = e2πitop
(

e2πi(a
Tq+bTp)

)

.

Theorem 3.1.1. We have the following action on L2(Rn):

exp(aTQ+ bTP+ tI)ψ(q) = e2πia
Tq+πihaTb+2πitψ(q+ hb)

One should stress out that in the statement of the theorem we have Planck’s constant
not the reduced Planck’s constant.

Proof. The exponential of a differentiation operator is a translation and the exponential of
the multiplication by a function is the multiplication by the exponential of that function.
The second of these statements is easier to understand. Here is an explanation of the first.
The expression

et
d
dxψ(x) =

∞
∑

n=0

tn

n!

dnψ

dxn
(x)

is just the MacLaurin expansion of ψ about x, so for all analytical functions it equals f(x+
t). But analytical functions are dense in L2(R) (because for examples functions of the
form e−x

2

P (x) where P is a polynomial are). So the exponential of differentiation equals
translation for a dense set of functions. But both operators are continuous so they coincide
everywhere.
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So we have

exp(bjPj)ψ(q1, . . . , qn) = exp(2πi(−i~bj
∂

∂qj
))ψ(q1, . . . , qn) = ψ(q1, . . . , qj + hbj, . . . , qn)

exp(ajQj)ψ(q1, . . . , qn) = e2πiajqjψ(q1, . . . , qn)

exp(2πitI)ψ(q1, . . . , qn) = e2πitψ(q1, . . . , qn).

Whenever two operators commute, their exponentials commute, so it is of no difficulty to
prove the result for a = 0 or for b = 0. The general case follows from the Baker-Campbell-
Hausdorff formula for operators whose second commutators are zero ([A, [A,B]] = 0):

eAeB = eA+B+ 1

2
[A,B].

Corollary 3.1.1. We have the following multiplication rule for quantized exponentials

exp(aTQ+ bTP+ tI) exp(a′TQ+ b′TP+ t′I)

= exp

(

(a+ a′)TQ+ (b+ b′)TP+ t+ t′ − h

2
(aTb′ − bTa′)

)

.

19. This prompts us to make the following definition:

Definition. The Heisenberg group with real entries H(Rn) is Rn×R
n×U(1) with multipli-

cation

(a,b, e2πit) · (a′,b′, e2πit
′

) =
(

a, a′,b+ b′, e2πi(t+t
′−h

2
(aTb′−bT a′))

)

.

For further use, we let

ω((a,b), (a′,b′)) = −h(aTb′ − bTa′)),

where h is Planck’s constant.
The Heisenberg group is precisely the group of Weyl quantizations of exponential func-

tions in the plane. One should emphasize that the Heisenberg group is a Lie group whose Lie
algebra is the Heisenberg Lie algebra. Theorem 3.1.1 provides a faithful infinite dimensional
representation

ρ0 : H(Rn) → U(L2(Rn))

of the Heisenberg group as a group of unitary operators on L2(Rn). Here faithful means that
it is injective. This is sometimes called the Schrödinger representation.

We have the following exponential form for the canonical commutation relations

expPj expQk = e2πihδjk expQk expPj

expPj expPk = expPk expPj

expQj expQk = expQk expQj.



34 CHAPTER 3. THE HEISENBERG GROUP

3.2 The Stone-von Neumann theorem

Theorem 3.2.1. (a) The representation ρ0 of the Heisenberg group from Theorem 3.1.1 is
irreducible.
(b) Any unitary irreducible representation ρ ofH(Rn) such that ρ(exp(tI)) = e2πitI is unitary
equivalent to ρ0.

The proof (which we borrowed from Gerard Lion’s book) is quite long and we divide it
in steps. Let therefore ρ be a unitary irreducible representation of H(Rn) onto some Hilbert
space H.

20. First, for two compactly supported functions f, g on

H(Rn) = R
2n × U(1) = B × U(1),

we define their convolution

f ∗ g(u) =
∫

H(Rn)

f(v)g(v−1u)dv,

where dv is the translation-invariant measure on R
n × U(1).

21. Now every element of H(Rn) is of the form b exp(tI), with b ∈ B = R
2n. Identify B

with H(R2n)/U(1). Using this splitting we can turn ρ into a “representation” of the additive
group B = R

2n.
Restrict the convolution to functions that satisfy the equivariance condition

f(ue2πit) = e−2πitf(u).

We can identify these with functions on B, but we should always keep in mind the equiv-
ariance condition. The convolution defined above becomes a convolution for functions on
B:

(f ∗ g)(b) =
∫

B

f(b′)g(b− b′)eπiω(b
′,b)db.

Define also the actions of the Heisenberg group on functions

(u ∗ f)(b) = f(u−1b), (f ∗ u)(b) = f(bu−1).

For a function f with compact support in B = R
2n, which can be thought of as a

compactly supported equivariant function on the Heisenberg group, we define the bounded
operator Wρ(f) : H → H by

〈Wρ(f)x, y〉 =
∫

B

f(b) 〈ρ(b)x, y〉 db.

This is called the Weyl transform of f . We can write it as

Wρ(f) =

∫

B

f(b)ρ(b)db.

It has the following properties, which are not hard to check:
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(i) Wρ(f ∗ g) = Wρ(f)Wρ(g),

(ii) Wρ(f
∗) = Wρ(f)

∗, where f ∗(v) = f(−v),

(iii) Wρ(u ∗ f) = ρ(u)Wρ(f),

(iv) Wρ(f ∗ u) = Wρ(f)ρ(u).

22. A Hilbert-Schmidt operator on H is an operator A satisfying

‖A‖2HS =
∑

j

‖Aej‖2 <∞

for some orthonormal basis (ej)j. This sum does not depend on the orthonormal basis, and
defines the Hilbert-Schmidt norm ‖A‖HS. The Hilbert-Schmidt operators form a Hilbert
space themselves (wow!), with the inner product

〈A,B〉HS =
∑

j

〈Aej, Bej〉 ,

and with orthonormal basis the rank one operators

Ej,k(x) = 〈x, ej〉 ek.

This means that every Hilbert-Schmidt operator is of the form

∑

jk

ajkek ⊗ e∗j =
∑

j

ajk < ·, ek > ej,

with

‖A‖HS =

(

∑

jk

|ajk|2
)1/2

.

We denote by HS(H) the Hilbert space of Hilbert-Schmidt operators on H. Note for
example that Ej,j are the projections onto the axes of coordinates. We should point out that
every finite rank operator is Hilbert-Schmidt, and that finite rank operators form a dense
set in the Hilbert space of Hilbert-Schmidt operators. So all Hilbert-Schmidt operators are
compact, meaning that they map bounded sets to sets whose closure is compact (but not
vice-versa).

We can define in general Ex,y = 〈·, y〉 x. Then

〈Ex,y, Ex′,y′〉HS = 〈x, x′〉 〈y, y′〉.

The map

(x, y) 7→ Ex,y

is an isometry from H ⊗H∗ to HS(H).
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23. For proving (a) we start with the observation that Wρ0(f) is a “sum” of operators of
the form ρ(u), u ∈ H(Rn), so if ρ0 has in invariant subspace, then so do all Wρ0(f). Thus
it suffices to show that there is no subspace that is invariant under all operators Wρ0(f), or
under all operators in the closure of this set of operators (see Proposition 3.2.2 below). For
that we need the following result:

Proposition 3.2.1. Wρ0 extends to an isomorphism L2(R2n) → HS(H), whereH = L2(Rn).

Proof. Step 1. We show that the Weyl transform of a function is an integral operator.
Set ℓ = R

n ⊕ 0, ℓ′ = 0 ⊕ R
n. We identify L2(Rn) with L2(ℓ′). Then for ψ ∈ L2(Rn), we

have

(Wρ0(f)ψ)(q) =

∫∫

f(y + x)eπix
T (2q+hy)ψ(q+ hy)dxdy,

where we used Theorem 3.1.1. Set ξ = q+ hy to turn this into
∫∫

eiπx
T (q+ξ)f

(

q− ξ

h
+ x

)

e2πix
T ξψ(ξ)dxdξ =

∫∫

eiπx
T (q+ξ)f

(

q− ξ

h
+ x

)

dxψ(ξ)dξ.

Define

Kf (q, ξ) =

∫

eiπx
T (ξ+q)f

(

q− ξ

h
+ x

)

dx.

This is what is called a kernel, which defines an integral operator

ψ(q) 7→
∫

K(q,y)ψ(y)dy.

So we recognize the Weyl transform of f to be an integral operator.

Step 2. We show that the Hilbert space of Hilbert-Schmidt operators on L2(Rn) is the
same as the space of integral operators with L2 kernels, and moreover, the L2 norm of the
kernel is the Hilbert-Schmidt norm of the operator.

Indeed, if A is a Hilbert-Schmidt operator on L2(Rn) then

(Aψ)(x) =
∑

jk

ajk < ψ, ek > ej =
∑

jk

ajk

(∫

Rn

ψ(y)ek(y)dy

)

ej(x)

=

∫

Rn

ψ(y)

(

∑

jk

ajkej(x)ek(y)

)

dy.

If we denote

KA(x,y) =

∫

Rn

∑

jk

ajkej(x)ek(y)dy,

then it is not hard to see that

‖KA(x,y)‖2 = ‖A‖HS.
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Therefore we wrote the operator A as an integral operator

(Aψ)(x) =

∫

Rn

ψ(y)KA(x,y)dy.

Conversely, if K(x,y) is any L2 kernel then we can define

(Aψ)(y) =

∫

ψ(y)K(x,y)dy,

and standard inequalities about integrals show that Aψ is L2, and that for an orthonormal
basis

∑ ‖Aen‖2 is finite. Moreover ‖A‖HS = ‖K‖2.
Step 3. We show that the L2 norm of a function is the same as 2n/2 times the L2 norm

of the kernel Kf of its Weyl transform.
The partial Fourier transform

(Fxf)(y,q) =

∫

e−πix
Tqf

(y

h
+ x
)

dx

is, up to multiplication by a constant, a unitary isomorphism of L2(R2n). And

Kf (q,y) = (Fxf)

(

q− y

2
,−y + q

2

)

.

So a multiple of Wρ is isometry which therefore can be extended to the entire L2(Rn).
And because the Fourier transform is an isomorphism, this extension is onto. Thus the
proposition is proved.

