Review aide for the Preliminary Examination and for the final Topology Examination

- 1. The definition of the fundamental group, the fundamental group of the circle, of the *n*-dimensional sphere, of a product of two spaces. The theorem about the fundamental groups of homotopically equivalent spaces with proof.
- 2. Applications of the fundamental group to proving
 - the Brower fixed-point theorem for the disk
 - the fundamental theorem of algebra
 - the 2-dimensional Borsuk-Ulam theorem
- 3. Covering spaces
 - path lifting theorem, homotopy lifting theorem, the general lifting theorem
 - the universal covering space,
 - examples, fundamental groups computed using covering spaces
 - deck trasformations.
- 4. Applications of the Seifert-van Kampen Theorem to the computation of various topological spaces:
 - graphs,
 - surfaces,
 - *n*-fold dunce cap.
- 5. Homology groups with integer and real coefficients defined using Δ -complexes.
 - computation of homology groups
 - computation of the homomorphisms in homology induced by continuous maps between Δ -complexes.
- 6. Euler characteristic. Know the proof that for (finite) Δ -complexes the Euler characteristic is the alternated sum of the numbers of simplexes in each dimension.

Problems

- 1. Compute the fundamental group of the sphere with n crosscaps.
- 2. Compute the fundamental group of a solid handlebody.
- 3. Compute the fundamental group of the torus.
- 4. Show that if $h: S^1 \to S^1$ is nullhomotopic, then h has a fixed point and h maps some point x to its antipode.
- 5. Let A be a subspace of \mathbf{R}^n ; let $h : (A, a_0) \to (Y, y_0)$. Show that if h is extendable to a continuous map of \mathbf{R}^n into Y then h_* is the trivial homomorphism.
- 6. Find topological spaces whose fundamental groups are isomorphic to $\mathbf{Z}_n \times \mathbf{Z}_m$ and $\mathbf{Z} \times \mathbf{Z} \times \mathbf{Z}_3$.
- 7. Show that every continuous map $f: S^3 \to S^1$ is null-homotopic.
- 8. What is the universal covering space of the wedge of two circles? What is the group of deck transformations?
- 9. Compute the homology with integer coefficients of the torus.
- 10. Compute the homology with integer and real coefficients of a Klein bottle.
- 11. Compute $H_3(S^3, \mathbb{R})$, where S^3 is the 3-dimensional sphere.
- 12. Compute the homology groups of a genus 2 surface with two punctures.
- 13. Compute the Euler characteristic of the 2-dimensional, respectively 3-dimensional sphere.
- 14. Compute the homology with integer coefficients and the Euler characteristic of the following 1-dimensional complex.