Review aide for the preliminary examination

- 1. Definition and examples of topological spaces
 - how to compare topologies
 - continuous functions and homeomorphisms
- 2. Methods for constructing topological spaces
 - basis and subbasis
 - induced topology
 - product topology
 - metric topology and continuous functions on metric spaces
 - quotient topology
 - manifolds
- 3. Closed sets, limit points
 - definition and examples of closed sets
 - closure of a set
 - limit points (the sequence lemma, continuity and convergence of sequences)
 - definition of Hausdorff spaces.
- 4. Connected, locally connected, path connected, locally path connected spaces
 - examples and conterexamples
 - basic properties (e.g. continuous functions map connected spaces to connected spaces)
 - connected spaces of the real line, the intermediate value property with applications
 - connected, path connected components
- 5. Compact spaces
 - examples and counterexamples
 - basic properties (e.g. every continuous function has a maximum, behaviour under continuous maps)
 - tube lemma with proof
 - compactness of product spaces (the case of finitely many spaces)
 - Lebesgue's number lemma
 - compact spaces in \mathbf{R}^n with applications
 - in metric spaces compact is equivalent to sequentially compact with proof
 - local compactness, the one point compactification theorem
- 6. The separation axioms

- basic properties of regular and normal spaces and some criteria for a space to be regular or normal
- the Uryson lemma
- the Tietze extension theorem

Problems

- 1. Show that the standard topology has a subbasis given by all the sets of the form $\{x > a, a \in \mathbb{Q}\}$ and $\{x < a, a \in \mathbb{R} \setminus \mathbb{Q}\}$.
- 2. Describe a basis of a topology on C([0,1]), the continuous functions on the unit interval, such that if $f_n \to f$ then $f_n(x) \to f(x)$ for all x.
- 3. Explain which of the two is a basis of the standard topology of the plane: (i) $\{(x, y) | a \le x \le b, c \le y \le b, a, b, c, d \in \mathbb{R}\}$, (ii) $\{(x, y) | a < x < b, c < y < d, a, b, c, d \in \mathbb{Q}\}$.
- 4. Let $A \subset X$ and $B \subset Y$. Show that in $X \times Y$,

$$\overline{A \times B} = \overline{A} \times \overline{B}$$

- 5. Let \mathbb{R}_l be the space \mathbb{R} endowed with the topology having the basis $\{[a,b) \mid a, b \in \mathbb{R}\}$. What are the continuous functions $f : \mathbb{R} \to \mathbb{R}_l$, where the first space is with the standard topology?
- 6. Show that X is Hausdorff if and only if the diagonal $\Delta = \{(x, x) \mid x \in X\}$ is closed in $X \times X$.
- 7. Let $f, g: X \to Y$ be continuous functions. Show that $h(x) = \min(f(x), g(x))$ is continuous.
- 8. Show that (0, 1) is not homeomorphic to [0, 1].
- 9. Show that the closure of a connected set is connected.
- 10. Let $Y \subset X$, such that X and Y are connected. Show that if A and B form a separation of X Y, then $Y \cup A$ and $Y \cup B$ are connected.
- 11. Show that $\mathbb{R}^2 \setminus \mathbb{Q}^2$ is path connected.
- 12. Prove that every continuous mapping of a circle into a line carries some pair of diametrically opposite points to the same point.
- 13. Let $f:[a,b] \to [a,b]$ be a continuous function. Prove that f has a fixed point.
- 14. A cross country runner runs a six-mile course in 30 minutes. Prove that somewhere along the course the runner ran a mile in exactly 5 minutes.
- 15. Give an example of a space that is connected but not locally connected. Give an example of a space that is locally connected but not connected. Give an example of a space that is connected but not path connected.

- 16. Give $[0,1]^{\mathbf{R}}$ the uniform topology. Find an infinite subset of this space that has no limit point.
- 17. Let a, b, c be positive real numbers such that a + b + c = 1. Prove that

$$\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right) \ge 64$$

- 18. Show that if $f: X \to Y$ is a closed, continuous, surjection with X locally compact and each $f^{-1}(y)$ compact, then Y is locally compact.
- 19. Prove that the cube $[0,1]^n$ is compact.
- 20. If $f: X_1 \to X_2$ is a homeomorphism between locally compact Hausdorff spaces, show that f extends to a homeomorphism of their one-point compactification.
- 21. Let X have a countable basis, and let A be an uncountable subset of X. Show that uncountably many points of A are limit points of A.
- 22. Show that if X has a countable dense subset, every collection of disjoint open sets in X is countable.
- 23. Show that if X and Y are regular, then the product $X \times Y$ is regular.
- 24. Show that every compact Hausdorff space is normal.
- 25. Prove that if X is second countable, then every base for the topology of X has a countable subcollection which is a base for that topology.