24. Now (a) is a direct corollary of the following result.

Proposition 3.2.2. If T is a bounded operator that commutes with all operators of the
form ρ(u), u ∈ H(Rn), then T is a multiple of the identity operator.

Proof. If T commutes with every operator of the form ρ(u), the T also commutes with
operators of the form Wρ(f) with f compactly supported. But then by continuity it also
commutes with all operators of the form Wρ(f), f ∈ L2(Rn). In particular it commutes with
the operators of the form Ejk = ej ⊗ e∗k.

If T is not a multiple of the identity operator, then there are noncollinear vectors ψ1, ψ2

such that Tψ1 = ψ2. Using Gram-Schmidt we can construct a basis such that < Te1, e2 >=
λ 6= 0. But then

0 = Te1 ⊗ e∗2(e1) = e1 ⊗ e∗2T (e1) = λ 6= 0.

This is a contradiction and the proposition is proved.

Now if the Schrödinger representation were reducible, then we could write L2(Rn) =
H1 ⊕H2, with H1 and H2 invariant subspaces (here it is important that the representation
is unitary). But then the orthogonal projection onto H1 would commute with ρ(u) for all u,
and this would contradict the above proposition.
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25. We now start the proof of (b). Let ρ be a representation of H(Rn) on a Hilbert space
H such that ρ(exp tI) = e2πitI. Then the Weyl transform defines a homomorphism Wρ from
the algebra of rapidly decreasing functions S(R2n) (f ∈ S(R2n) if supnx∈R |xαDβf(x)| < ∞
for all α, β ∈ Z

n
+) endowed with the convolution ∗ into a subalgebra of operators A on

H such that Wρ(f
∗) = (Wρ(f))

∗. Moreover, S(Rn) is isomorphic to the algebra A0 of
integral operators with rapidly decreasing kernel via the Weyl transform Wρ0 defined by the
Schrödinger representation. Then φ = Wρ ◦ W−1

ρ0
is an isomorphism of operator algebras

satsfying φ(A∗) = (φ(A))∗, for all A, and φ(I) = I.
Let f1 ∈ S(ℓ′) = S(0 ⊕ R

n) such that ‖f1‖2 = 1. Consider the orthogonal projection
operator P1 : L

2(Rn) → Cf1. Then P1, being finite rank, is Hilbert-Schmidt, so it is defined
by a kernel. In fact this kernel is f1(x)f1(y), so P1 is of the form Wρ0(g1), for g1 ∈ S(R2n).
Using the properties of projectors we have

g1 ∗ g1 = g1, g∗1 = g1, g1 ∗ u ∗ g1 = 〈ρ0(u)f1, f1〉 g1.

These relations and the multiplicative properties of the Weyl transform imply that Wρ(g1)
is a projector onto the space H1 = Wρ(g1)H.

Lemma 3.2.1. The Hilbert space H is spanned by elements of the form ρ(u)Wρ(g1)x for
u ∈ H(Rn) and x ∈ H.

Proof. Since ρ is a unitary representation, it suffices to show that the Hilbert space H is
spanned by elements of the form ρ(u)Wρ(g1)ρ(u

−1)x. Let y ∈ H be orthogonal to all those
elements. We have

〈

y, ρ(u)Wρ(g1)ρ(u
−1)x

〉

= 0

=

∫

R2n

〈

y, ρ(exp(aTQ+ bTP)ρ(exp(a′TQ+ b′TP))ρ(exp(−aTQ− bTP))x
〉

g1(a
′,b′)da′db′

=

∫

R2n

〈

y, ρ(exp(a′TQ+ b′TP)x
〉

g1(a
′,b′)e2πiω((a,b),(a

′,b′))da′db′.

This is a Fourier transform of F (a′,b′) =
〈〈

y, ρ(exp(exp(a′TQ+ b′TP)
〉

g1(a
′,b′)

〉

, which

is identically equal to zero if and only if F is identically equal to zero. Since g1 is not
identically equal to zero, it follows that there is an element of the Heisenberg group, u =
exp(a′TQ+ b′TP), such that 〈y, ρ(u)x〉 = 0 for all x ∈ H. But ρ(u) is unitary, so 〈y, x〉 = 0
for all x ∈ H. Hence y = 0 and the lemma is proved.

26. Before we proceed with the last step, we recall the notion of the tensor product of two
vector spaces, and then of two Hilbert spaces.

For vector spaces V and W , construct the set V ×W . Now formally build a vector space
whose basis consists of the elements of V ×W . Then factor this space by the relations
(v1 + v2, w) = (v1, w) + (v2, w),
(v, w1 + w2) = (v, w1) + v(w2),
c(v, w) = (cv, w) = (v, cw),
for all v, v1, v2 ∈ V , w,w1, w2 ∈ W , c ∈ C. The resulting vector space is the tensor product
V ⊗W . For example C

3 ⊗ C
2 = C

6.
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If H1, H2 are Hilbert spaces, endow H1 ⊗H2 with the tensor product

〈v1 ⊗ w1, v2 ⊗ w2〉 = 〈v1, v2〉 〈w1, w2〉 .

The completion of this space is the Hilbert space H1 ⊗ H2. For example L2(Rn) ⊗ C
2 =

L2(Rn)⊕ L2(Rn) and L2(Rn)⊗ L2(Rn) = L2(R2n).

27. Let us return to the space H1 = Wρ(g1)H. We will prove that there exists a unitary
isomorphism U between H0 ⊗ H1 and H, where H0 = L2(Rn) is the Hilbert space onto
which the Heisenberg group is represented via ρ0 and H is the Hilbert space onto which the
Heisenberg group is represented via ρ. We will define U by

U(ρ0(u)f1 ⊗ w) = ρ(u)w, u ∈ H(Rn), w ∈ H1.

then extend this linearly. Because the representation ρ0 is irreducible, the set of linear
combinations

∑

cjρ0(uj)f1 is dense in L2(Rn). So if we check that U is an isometry, then
we can extend it to the whole H0 ×H1.

We check that for w1 = Wρ(g1)x1, w2 = Wρ(g1)x2, u1, u2 ∈ H(Rn),

〈ρ(u1)w1, ρ(u2)w2〉H = 〈ρ0(u1)f1, ρ0(u2)f1〉H0
〈w1, w2〉H1

.

Indeed

〈ρ(u1)Wρ(g1)x1, ρ(u2)Wρ(g1)x2〉H =
〈

Wρ(g1)ρ(u2)
−1ρ(u1)Wρ(g1)x1, x2

〉

H

=
〈

Wρ(g1 ∗ (u−1
2 u1) ∗ g1)x1, x2

〉

H
= 〈ρ(u2)∗ρ(u1)f1, f1〉H0

〈Wρ(f1)x1, x2〉H
=
〈

ρ0(u
−1
2 u1)f1, f1

〉

H0
〈Wρ(f1)Wρ(f1)x1, x2〉H

= 〈ρ0(u1)f1, ρ0(u2)f1〉H0
〈Wρ(f1)x1,Wρ(f1)x2〉H1

,

as claimed.
Now using Lemma 3.2.1, we deduce that U is surjective, so it is a unitary isomorphism

between H0 ⊗H1 and H. The way U was defined shows that U(ρ0(u)⊗ IH1
)U−1 = ρ(u). So

ρ is a multiple of the representation ρ0.

3.3 The projective representation of the symplectic group

28. There is actually another irreducible representation of the Heisenberg group on L2(Rn),
given by

exp(aTQ+ bTP+ tI)ψ(p) = exp(2πi(i~aT
∂

∂p
+ bTp+ tI))ψ(p),

where the position and momentum operators are

op(qj)ψ(p) = i~
∂ψ

∂pj
, op(pj)ψ(p) = pjψ(p).

This is the quantization in the momentum representation.
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In this case

exp(aTQ+ bTP+ tI)ψ(p)ψ(p) = e2πib
Tp−πihaTb+2πitψ(p− ha),

which is the Schrödinger representation of the Heisenberg group in the momentum represen-
tation.

By the Stone-von Neumann Theorem, these two representations are unitary equivalent,
in fact the unitary equivalence is the Fourier transform

(F~ψ)(p) = hn/2
∫

Rn

ψ(q)e−2πihpTqdq.

29. Note that the above representation of the Heisenberg group, which arises from the quan-
tization of the position and the momentum in the momentum representation can be obtained
from the standard representation ρ0 as follows: First apply to (a,b) the symplectomorphism
with matrix

(

0 I
−I 0

)

to change the element of the Heisenberg group, then apply ρ0. We can do this for every ele-
ment f of the symplectic group (the group of linear symplectomorphisms). By the Stone-von
Neumann theorem, the resulting representation, which is irreducible, is unitary equivalent
to ρ0. We thus obtain a map f 7→ Uf , from symplectomorphisms to unitary operators on
L2(Rn), which because of the Schur Lemma from representation theory satisfies

Uf1◦f2 = cUf1Uf2 ,

where c is a complex number of absolute value 1. This is the projective representation of the
symplectic group. There is a way to get rid of the “projectivity” and turn this into a true
group representation if we replace the symplectic group by its double cover, the metaplectic
group. We obtain the Segal-Shale-Weil representation.

We should point out that this means that the symplectomorphisms which are elements
of the symplectic group can be quantized. Note that the axioms of quantum mechanics make
no provisions about the existence of a quantum version of the symplectomorphisms. In the
next chapter we will encounter other symplectomorphisms that can be quantized.



Chapter 4

The Schrödinger Equation

4.1 The Schrödinger equation as the time evolution of

a state

30. So let us assume that we know how to quantize every Hamiltonian, for example by

using the method of Weyl quantization. We will use the short-hand notation Ĥ for op(H),
the operator associated to H.

In classical Hamiltonian mechanics, the state of a system is given by the position and
momentum coordinates of the particle. The time evolution is described by Hamilton’s equa-
tions.

In quantum mechanics, the quantum state of a system is given by a ray [ψ] in a Hilbert
space H (or by abuse of language by ψ itself). The Schrödinger equation describes the time
evolution of the quantum state of a particle.

It has the form

i~
∂ψ

∂t
= Ĥψ.

“Where did we get that from? Nowhere. It is not possible to derive it from anything you
know. It came out of the mind of Schrödinger.” (R. Feynman)

Example 4.1.1. If we take the quantization of the total energy of a particle in one-
dimensional space, as it appears in Newtonian mechanics

H =
p2

2m
+ V (q)

then we have

Ĥ = − ~
2

2m

∂2

∂q2
+MV (q).

So the Schrödinger equation is

i~
∂ψ

∂t
= − ~

2

2m

∂2ψ

∂q2
+ V (q)ψ(q).

This is a second order partial differential equation.

41
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31. We want to connect Schrödinger’s equation with the Hamiltonian formalism of classical
mechanics. Recall that the result of measuring an observable A at time t in state ψ(t) should
be

〈Aψ(t), ψ(t)〉 .

In the same vein as for Hamilton’s equations, we want to understand the instantaneous rate
of change of the result of the measurement. We compute

〈Aψ(t), ψ(t)〉 =
〈

Ae−(i/~)tĤψ(0), e−(i/~)tĤψ(0)
〉

=
〈

e(i/~)tĤAe−(i/~)tĤψ(0), ψ(0)
〉

.

Using the product rule for differentiation, we obtain

d

dt
〈Aψ(t), ψ(t)〉 |t=0 =

〈

[(i/~)ĤA− (i/~)AĤ]ψ(0), ψ(0)
〉

=

〈

1

i~
[A, Ĥ]ψ(0), ψ(0)

〉

.

We recognize the quantum Poisson bracket.
Now we can do this at every moment in time, not just t = 0, and write the Schrödinger

equation for observables

d

dt
〈Aψ(t), ψ(t)〉 =

〈

{A, Ĥ}qψ(t), ψ(t)
〉

.

This should remind us of Hamilton’s equation

df

dt
= {f,H},

where f is a classical observable. We arrive at the Heisenberg picture. We consider a
situation where the state (wave function) does not change, but the observable (operator)
changes as

A(t) = e(i/~)tĤAe−(i/~)tĤ .

Then we get the quantum version of Hamilton’s equation, which is

dA

dt
= {A, Ĥ}q.

32. Let us return to the problem of solving the Schrödinger equation, and let us assume

that H is time independent. Then so is Ĥ. We try to separate variables by writing ψ(t, q) =
φ(q)τ(t). Then the equation becomes

i~φ
dτ

dt
= (Ĥφ)τ.

So

i~dτ
dt

τ
=
Ĥφ

φ
.
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Each of the two sides of the equality depends on a different set of variables (time on the left,
space on the right), so both should be equal to a constant called E. Hence

Ĥφ = Eφ.

This is the time-independent Schrödinger equation. It’s solutions are also referred to as
stationary-state solutions. We see that E is an eigenvalue of Ĥ, so E is an energy level that
can be measured by an experiment (according to the third axiom of quantum mechanics).

So Schrödinger’s equation leads us naturally to considering the energy levels of the quan-
tum Hamiltonian.

There is another way to look at this. Schrödinger’s equation should remind us of the well
known equation

dx

dt
= ax.

This equation has the solution x(t) = eatx(0). For a system of first order equations

dx

dt
= Ax,

we still have the solution x(t) = eAtx(0).
So, unlike Hamilton’s equations, Schrödinger’s equation can be solved easily:

ψ(q, t) = e(−i/~)tĤψ(q, 0).

But what does this mean? If Ĥ is diagonalizable, then we can compute e(−i/~)tĤ the way we
exponentiate a diagonalizable matrix. But for that we need to diagonalize Ĥ, so we need to
find the stationary state solutions.

Once we have diagonalized Ĥ in a basis ψj with eigenvalues Ej, we can write ψ(q, 0) =
∑

j cjψj and then the solution to Schrödinger’s equation is

ψ(q, t) =
∑

j

cjψje
− i

~
Ejt.

Example 4.1.2. The free particle in R
3 has the Schrödinger equation

i~
∂ψ

∂t
= − ~

2

2m
∆ψ.

We try to apply the above considerations to this case. Now we are in trouble already! The
Laplacian does not have discrete spectrum, in fact the spectrum of the Laplacian is [0,∞).
So no eigenfunctions in L2(R3). We look for “eigenfunctions” outside of this space.

We solve

−∆φ = λφ, λ ≥ 0

, where λ = 2mE
~2

. This is not so hard, the solutions are

φ(q) = eik
Tq, k ∈ R

3, ‖k‖2 = λ.
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These are referred to as plane waves. Here k is the momentum of the plane wave, in
agreement with

−i~ ∂

∂qj
eik

Tq = ~kje
ikTq.

We get the solution to Schrödinger’s equation given by

ψ(q, t) =

∫

R3

e−
i~
m
t‖k‖2eik

Tqf(k)dk.

Example 4.1.3. Let us consider a free particle confined to a box. This means that we
assume that there is a potential which is 0 inside the box and is infinite outside. Let the
box be also 1-dimensional, say the interval [0, L]. Then the time-independent Schrödinger
equation takes the form of the initial value problem

− ~
2

2m

d2ψ

dq2
= Eψ(q), ψ(0) = ψ(L) = 0.

This only has solutions if

E = Ej =
j2π2

~
2

2mL2

for some positive integer j. We obtain the corresponding eigenfunctions

ψj(q) =

√

2

L
sin

(

jπq

L

)

, j = 1, 2, 3, . . . .

It is important to observe that ψj, j = 1, 2, 3, ... form an orthonormal basis of the Hilbert
space L2([0, L]).

4.2 The harmonic oscillator

33. For the classical harmonic oscillator without damping, Hooke’s law yields the following
Hamiltonian

H =
p2

2m
+
mω2

2
q2.

Recall that the solutions are sinusoidal with frequency ω. The quantum Hamiltonian is

Ĥ = − ~
2

2m

∂2

∂q2
+
mω2

2
Mq2 =

1

2m

(

−~
2 ∂

2

∂q2
+ (mω)2Mq2

)

We have the Schrödinger equation

i~
∂ψ

∂t
=

1

2m

(

−~
2∂

2ψ

∂q2
+ (mω)2q2ψ

)
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34. Here is an approach to solve the Schrödinger equation without actually solving the
differential equation, using Dirac’s “ladder operator” method. Based on the formula

(a+ ib)(a− ib) = a2 + b2

we define the annihilation operator (a.k.a. raising operator)

a =

√

mω

2~

(

q̂ +
i

mω
p̂

)

=

√

mω

2~

(

Mq +
~

mω

∂

∂q

)

and the creation operator (a.k.a. raising operator)

a∗ =

√

mω

2~

(

q̂ − i

mω
p̂

)

=

√

mω

2~

(

Mq −
~

mω

∂

∂q

)

.

The ∗ is not accidental, one operator is the adjoint of the other. Moreover, using the canonical
commutation relation we compute

a∗a =
1

~ω

1

2m

(

p̂+ (mω)2q̂
)

− 1

2
I.

Therefore

Ĥ = ~ω

(

a∗a+
1

2
I

)

.

Let us ignore the 1
2
I, known as the quantum correction, and proceed with understanding

the spectral properties of a∗a. Right now the elimination of the term 1
2
I seems ad hoc, but

we point out that there is a rigorous procedure called the metaplectic correction for removing
this term and adjusting the spectrum of the Hamiltonian to its correct values. Note that
a∗a ≥ 0, so its spectrum lies in [0,∞). We work in the assumption that a∗a has at least one
eigenvalue (which is not necessarily true, but we assume it to be true for our considerations).
First, we compute

[a∗, a] = I,

and then

[a, a∗a] = a, [a∗, a∗a] = −a∗.

Lemma 4.2.1. Suppose ψ is an eigenvector of a∗a with eigenvalue λ. Then

a∗a(aψ) = (λ− 1)(aψ) and a∗a(a∗ψ) = (λ+ 1)(a∗ψ).

Thus aψ is either equal to zero, or it is an eigenvector of a∗a with eigenvalue λ− 1, and a∗ψ
is either equal to zero, or it is an eigenvector of a∗a with eigenvalue λ+ 1.

Proof. We have

a∗a(aψ) = (a(a∗a)− a)ψ = (λ− 1)aψ

and the same for a∗ψ.
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As a corollary, since a∗a has only non-negative eigenvalues, the “lowering” of eigenvalues
must end somewhere. So for an eigenvalue ψ there is N > 0 such that aNψ 6= 0 but
aN+1ψ = 0. Let

ψ0 = aNψ/‖aNψ‖, ψn = (a∗)nψ0, n ≥ 0.

Theorem 4.2.1. The vectors ψn, n ≥ 0 satisfy the following relations

a∗ψn = ψn+1

a∗aψn = nψn

〈ψn, ψm〉 = n!δm,n

aψn+1 = nψn.

Proof. The only things to check are the third and fourth properties. For different indices
the eigenvectors correspond to different eigenvalues, so they are orthogonal (a property of
Hermitian operators). For equal indices have (inductively)

〈ψn, ψn〉 = 〈a∗ψn−1, a
∗ψn−1〉 = 〈ψn−1, aa

∗ψn−1〉 = 〈ψn−1, (a
∗a+ I)ψn−1〉

= ((n− 1) + 1) 〈ψn−1, ψn−1〉 = n · (n− 1)! = n!.

Also aψn+1 = aa∗ψn = (a∗a+ I)ψn = (n+ 1)ψn.

So if we have exactly one one solution for the equation aψ0 = 0, then the vectors 1√
n!
ψn

form an orthonormal basis of the Hilbert space and they diagonalize Ĥ with diagonal entries
n+ 1

2
, n ≥ 0. In this case we solved the time-independent Schrödinger equation

Ĥψ = Eψ,

and moreover, we can make sense of the solution to the Schrödinger equation

ψ(q, t) = e−
i
~
tĤψ(q, 0)

since we know how to exponentiate diagonal operators.

35. Now we turn to analytical methods. The equation aψ0 = 0 reads

~

mω

∂ψ0

∂q
= −qψ(q),

with solution

ψ0(q) = Ce−
mω
2~
q2 .

Normalize this to have norm 1 by setting C =
√

πmω
~

. Thus

ψ0(q) =

√

πmω

~
e−

mω
2~
q2 .
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This shows that both assumptions in the ladder method work: that the Hamiltonian
operator has eigenvalues, and that 0 is an eigenvalue with multiplicity one. The state ψ0

is called the ground state, and the states ψn, n > 0, are called the excited states. For the
Hermite polynomials defined by

Hn(q) = (−1)neq
2 dn

dqn
e−q

2

, n ≥ 0

we have

ψn(q) =
4

√

mω

π~

1

2n
e−

mω
2~
q2Hn

(
√

mω

~
q

)

.

Note that since the Hermite polynomials form an orthonormal basis of L2(R2, e−q
2/2dq), we

deduce that 1√
n!
ψn is an orthonormal basis of L2(R, dq), so indeed Ĥ is diagonalizable and

the diagonal entries have one-dimensional eigenspaces.

36. We now describe a holomorphic model that produces the creation and annihilation
operators. We consider the space of holomorphic functions for which

i

2π

∫

C

|f(z)|2e−|z|2dz ∧ dz̄ <∞.

Note that the quantity on the left is positive. Endow this space with the inner product

〈f, g〉 = i

2π

∫

C

f(z)g(z)e−|z|2dz ∧ dz̄ <∞.

so that that the previous expression is the square of the norm. Then this is a Hilbert space
called the Segal-Bargmann space. An orthonormal basis is

fn(z) =
zn√
n!
, n = 0, 1, . . . .

We set

a∗ =Mz, a =
d

dz
.

These satisfy the same condition as the creation and annihilation operators:

[a, a∗] = I.

The inner product is chosen so that a and a∗ are one the adjoint of the other! Note that we
can reverse engineer q̂ and p̂ as

q̂ =
√
~
a+ a∗√
2mω

p̂ = i
√
2~mω(a∗ − a),

obtaining another representation of the position and momentum operators, which of course
is unitary equivalent to the Schrödinger representation because of the Stone-von Neumann
Theorem.
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4.3 The WKB method

37. This method is named after Wentzel, Krammers, and Brillouin. The idea is to construct
approximate solutions to the Schrödinger equation by trying to find solutions of the form

ψ(t,q) = e(i/~)S(t,q).

Substituting in the Schrödinger equation

i~
∂ψ

∂t
=

(

− ~
2

2m
∆+ V (q)

)

ψ

we obtain

−∂S
∂t

= − ~
2

2m

(

i

~
∆qS − ~

−2‖∇qS‖2
)

+ V.

We can view this as

−∂S
∂t

=
1

2
‖∇qS‖2 + V +O(~).

Ignoring O(~) we obtain

−∂S
∂t

(q, t) = H(q,∇qS).

This is the Hamilton-Jacobi equation from classical mechanics. Note that when S is the
action (S =

∫

Ldt), then this yields an equivalent formulation of classical mechanics.

38. Let us now turn to the time-independent Schödinger equation, and in order to simplify
computations we work in the 1-dimensional case:

− ~
2

2m

d2ψ

dq2
+ V (q)ψ = Eψ.

The substitution ψ = e(i/~)S(q) yields the differential equation

1

2m

(

dS

dq

)2

+ V (q) = E +
i~

2m

d2S

dq2
.

As above, we ignore the ~ term and turn this into the (time-independent version of the)
Hamilton-Jacobi equation

H(q, S ′(q)) =
(S ′(q))2

2m
+ V (x) = E.

This gives

S ′(x) = ±
√

2m(E − V (x)).
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Let us turn to the classical phase space R
2 = T ∗

R. Then the differential dS = S ′dq can
be viewed as a map dS : R → T ∗

R, q 7→ S ′(q)dq. Then S satisfies the Hamilton-Jacobi
equation if and only if the image of dS lies in the level manifold H−1(E). This establishes a
fundamental relationship between classical and quantum mechanics: “When the image of dS
lies in a level manifold of the classical Hamiltonian, then e(i/~)S can be taken as a first-order
approximate solution to the Hamilton equation.”

Here is another way to look at this. Using the expansion

S(q) = S(q, ~) =
∞
∑

n=0

(−i~)nSn(q),

we obtain

1

2m
(S ′

0)
2 = E − V (q), S ′

0S
′
1 = −1

2
S ′′
0 .

Let p(q) =
√

2m(E − V (x) be the classical momentum of a particle with potential V and
energy E. The solution to the first differential equation is

S0 = ±
∫

p(q)dq,

and from the second we get S1 =
1
2
ln p. So

ψ(q) =
1

√

|p(x)|

(

c1e
(i/~)

∫
p(q)dq + c2e

−(i/~)
∫
p(q)dq

)

(1 +O(~))

39. We can go to a more general Ansatz, namely that

ψ(q) = A(q)e±(i/~)S(q),

where S ′(q) = p(q) =
√

2m(E − V (q)). The amplitude function A(q) is chosen to be
independent of ~.

Proposition 4.3.1. For any two numbers E1 and E2 with E1 > inf V (q) there exists a
constant C and a nonzero compactly supported smooth function A(q) with the following
property: For every E ∈ [E1, E2] the support of A is contained in the classically allowed
region at energy E and the function ψ given by

ψ(q) = A(q) exp

(

± i

~

∫

p(q)dq

)

satisfies

‖Ĥψ − Eψ‖ ≤ C~‖ψ‖.

Here by classically allowed region we mean the region where a particle with energy E
can lie in the configuration space.
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Proof. We will actually choose A to by any function with support in the classically allowed
region for E1 (which is included in the classically allowed region for E). We compute

Ĥψ − Eψ = − ~
2

2m

(

A′′(q)± 2
i

~
A′(q)p(q)± i

~
p′(q)A(q)

)

e±(i/~)
∫
p(q)dq.

Thus

‖Ĥψ − Eψ‖ ≤ ~
2

2m
‖A′′‖+ ~

2m
‖2A′p+ Ap′‖.

Notice that the right-hand side is of order ~‖ψ‖ and ‖2A′p+ Ap′‖.

We can even improve on the error by forcing 2A′p = −p′A so as to obtain

Ĥψ − Eψ = − ~
2

2m
A′′ψ.



Chapter 5

The Hydrogen Atom. The Spin

This chapter follows closely the book of Faddeev and Yakubovskii.

5.1 The classical Kepler problem

40. We start with a short detour through classical mechanics. The classical Kepler problem
asks to find the trajectories of planets orbiting the sun. The sun exterts the force

F = −k q

‖q‖3 ,

which is given by the potential

V (q) = − k

‖q‖ .

If m is the mass of the planet and M is the mass of the sun, then actually k = GMm.
Because the potential is invariant under rotations, the angular momentum J = q× p is

conserved (and we require it to be nonzero to avoid collision with the sun). Note that the
planet moves in a plane orthogonal to J. We can compute explicitly

J =

∣

∣

∣

∣

∣

∣

i j k
q1 q2 q3
p1 p2 p3

∣

∣

∣

∣

∣

∣

= (q2p3 − q3p2)i+ (q3p1 − q1p3)j+ (q1p2 − q2p1)k,

and the conservation of the momentum follows by an easy computation in which we use
Hamilton’s equations.

Definition. The Runge-Lenz vector is the vector-valued function on R
3\{0} × R

3 given by

A(q,p) =
1

mk
p× J− q

‖q‖ .

Proposition 5.1.1. The Runge-Lenz vector is conserved.

51
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Proof. Using the fact that ṗ = F, we compute

Ȧ(t) =
1

mk
F× J− 1

‖q‖
p

m
+

q

‖q‖2
3
∑

j=1

∂‖q‖
∂qj

dqj
dt

= − 1

m

1

‖q‖3q× (q× p)− 1

‖q‖
p

m
+

q

‖q‖2
3
∑

j=1

∂‖q‖
∂qj

dqj
dt

=
1

m

(

− 1

‖q‖3q(q · p) + 1

‖q‖3p(q · q)− p

‖q‖ +
q(q · p)
‖q‖3

)

= 0.

Here we used a× (b× c) = b(a · c)− c(a · b).

41. Using the Runge-Lenz vector as an auxiliary tool we will now prove that the trajectory
is either an ellipse, a parabola, or a hyperbola. Note that A lies in the plane of motion.
Choose cartesian coordinates in this plane of motion such that A defines the x-axis, then
switch to polar coordinates.

Theorem 5.1.1. In polar coordinates, the trajectory of the planet is given by

r(t) =
‖J‖2
mk

1

1 + ‖A‖ cos θ(t) .

Proof. Let r(t) be the trajectory. We compute

A · r = Ar cos θ =
1

mk
r · (p× J)− r.

But

r · (p× J) = (r× p) · J = J · J = ‖J‖2.
Now solve for r.

Note that the equation from the statement is the equation of a conic

r =
ep

1 + e cos θ

where e is the excentricity and |p| is the distance between the focus and the directrix.

5.2 Angular momentum in quantum mechanics

42. The angular momentum J is a vector valued function, so it is not an observable in the
way we define observables. But its coordinates themselves are observables. Its coordinates
in classical mechanics are q2p3 − q3p2, q3p1 − q1p3, and q1p2 − q2p1. We quantize these as

L1 = q̂2p̂3 − q̂3p̂2 = i~

(

Mq3

∂

∂q2
−Mq2

∂

∂q3

)

L2 = q̂3p̂1 − q̂1p̂3 = i~

(

Mq1

∂

∂q3
−Mq3

∂

∂q1

)

L3 = q̂1p̂2 − q̂2p̂1 = i~

(

Mq2

∂

∂q1
−Mq1

∂

∂q2

)

.
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Here it is important to notice that for j 6= k, q̂j commutes with p̂k, so we do get self-adjoint
operators. It is also customary to work with

L2 = L2
1 + L2

2 + L2
3.

We have the following commutation relations

[L1, L2] = i~L3, [L2, L3] = i~L1, [L3, L1] = i~L2, [L1, L
2] = [L2, L

2] = [L3, L
2] = 0.

The operator L2 is positive, so L =
√
L2 can be defined, in case it is needed.

Lemma 5.2.1. If in spherical coordinates ψ depends on r =
√

q21 + q22 + q23 only, then
Ljψ = 0, j = 1, 2, 3.

Proof. We only check L3, the others are exactly the same.

L3ψ(r) = L3ψ(q
2
1 + q22 + q23) = i~

(

q2
∂ψ

∂q1
− q1

∂ψ

∂q2

)

= i~ψ′(q21 + q22 + q23)(2q2q1 − 2q1q2) = 0.

43. Since we will need the Laplacian, which defines the quantum kinetic energy, in the
Schrödinger equation, we have the following result.

Lemma 5.2.2. In spherical coordinates the Laplacian is given by the formula

∆ =
1

r2
∂

∂r

(

r2
∂

∂r

)

− 1

~2r2
L2.

Proof. We compute

− 1

~2
L2 =

(

Mq3

∂

∂q2
−Mq2

∂

∂q3

)2

+

(

Mq1

∂

∂q3
−Mq3

∂

∂q1

)2

+

(

Mq2

∂

∂q1
−Mq1

∂

∂q2

)2

=
∑

j

q2j∆−
∑

j

q2j
∂2

∂q2j
− 2

∑

j<k

qjqk
∂2

∂qj∂qk
− 2

∑

j

qj
∂

∂qj
.

The chain rule gives

∂

∂qj
=

∂

∂r

∂r

∂qj
=

∂

∂r

qj
r
.

Multiply this by qj and add over j = 1, 2, 3 to obtain

r
∂

∂r
=
∑

j

qj
∂

∂qj
.

Square to obtain
(

r
∂

∂r

)2

=
∑

j

q2j
∂2

∂q2j
+ 2

∑

j<k

qjqk
∂2

∂qj∂qk
+
∑

j

qj
∂

∂qj
.

Combine this with the previous computation to obtain the conclusion.
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5.3 The rotation group SO(3) and its Lie algebra

44. Let us recall a few facts about the rotation group SO(3) and its Lie algebra so(3). The
Lie group consists of orthogonal matrices of determinant 1. The Lie algebra so(3) consists
of the skew symmetric 3× 3 matrices. It is generated by the matrices

A1 =





0 0 0
0 0 −1
0 1 0



 , A2 =





0 0 1
0 0 0

−1 0 0



 , A3 =





0 −1 0
1 0 0
0 0 0



 .

These are the infinitesimal rotations about the three coordinate axes. They satisfy

[Aj, Aj+1] = Aj+2,

where indices are taken modulo 3. Every other skew symmetric matrix is a linear combination
of these. The rotations by angle α about the coordinate axes are

eαA1 , eαA2 , eαA3 .

In general, if n = (n1, n2, n3) is a unit vector, then the rotation by angle α about the axis of
this vector is

g(αn) = eα(n1A1+n2A2+n3A3)

Proposition 5.3.1. The Lie algebra so(3) is isomorphic with the Lie subalgebra of quantum
observables generated by L1, L2, L3.

Proof. Recall that the Lie bracket of operators is 1
i~
[·, ·]. With this in mind, the isomorphism

is Aj 7→ Lj, j = 1, 2, 3.

Theorem 5.3.1. The representation of SO(3) on L2(R3) defined by

W (g)ψ(q) = ψ(g−1q)

satisfies

W (g(αn)) = e−(i/~)α(n1L1+n2L2+n3L3).

Proof. Let us check this for the case where n = k is unit vector defining the z-axis. In this
case we have to prove that

W (g(αk))ψ(q) = ψ(q1 cosα + q2 sinα,−q1 sinα + q2 cosα, q3) = e−i~αL3ψ(q).

Consider the function

Ψq(α) = e−(i/~)αL3ψ(q).

We have

dΨq(α)

dα
= −(i/~)L3φq(α) =

(

q2
∂

∂q1
− q1

∂

∂q2

)

Ψq(α),

and Ψq(0) = ψ(q). It is not hard to check that ψ(g(αk)q) satisfies the same initial value
problem, so they are equal and the theorem is proved.
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45. Let us turn to spherical coordinates:

x = r sinφ cos θ, y = r sinφ sin θ, z = r cosφ.

The convention follows the Texas Tech calculus text book. Strangely there are two notational
conventions, exchanging θ and φ. So be very careful!

We introduce a normalized version of the angular momentum operators, the so called
dimensionless momentum operators, by

L̃j =
1

~
Lj.

Let L̃2 = L̃2
1 + L̃2

2 + L̃2
3.

As Lemma 5.2.1 showed, the angular momentum operators depend only on the angle
variables and not on r. Thus it is wise to consider the decomposition

L2(R3) = L2((0,∞))⊗ L2(S2)

where L2(0,∞) is endowed with the integration measure r2dr and L2(S2) is endowed with
the integration measure sinφdφdθ.

Switching to spherical coordinates, we have

L̃1 = i

(

sin θ
∂

∂φ
+ cotφ cos θ

∂

∂θ

)

L̃2 = −i
(

cos θ
∂

∂φ
− cotφ sin θ

∂

∂θ

)

L̃3 = −i ∂
∂θ
.

Set

L± = L̃1 ± iL̃2 = e±iθ
(

± ∂

∂φ
+ i cotφ

∂

∂θ

)

.

Note that a representation of the Lie algebra generated by L1, L2, L3 is the same a represen-
tation for the Lie algebra generated by L−, L+, L̃3.

Let us understand what we want. We have a representation of SO(3) on the space of
states by unitary operators, that arises naturally from the rotations of the space. We want
to understand the spectral theory of each operator. It suffices to choose a direction in space,
and declare it the z-axis, so that the operator is now rotation about the z-axis.

Now, as it is customary in the representation theory of Lie groups, instead of addressing
the question of representing the group, we address the question of representing the Lie
algebra. And indeed, we can relate the spectral theory of L3 and eiL3 to each other by the
spectral mapping theorem. Thus we focus on L3, or rather on L̃3.

First, note that if L̃3 and L̃2 are diagonalizable, then because they commute, they are
simultaneously diagonalizable. We proceed as before, assuming that they are indeed di-
agonalizable, and then by understanding the properties of eigenvectors we compute them
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explicitly and thus prove that the operators are indeed diagonalizable. Let therefore Y (θ, φ)
be a common eigenvalue of L̃3 and L̃2:

L̃2Y = λY, L̃3Y = mY.

Note that m is necessarily an integer, since Y is periodic in θ with period 2π. Also, note
that L̃2 = L̃2

1 + L̃2
2 + L̃2

3 implies λ ≥ m2. Denote by Eλ,m the common eigenspace of L̃2 and
L̃3 with eigenvalues λ,m. We have

[L̃3, L+] = L+, [L̃3, L−] = L−, [L+, L−] = 2L̃3.

Consequently

L+ : Eλ,m → Eλ,m+1, L− : Eλ,m → Eλ,m−1,

so these are raising and lowering operators in the sense of representation theory. Because
λ ≥ m2, there must be a moment when L+ = 0, that is Lk+1

+ Eλ,m = 0 where k is chosen
to be the smallest with this property. So Lk+1

+ Y = 0 and Lk+Eλ,m ⊂ Eλ,m+k. Then since

L−L+ = L2 − L̃2
3 − L̃3,

0 = L−L+L
k
+Y = (λ− (m+ k)2 − (m+ k))Y = (λ− (m+ k)(m+ k + 1))Y.

So λ = ℓ(ℓ + 1), where ℓ = m + k. For λ = m(m + 1) = ℓ(ℓ + 1), let Yℓ,ℓ ∈ Em(m+1),m. We
should have

−i∂Yℓ,ℓ
∂θ

= ℓYℓ,ℓ

∂Yℓ,ℓ
∂φ

+ i cotφ
∂Yℓ,ℓ
∂θ

= 0.

From the first equation we see that

Yℓ,ℓ(θ, φ) = eiℓθFℓ,ℓ(φ).

Now substitute in the second equation to obtain

∂Fℓ,ℓ(φ)

∂φ
= l cotφFℓ,ℓ(φ).

So Fℓ,ℓ(φ) = C sinℓ φ. Thus

Yℓ,ℓ(θ, φ) = C sinℓ φeiℓθ.

We deduce that the spaces Eλ,m are 1-dimensional. The lowering process gives, after a
normalization,

Yℓ,m−1 = − 1
√

(ℓ+m)(ℓ−m+ 1)
L−Yℓ,m

= − 1
√

(ℓ+m)(ℓ−m+ 1)
e−iθ

(

− ∂

∂φ
+ i cotφ

∂

∂θ

)

Yℓ,m.
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Some computations yield

Yℓ,m = − 1√
2π
eimθPm

ℓ (cosφ),

where

Pm
ℓ (t) =

√

(ℓ+m)!

(ℓ−m)!

√

2ℓ+ 1

2

1

2ℓℓ!
(1− t2)−

m
2

dℓ−m(t2 − 1)ℓ

dtℓ−m

are the (normalized) Legendre polynomials. The functions Yℓ,m are called spherical functions.
We conclude that a basis for an irreducible representation of the rotation group consists

of

Yℓ,m(θ, φ), m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ,

for a fixed ℓ. Note that spherical functions are dense in L2(S2), so the representation of
SO(3) on L2(S2) can be decomposed into irreducible representations on spaces of spheri-
cal functions. Note that since we were able to solve the above differential equations, and
since spherical functions span a dense subspace of L2(S2), we deduce that L2 and L̃3 are
indeed diagonalizable. What is the most amazing part of this investigation of the issue
of diagonalizing L̃3 is that it gives rise all finite dimensional irreducible representations of
SO(3).

5.4 The Schrödinger equation for the hydrogen atom

46. Here we have a proton (of mass m1) and an electron (of mass m2). So the quantum
Hamiltonian of this system is

H = − ~

2m1

∆1 −
~

2m2

∆2 + V (q1 − q2),

where q1 and q2 are the coordinates of the proton and the electron. We use the new variables

Q =
m1q1 +m2q2

m1 +m2

, q = q1 − q2,

where Q is the coordinate of the center of inertia, and q is the relative coordinate. In these
coordinates

H = − ~
2

2M
∆Q − ~

2

2µ
∆q + V (q),

with M = m1 +m2, µ = m1m2/(m1 +m2). The time-independent Schrödinger equation

Hψ = Eψ

can be separated into the Q and q variables, and only the second has something interesting,
as the first is just the Schrödinger equation for free motion.
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47. So we focus on the Schrödinger equation

− ~

2µ
∆ψ + V (q)ψ = Eψ.

The hydrogen atom has the potential with spherical symmetry

V (q) = V (r) = −e
2

r
.

Using Lemma 5.2.2 we can write the time-independent Schrödinger equation as

− ~
2

2µr2
∂

∂r

(

r2
∂

∂r

)

ψ +
L2

2µr2
ψ − e2

r
ψ = Eψ

We solve the equation in atomic units with ~ = 1, µ = 1, e2 = 1. We look for solutions of
the form

ψ(r, θ, φ) = Rℓ(r)Yℓ,m(θ, ψ).

They are eigenvectors of L2 = L̃2 and L3 = L̃3, so they describe states of the particle with
definite values of the square of the angular momentum and its z-projection. We obtain the
following equation for Rℓ:

− 1

2r2
d

dr

(

r2
dRℓ

dr

)

+
ℓ(ℓ+ 1)

2r2
Rℓ −

1

r
Rℓ = ERℓ.

48. We introduce the function fℓ = rRℓ. This satisfies the radial Schrödinger equation

−1

2
f ′′
ℓ (r) +

l(l + 1)

2r2
fℓ(r)−

1

r
fℓ = Efℓ.

The radial equation coincides with the time-independent Schrödinger equation

−1

2

d2ψ

dr2
+ V (r)ψ = Eψ

if we introduce the effective potential

Veff (r) =

{

−1
r
+ ℓ(ℓ+1)

2r2
if r > 0

∞ if r ≤ 0.

Here we take into account that fℓ(r) is only defined for r > 0.
Let us examine the behavior of the solution when r → ∞ and r → 0. The first limit

produces the equation

1

2
f ′′
ℓ + Efℓ = 0.

For E > 0 this has two linearly independent solutions e−ikr and e−ikr, where k2 = 2E. If
E < 0, then this has two linearly independent solutions e−κr, eκr, κ2 = −2E.
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When r → 0, note that the term with denominator r2 dominates the term with denomi-
nator r, so we should have something like

f ′′
l − ℓ(ℓ+ 1)

r2
fℓ = 0.

This has solutions r−ℓ and rℓ+1.
We are looking for solutions of the form ψ(q) = fℓ(r)

r
Yℓm(θ, φ) which are continuous

(so that they satisfy the Schrödinger equation), and are either square integrable, in which
case they yield eigenfunctions, or are bounded, in which case they they give a point in the
spectrum that belongs to the continuous spectrum.

The continuity of ψ implies fℓ(0) = 0, thus near zero the solution should be like Crℓ+1.
Next, for E > 0, the solution fℓ is always bounded, all we need is to impose the right
behavior at 0, so this gives the continuous spectrum. For E < 0, we should have a solution
that behaves like Ce−κr when r → ∞. We will see that this situation gives rise to the
eigenvalues.

49. It is convenient to look for a solution of the form

fℓ(r) = rl+1e−κrΛℓ(r).

Substituting in the radial Schrödinger equation we obtain the second order equation for Λℓ:

Λ′′
ℓ +

(

2(ℓ+ 1)

r
− 2κ

)

Λ′
ℓ +

(

2

r
− 2κ(ℓ+ 1)

r

)

Λℓ = 0.

Now we set

Λℓ(r) =
∞
∑

j=0

ajr
j.

The second order differential equation yields a first order recursive relation in the coefficients
(because of the way the powers of r appear). This recursive relation is

aj+1 = 2
κ(j + ℓ+ 1)− 1

(j + 1)(j + 2ℓ+ 2)
aj.

The ratio test shows that the series converges for all r. Let us examine the large r behavior
of the resulting function. Note that

aj+1 ≈
2κ

j + 1
aj so aj ≈ c

(2κ)j

j!
.

Thus Λℓ ≈ ce2κr. But then fℓ grows too fast. So the only hope is that the recursive relation
hits a zero! This happens exactly when

κ =
1

j + ℓ+ 1
for some j.
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Thus we obtain the eigevalues of the Hamiltonian as the values E such that −2E = 1
n2 .

These are

En = − 1

2n2
,

with eigenfunctions of the form

ψ = rℓe−
1

k+ℓ+1
rλkℓ(r)Ylm(θ, φ).

And we obtain the formula for the frequencies of the spectral lines

hνmn = En − Em, En > Em,

where, when converting back from standard units units, we have

En = − µe4

2n2h2
.

5.5 The Lie group SU(2) and the spin

50. Recall that

SU(2) =

{(

a b
−b̄ ā

)

| |a|2 + |b|2 = 1

}

.

We immediately notice that as a manifold SU(2) is homeomorphic to the 3-dimensional
sphere. Writing a = x1 + iy1, b = x2 + iy2, we have

(

a b
−b̄ ā

)

= x1

(

1 0
0 1

)

+ y1

(

i 0
0 −i

)

+ x2

(

0 1
−1 0

)

+ y2

(

0 i
i 0

)

This establishes an isomorphism between SU(2) and the group U of unit quaternions, with
the four matrices corresponding to 1, i, j, k.

Now we construct a 2− 1 surjective group homomorphism

π : SU(2) → SO(3).

For this, let H be the set of quaternions and let us consider the Lie group homomorphism

U → Aut(H), g 7→ (x 7→ gxg−1).

Note that image of U consists of isometries, and because it fixes the reals, it also fixes the
orthogonal space to the reals, that is the imaginaries:

Im H = {bi+ cj + dk | a, b, c ∈ R}.

We identify Im H with R
3, thus we see that SU(2) is represented by isometries of R3. Because

SU(2) is simply connected, these isometries must lie in SO(3). Moreover, the kernel is {±1},
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and since SU(2) and SO(3) are of the same dimension the map π that we constructed is
onto.

51. As a corollary, the Lie algebras of SU(2) and SO(3) are isomorphic. But we can
construct the Lie algebra su(2) directly; it consists of the matrices that are trace zero and
antihermitian:

su(2) =

{(

ia z
−z̄ −ia

)

| a ∈ R, z ∈ C

}

.

It is generated by the matrices

u1 =

(

0 i
i 0

)

u2 =

(

0 −1
1 0

)

u3 =

(

i 0
0 −i

)

.

Note that u1 = iσ1, u2 = −iσ2, u3 = iσ3, where σ1, σ2, σ3 are the Pauli matrices. We have
the isomorphism

su(2) → so(3), uj 7→ 2Aj, j = 1, 2, 3.

52. We now describe all irreducible representations of SU(2). Let V n be the space of
homogeneous polynomials of degree n in two variables z1 and z2. The dimension of V n is
n+1, and we endow it with the inner product that makes Pk(z1, z2) = zk1z

n−k
2 an orthonormal

basis. We let SU(2) act by

(gP ) (z1, z2) = P ((z1, z2)g) , g ∈ SU(2).

Theorem 5.5.1. The representations V n, n ≥ 0 are irreducible and unitary and there are
no other finite dimensional unitary irreducible representations of SU(2).

Proof. It is not hard to check that the representations are unitary, because they preserve
lengths. To show that they are irreducible, we follow the book of Bröcker and tom Dieck. It
suffices to show that every endomorphism A of V n that is SU(2) invariant is a multiple of
identity. First let

g =

(

ei 0
0 e−i

)

∈ SU(2).

Then gPk = e(2k−n)iPk, so gAPk = e(2k−n)iAPk. Since the e(2k−n)i-eigenspace of g acting on
V n is CPk, we must have APk = ckPk for some ck ∈ C.

We now consider the real rotations

rt =

(

cos t − sin t
sin t cos t

)

.

We have

ArtPn = A(z1 cos t+ z2 sin t)
n =

∑

k

(

n

k

)

cosk t · sinn−k t · APk

=
∑

k

(

n

k

)

cosk t · sinn−k t · ckPk.
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Also

rtAPn =
∑

k

(

n

k

)

cosk t · sinn−k t · cnPk.

This means that ck = cn, so A = cnI.
For the converse, we use the fact that every representation of a Lie group into GL(V )

is smooth. With the following lemma we transfer the question about representations of the
Lie group to that of representations of the Lie algebra.

Lemma 5.5.1. Let SU(2) → GL(V ) be a smooth representation, and let su(2) → gl(V ) be
the induced representation of Lie algebras. Then V is an irreducible representation of SU(2)
if and only if it is an irreducible representation of su(2).

Proof. Note that SU(2) is obtained by exponentiating elements of su(2). Let v ∈ V \{0}.
Then

lim
t→0

eDtv − v

t
= Dv and eDv =

∞
∑

n=0

1

n!
Dnv.

So every point in a minimal (closed) invariant subspace containing v of SU(2) is in a minimal
(closed) invariant subspace containing v of su(2) and vice-versa.

Let us study the invariant subspaces of su(2). We complexify

sl(2,C) = su(2)⊗R C

and work on the easier task of finding the irreducible representations of sl(2,C).
Next, let L3 = −iu3, L+ = 1√

2
(−u2 − iu1), L− = 1√

2
(u2 − iu1), so that [L3, L±] = ±L±,

[L+, L−] = L3. Next, let v be an eigenvector of L3 in some irreducible representation of
sl(2,C), with eigenvalue λ. Then

L3L+v = (λ+ 1)L+v and L3L−v = (λ− 1)L−v.

So L+ and L+− act as raising/lowering operators. Then there is k such that Lk+v = 0. We
may actually assume L+v = 0 (by changing notation). Then the irreducible representation
is the span of v, L−v, L

2
−v, . . . , L

n
−v for some n. But then the trace of L3 is the sum of its

eigenvalues, which are λ, λ − 1, ...,λ − n. L3 being a commutator has trace zero, which
implies λ = n

2
. This means that there is only one irreducible representation of sl(2,C) in

each dimension, and we already know that there is one such representation that comes from
SU(2). So we have recovered the representations V n+1 of SU(2), n ≥ 0.

53. We index the irreducible representations by ℓ = dim V−1
2

= n
2
, so we change the

notation to Vℓ = V 2ℓ+1. The number ℓ is called spin.
The eigenvector v is called the highest weight vector. It’s eigenvalue is ℓ = n

2
. Note that

L+(L
k
−v) = k(ℓ − 1

2
(k − 1))(Lk−1

− v). We define the inner product on Vℓ by asking that the
following vectors form an orthonormal basis:

|ℓ, k〉 =
√

2ℓ−k(ℓ− k)!

(2ℓ)!(ℓ− k)!
Lℓ−k− v, k = −ℓ,−ℓ+ 1, . . . , ℓ.
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Example 5.5.1. If ℓ = 1/2 we have the orthonormal basis
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The irreducible representations of SO(3) are in bijective correspondence with the irre-
ducible representations V n of SU(2) in which −I acts as the identity. These are precisely
the representations with integer spin. The other representations of SU(2) in which −I does
not act as the identity only define projective representations of SO(3). The representation
(projective or exact) is defined by

gv = π−1(g)v, g ∈ SO(3).

By definition, a particle with integer spin is called a boson and a particle with half-integer
spin is called a fermion.

Based on experiments, physicists have proposed a modification of the Hilbert space
L2(R3) so as to include internal degrees of freedom. The idea is that for each particle
with “spin” ℓ, the Hilbert space should be

L2(R3)⊗̂Vℓ,

where Vℓ is an irreducible projective representation of SO(3) of dimension 2ℓ+ 1 (which we
dissambiguate as an irreducible representation of SU(2)). Here the hat denotes the Hilbert
space tensor product.

54. Let us open a parenthesis and discuss the situation of composite systems. Based on the
fact that for two 3-dimensional particles the Hilbert space is L2(R6) = L2(R3)⊗̂L2(R3), we
introduce the following axiom of quantum mechanics.

The Hilbert space of a composite system made up of two subsystems is the Hilbert tensor
product of the Hilbert spaces describing the two systems.

We recall that the Hilbert tensor product of H1 and H2, H1⊗̂H2 is obtained by endowing
H1 ⊗H2 = Span{x1 ⊗ x2 | x1 ∈ H1, x2 ∈ H2} with the inner product

〈x1 ⊗ x2, y1 ⊗ y2〉 = 〈x1, y1〉 〈x2, y2〉

and then completing it in the induced norm topology.
The quantum Hamiltonian for a non-interacting composite system is

Ĥ = Ĥ1 ⊗ I + I ⊗ Ĥ2
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where Ĥ1, Ĥ2 are the quantum Hamiltonian of the two systems. This is because of the
product rule in the differentiation of the tensor product

i~
d

dt
(ψ1 ⊗ ψ2) = i~

dψ1

dt
⊗ ψ2 + i~ψ1 ⊗

dψ2

dt

= Ĥ1ψ1 ⊗ ψ2 + ψ1 ⊗ Ĥ2ψ2 = Ĥ(ψ1 ⊗ ψ2).

Let us return to the case of a particle with spin ℓ. Its state is ψ(x) ⊗ v ∈ L2(R3)⊗̂Vℓ.
The system consisting of two such particles has the Hilbert space equal to

L2(R6)⊗̂(Vℓ ⊗ Vℓ).

Now one of the postulates of quantum mechanics is that identical particles are indistin-
guishable. This means that the state associated to the system formed by the first and the
second particle should coincide, up to multiplication by a constant, with the system formed
by the second and the first particle, that is

ψ(x,y) = cψ(y,x).

Applying this reasoning twice, we see that c2 = 1, so c = ±1.
Experimental considerations suggest that c = (−1)2ℓ. So c = 1 for bosons and c = −1

for fermions. So we have the following axiom of quantum physics:

Axiom: Consider a collection of N identical particles moving in R
3 and having integer spin

ℓ. Then the Hilbert space of such a collection is the subspace of L2(R3N)⊗̂(Vℓ)
⊗N consisting

of those functions ψ that satisfy

ψ(xσ(1),xσ(2), . . . ,xσ(N)) = ψ(x1,x2, . . . ,xN)

for every permutation σ. Consider a collection of N identical particles moving in R
3 and

having half-integer spin ℓ. Then the Hilbert space of such a collection is the subspace of
L2(R3N)⊗̂(Vℓ)

⊗N consisting of those functions ψ that satisfy

ψ(xσ(1),xσ(2), . . . ,xσ(N)) = sign(σ)ψ(x1,x2, . . . ,xN)

for every permutation σ.

55. This now leads to the natural question of decomposing Vℓ⊗Vm into sums of irreducible
representations.

Theorem 5.5.2. (Clebsch-Gordan Theorem) For any ℓ and m,

Vℓ ⊗ Vm =
ℓ+m
⊕

j=|ℓ−m|
Vj = V|ℓ−m| ⊕ V|ℓ−m|+1 ⊕ · · · ⊕ Vℓ+m−1 ⊕ Vℓ+m.

Proof. Here are two sketches of proofs:
1. We argue on the particular example V1 ⊗ V5/2, in which case we represent ej ⊗ ek =
|1, j〉 ⊗ |5/2, k〉 as the nodes of the diagram in the figure. Examining the eigenvectors of L3

in V1⊗V5/2 we see that they are the subspaces that are spanned by the nodes of the diagonal
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lines drawn in the figure. It is now not hard to decompose V1 ⊗ V5/2 as the direct sum of
irreducibles: there is one that runs from the lower-left corner to the upper-right corner which
is isomorphic to V7/2 (note that it has dimension 8, since there are 7 steps to take you from
the lower-left to the upper right). You can also compute its highest weight by hand and see
that it is 7/2. The next “diagonal” has dimension 2, so there will be a vector that is left out
and that one will determine a 6-dimensional irreducible representation, with highest weight
5/2, so we get a copy of V5/2. Then we look at the next “diagonal”, and we get the V3/2. So

V1 ⊗ V5/2 = V3/2 ⊗ V5/2 ⊗ V7/2,

as claimed.

e
1

e

e
1

e

5/2

−5/2

Figure 5.1:

2. Note that every element in SU(2) is conjugate to an element of the form

e(t) =

(

eit 0
0 e−it

)

.

Now we use the notion of a character of a representation, which is the trace of the represen-
tation. This is a function on the Lie group, or rather on the conjugacy classes of elements of
the Lie group. In our case, each representation V will induce the character χV (t) = tracee(t).
In the case of the representation Vℓ, the value of this character is

χℓ =
2ℓ
∑

k=0

e2i(ℓ−k)t.

Now characters are multiplicative with respect to the tensor product and additive with
respect to sum. And they determine representations. Thus to check the Clebsch-Gordan
theorem, it suffices to check the equality of characters, and this follows from

(

2ℓ
∑

k=0

e2i(ℓ−k)

)(

2m
∑

n=0

e2i(m−n)

)

=
ℓ+m
∑

j=|ℓ−m|

(

2j
∑

t=0

e2i(j−t)

)

.
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Chapter 6

Quantum Mechanics on Manifolds

Now let us assume that we have a classical mechanical system with constraints, and that we
want to quantize it. As seen in the first chapter, the phase space is the cotangent bundle of
the manifold which is the configuration space.

6.1 The prequantization line bundle and geometric quan-

tization

56. So we want to apply the quantization scheme to the cotangent line bundle, or more
generally to a symplectic manifold (M,ω).

Thus we want

(M,ω) −→ H
C∞(M) −→ L(H).

so that

op({f, g}) = 1

i~
[op(f), op(g)].

To make this condition work we can set op(f) = −i~Xf , because [Xf , Xg] = −X{f,g}.
But then op(1) = 0, which conflicts with the other quantization conditions. Then we could
set op(f) = i~Xf + f , but then the above quantization condition fails.

Now comes the geometric trick: If ω, the symplectic form, has what is called a symplectic
potential θ, meaning that

dθ = ω,

then if we set

op(f) = −i~
(

Xf −
i

~
θ(Xf )

)

+ f,

then this works! This formula is referred to as geometric quantization of observables.

67
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Example 6.1.1. In the case of a free 1-dimensional particle,

Xq = − ∂

∂p
, Xp =

∂

∂q
.

Then θ = −qdp, so

op(q)φ = −i~
(

−∂φ
∂p

+
i

~
qφ

)

+ qψ = i~
∂φ

∂p

op(p)φ = −i~∂φ
∂q

+ pφ.

Wow, what is this? In fact you get the standard Schrödinger representation if you set
φ(q, p) = e−(i/~)qpψ(q). Then

op(q)ψ = qψ, op(p)ψ = −i~∂ψ
∂q
.

57. Two problems arise in this example. The first is that the state φ depends on both p
and q. In fact, for a general manifold we cannot separate the variables, and so we are forced
to work with functions of both p and q. Well, not quite, as we will see below there is an
elegant way to separate variables, and thus to restrict ourselves to only some functions, in
this case to φ = ψ(q)e−(i/~)pq, with ψ ∈ L2(R).

But there is a second problem, which is more subtle. This comes from the fact that while
every symplectic form is locally of the form

∑

j dpj ∧ dqj, and so locally we can find the
potential

∑

j pjdqj, or −∑j qjdpj, this does not work globally. We only have a family of
local potentials, and we have to patch those together. We do this by means of a line bundle.

Definition. A line bundle over a manifold M is a manifold L and a map π : L → M such
that there exists a cover ofM by open sets (Uj)j, and homomorphisms φj : π

−1(Uj) → Uj×C

such that πj(φj(x)) = π(x) for every x ∈ L where πj : Uj×C → Uj is πj(y, z) = y. Moreover,
the transition functions φj ◦ φ−1

k should be of the form (y, z) 7→ (y, tjk(x)z) with tjk(x) a
linear map depending smoothly on x.

Here is another way to say this definition:

Definition. A (complex) line bundle L on a manifold M is defined by a cover (Uj)j∈J of M
by contractible open sets such that Uj ∩ Uk is either empty or contractible for all j and k,
and for every pair (j, k) with Uj ∩ Uk 6= ∅ a smooth map

cjk : Uj ∩ Uk → C\{0}.

The maps cjk should satisfy the conditions

ckj = (cjk)
−1 and cjkcklclj = 1, for all j, k, l ∈ J. (6.1.1)

The line bundle itself is the quotient of the disjoint union of the sets Uj×C by the equivalence
relation which identifies (x, z) ∈ Uj × C with (x, cjkz) for all x ∈ Uj ∩ Uk, z ∈ C.
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The conditions (6.1.1) mean that cjk, j, k ∈ J , is a Čech cocycle, more precisely a Čech
2-cocycle. If we consider a family of functions

dj : Uj → C\{0},

then the cocycle djcjk defines an equivalent line bundle.
Cocycles form an abelian group under the multiplication,

((cjk), (c
′
jk)) 7→ (cjkc

′
jk)

which we denote by Ž2((Uj),C). The tensor product of two line bundles over the same
manifold is obtained by considering a collection of charts common to both and the associated
cocycles. Then the cocycle of the tensor product line bundle is the product of the cocycles
of the two line bundles.

Let B̌2((Uj),C) be the subgroup consisting of cocycles of the form djd
−1
k , j, k ∈ J , where

the functions dj are as above. If the quotient of two cocycles is in B̌2((Uj),C) then they
define the same line bundle. In fact, it can be proved that this is a necessary and sufficient
condition.

The quotient group

Ȟ2((Uj),C) = Ž2((Uj),C)/B̌
2((Uj),C)

is called the second Čech cohomology group. Each element of Ȟ2((Uj),C) defines a line
bundle up to equivalence.

In this case we want to construct a line bundle with curvature (1/~)ω. We should point
out that there is an obstruction to the existence of such a line bundle, known as the Weil
integrality condition. This requires that

1

2π
ω ∈ H2(M,Z).

This means that when you integrate ω over every closed oriented surface the result is an
integral multiple of 2π.

Here is the standard construction: The form ω being symplectic is closed, and so on each
open set Uj it is exact, by Poincaré’s Lemma. Hence there are real 1-forms θj on Uj called
potentials, such that

dθj = ω.

We have d(θj − θk) = 0 on Uj ∩Uk, so by using again Poincaré’s Lemma on the contractible
domains Uj ∩ Uk, we deduce that there are smooth functions

fjk : Uj ∩ Uk → R

such that dfjk = θj − θk.
Assume that

cjk = eifjk (6.1.2)
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satisfies the cocycle condition (6.1.1). Then it defines a line bundle L. The line bundle L is
said to have curvature ω.

The 1-forms −iθj are the local expressions of a connection form on M . Indeed, by
differentiating the relation (6.1.2) we obtain

dcjk = ieifjkdfjk = icjk(θj − θk).

This can be rewritten as

−iθk = c−1
jk dcjk + c−1

jk (−iθj)cjk,

and we recognize the formula expressing the change of the connection form under changes
of coordinates.

The line bundle constructed above is called the prequantization line bundle. The Hilbert
space will consist of sections of this line bundle.

Definition. A section of the line bundle L is a map s :M → L such that π ◦ s = 1M .

The operators defined by geometric quantization now act on smooth L2 sections of L.
There is however a problem with this, in that the Hilbert space is too big. For example for
the case of a free 1-dimensional particle we get L2(R2) and not L2(R). We will learn in the
next section how to pick the right sections.

6.2 Polarizations

Three examples should clarify the general situation. One is the standard example, where we
work on L2(Rn), with the variable q, and have

op(qj) =Mqj , op(pj) = −i~ ∂

∂qj
.

The second example corresponds to working in the momentum representation. This time
L2(Rn), with variable p, and

op(qj) = i~
∂

∂pj
, op(pj) =Mpj .

The third situation was encountered when we studied the harmonic oscillator, where the
Hilbert space was a space of harmonic functions. What these situations had in common was
that the functions that were states could be characterized by the conditions that they are
annihilated by some differential operators: in the first case ∂

∂pj
ψ = 0, in the second case

∂
∂qj
ψ = 0, while in the third case ∂

∂z̄
ψ = 0.

We now bring these conditions in a general unified framework, which works on manifolds.
Let (M,ω) be a symplectic manifold of dimension 2n. The tangent space TxM = R

2n is itself
endowed with the symplectic form ω. For a subspace W of TxM , we define the orthogonal

W⊥ = {v ∈ Tx |ω(v, w) = 0 for all w ∈ W}.
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The subspace W is called isotropic if W ⊂ W⊥ and Lagrangian if it is maximal isotropic.
Alternatively, Lagrangian subspaces are isotropic subspaces of dimension n. L is Lagrangian
if and only if L⊥ = L.

We complexify the tangent space to TxM ⊗ C = C
2n, by placing complex coefficients in

front of the basis vectors. The form ω extends to a symplectic form on TxM⊗C. The notion
of Lagrangian subspace extends to the complex situation as well, by considering complex
subspaces.

Definition. A polarization of a symplectic real vector space (V, ω) is a Lagrangian subspace
L of V ⊗ C.

A complex distribution F on M is a subbundle of the complexification of the tangent
bundle of M . In that sense, at each point x ∈ M , the distribution associates a subspace of
TxM ⊗ C, and these subspaces vary smoothly with p and have all the same dimension. A
polarization is called involutive if the Poisson bracket of two vector fields in F is also in F.

A complex distribution F is called Lagrangian if

dimCF =
1

2
dimRM and ω|F× F = 0.

Definition. A polarization of the symplectic manifold (M,ω) is a complex Lagrangian in-
volutive distribution F such that the function p 7→ dim(Fp ∩Fp) is constant on M , F being
the complex conjugate of F.

Example 6.2.1. M = R
2n with the standard symplectic form. Then the distribution onM ,

F = Span

(

∂

∂p1
,
∂

∂p2
, . . . ,

∂

∂pn

)

is a polarization.

Example 6.2.2. M = R
2n with the standard symplectic form. Then

F = Span

(

∂

∂q1
,
∂

∂q2
, . . . ,

∂

∂qn

)

is a polarization.

Example 6.2.3. M = R
2 with the standard symplectic form. Then

F = Span

(

∂

∂z̄

)

is a polarization.

Now let us return to the prequantization line bundle L over the phase space M . This
line bundle has a connection

∇ = d− iθ,

which is a differential operator that acts on sections. Locally sections are functions, and d is
just the operator that turns a function into its differential. The operator d is not independent
of the coordinates, and thus it is not globally defined. By adding the “correction” term −iθ
we obtain a globally defined operator, meaning that the new differential operator behaves
well under changes of coordinates.
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Definition. The Hilbert space of the quantization consists of those sections of L that are
covariantly constant in the direction of F, meaning that

∇vs = 0, for all v ∈ F.

Here ∇v is the directional derivative in the direction of v.

Example 6.2.4. Let M = R
2n with the standard symplectic form and with polarization

F = Span

(

∂

∂p1
,
∂

∂p2
, . . . ,

∂

∂pn

)

.

Let

θ = −(1/~)
n
∑

j=1

qjdpj

so that dθ = (1/~)ω. Then the covariantly constant sections s ∈ L2(R2n) are those that
satisfy

∂

∂pj
s+ (i/~)qjs = 0, j = 1, 2, . . . , n.

Solving the differential equation we obtain

s(q,p) = ψ(q)e−(i/~)pTq.

This should be compared with Example 6.1.1.

Example 6.2.5. Set zj = qj − ipj. We consider the polarization

F = Span

(

∂

∂z̄1
,
∂

∂z̄2
,
∂

∂z̄n

)

,

where
∂

∂z̄j
=

1

2

(

∂

∂qj
+ i

∂

∂pj

)

.

Take also

θ = (1/~)
∑

j

pjdqj.

Then

θ

(

∂

∂z̄j

)

=
pj
2
.

So

∇∂/∂z̄j =
∂

∂z̄j
− i

2~
pj.
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Thus the sections of the quantization line bundle (which are just functions over R2n = C
n)

should satisfy the system of differential equations

∂ψ

∂z̄j
− i

2~
pjψ = 0, j = 1, 2, . . . , n.

If we set

ψ(z, z̄) = φ(z, z̄)e−‖Im z‖2/(2~),

then an easy computation shows that

∇∂/∂z̄jφ = e−‖Im z‖2/(2~) ∂φ

∂z̄j
.

Thus ∇∂/∂z̄j = 0 for all j if and only if φ is a holomorphic function in the variables zj =
qj − ipj. If we require that the Hilbert space consists of functions that are square integrable
over R

2n then φ should be in the Segal-Bargmann space of holomorphic square integrable
functions on C

n with respect to the measure

e−‖Im z‖2/(2~)dpdq.

The argument for placing a Hilbert space structure on the space of sections that we used
in the second example cannot be applied to the first example. So we need to be more “clever”
when we choose the Hilbert space structure. Moreover, experiments show however that the
line bundle constructed above is not quite right.

To solve both problems, there is a procedure called metalinear (or metaplectic) correction,
which when applied to the prequantization line bundle yields a new line bundle, and that is
the correct line bundle to work with. In short, the idea is the following.

First, for a point x ∈ M , we let (v1, v2, . . . , vn) be a basis of Fx, called a frame at x.
When changing from one coordinate system to another, specifically from Uj to Uk, the frame
changes by multiplication by an element Cjk(x) ∈ GL(n,C). The elements Cjk satisfy the
cocycle condition that we have seen before, but they are matrices. Now consider the cocycle
cjk = detCjk. This cocycle defines the line bundle ΛnF . Assume that we can find a line
bundle L′ over M such that L′ ⊗ L′ = ΛnF . Then we replace L by L ⊗ L′ and consider
covariantly constant sections of this new line bundle.

Now what happens is that there is an inner product at each point such that

d 〈s, s′〉x = 〈∇s, s′〉x + 〈s,∇s′〉x .
This inner product is constant on D where the complexification of D is F ∩F . It is natural to
define 〈s, s′〉 =

∫

M 〈s, s′〉x ωn, but this diverges. So instead we write 〈s, s′〉x ωnx as 〈s, s′〉x α∧
β where α is the ”volume form” of ΛnF and only compute

∫

M/D
〈s, s′〉 xβ. This decomposition

of the integrand is clearly possible locally, and it is precisely because of the alteration of the
line bundle that we can decompose it globally.

Example 6.2.6. Let us consider the case of a free one-dimensional particle, whose phase
space is R2. If we take θ = pdq, and the polarization ∂/∂p, then θ(∂/∂p) = 0, so

∇∂/∂pψ =
∂ψ

∂p
= 0,
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so ψ is a function of q only. Using the formula for geometric quantization we compute

op(q)ψ = qψ, op(p)ψ = −i~∂ψ
∂p
.

This gives exactly the formulas predicted by the Schrödinger representation of the Heisenberg
Lie algebra. So we should be very happy. But...

op(p2) = −2i~p
∂

∂q
− p2.

And this introduces the variable p, thus it does not act on L2(R) with the variable q. This
shows the limitations of geometric quantization. Even for the simplest example of a one-
dimesional free particle you cannot quantize quadratic polynomials (which we did so easily
in Chapter 2). Thus we cannot even quantize kinetic energy.

We conclude this chapter with the observation that we have on the one hand the Weyl
quantization, which can only be performed when the phase space is R2n with the standard
symplectic form, but which can be applied to a large variety of observables. On the other
hand we have a method of quantizing geometrically every phase space, but this method is
very restrictive when it comes to decide which observables (Hamiltonians) can be quantized.


