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ABSTRACT

This dissertation studies the Kauffman bracket skein algebra of the punctured torus.

The first chapter contains the historical background on the Kauffman bracket skein

algebra and its applications.

The second chapter contains the multiplication rule for the Kauffman bracket skein

algebra of the cylinder over the punctured torus. The explicit formula for the

multiplicative rule for the case of the Kauffman bracket skein algebra of the cylinder over

torus was found by Frohman and Gelca. In this work, we try to extend their result to the

torus with a puncture. The punctured torus has a multiplicative structure of the

Kauffman bracket skein algebra that is considerably more complicated than that of the

torus, and we ilustrate this with examples for which the crossing number is small.

In Chapter 3, we describe the action of the Kauffman bracket skein algebra on certain

vector spaces that arise as relative Kauffman bracket skein modules of tangles in the

torus. We analyze several particular cases, then we derive the general formula for the

action of the Kauffman bracket skein algebra on the corresponding skein modules by

using the geometric properties of the Jones-Wenzl idempotent, which is the main result

of the dissertation.

In Chapter 4, we show how the Reshetikhin-Turaev representation of the mapping

class group of the punctured torus can be computed from the representation of the

Kauffman bracket skein algebra, and based on this we derive explicit formulas for the

matrices of the generators of the mapping class group of the punctured torus.
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CHAPTER 1

INTRODUCTION

In 1985 Vaughan Jones introduced a polynomial invariant of knots and links in the

three dimensional sphere, as a consequence of his studies of operator algebras. For a knot

this is a Laurent polynomial in the variable t, while for a link with an even number of

components it is a Laurent polynomial in t
1

2 . It is standard to denote this polynomial

invariant by VK(t), where K is the knot (or link) in question.

The Jones polynomial is computed using a knot (or link) diagram, namely a planar

projection of the knot (or link), by the following skein relations:

t−1VD+
(t)− tVD−

(t) = (t
1

2 − t−
1

2 )VD0
(t) (1.1)

V0(t) = 1 (1.2)

where 0 stands for the trivial knot (or unknot) and D+, D− and D0 are the diagrams of

three links identical except in a disk where they look as in Figure 1.1. Jones’ discovery

D D
+

D0

Figure 1.1.

had a huge impact on knot theory. Several other polynomial invariants followed: the

Kauffman bracket, the Kauffman polynomial, the HOMFLY polynomial. These proved

powerful tools in the classification of knots. As to date, while not a complete invariant,

the Jones polynomial distinguishes the unknot from all other knots.

A year after Jones, Louis Kauffman announced the discovery of another polynomial

invariant, the Kauffman bracket, denoted by < K >. This is an invariant for framed

knots and links in the 3-dimensional sphere, meaning that the link components are

annuli, not circles. The framing keeps track of how a link component twists about itself.

In all that follows we will work with the blackboard framing of all knots and links,

meaning that the annuli are always parallel to the plane of the paper. As such, in

diagrams we only draw one boundary of the annulus, the other being understood to run

parallel to it. In the particular case where the link lies in the cylinder over a surface, we

1
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agree that the framing is parallel to the surface.

The Kauffman bracket is computed by the skein relations described in Figure 1.2. The

Jones polynomial VK(t) can be obtained from the Kauffman bracket fK(t) by replacing

variable t by t−
1

4 . More precisely VK(t) = fK(t
− 1

4 ), where fK(t) = (−t3)−w(k) < K >,

w(K) is writhe of K (the number of times K twists about itself), and < K > is bracket

polynomial of K. A quick look shows that the Kauffman bracket skein relations are a

faster method for computing the Jones polynomial. One should however keep in mind

that, unlike the Jones polynomial, the Kauffman bracket keeps track of twistings.

1 D Uφ 2 t +t−1
D−2(−t  −t   )  

Figure 1.2.

In 1991, Jozef Przytycki introduced the concept of skein module of an orientable

3-manifold by generalizing the polynomial knot and link invariants to knots and links in

arbitrary manifolds. This was done by imposing skein relations on the formal linear sums

of oriented link in 3-manifold. Among these, the most studied were the Kauffman

bracket skein modules, mainly due to their relationship to the SL(2)-character varieties

of the fundamental groups of manifolds.

Skein modules turned out to be closely related to topological quantum field theory,

character varieties, and the representation theory of quantum groups. The use of

Kauffman bracket skein modules for constructing a topological quantum field theory was

done in the early nineties by Lickorish in [12], and Blanchet, Habbegger, Masbaum, and

Vogel in [1]. On the other hand Frohman, Bullock, and Sikora related skein modules to

SL(2)-character varieties of the fundamental groups of 3-manifolds. Frohman, Gelca,

Uribe [4], [7], [5] related Kauffman bracket skein modules to quantum mechanics. Let me

point out that on cylinders over surfaces the Kauffman bracket skein modules carry a

natural algebra structure. Frohman and Gelca [4] gave explicit descriptions of the

Kauffman bracket skein algebra of the cylinder over the torus and of the representation

of this algebra on the Kauffman bracket skein module of the solid torus. In our work, we

will attempt to extend the work of Frohman and Gelca to the case of the torus with one

puncture. As such we will study the multiplicative structure of the Kauffman bracket

2
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skein algebra of the punctured torus and its representations that arise from the quantum

mechanical point of view.

By contrast with the multiplication rule in the Kauffman bracket skein algebra of

torus, the multiplication rule in the Kauffman Bracket Skein algebra of a punctured

torus is much more complicated, and we were unable to find a general formula. Thus we

will restrict ourselves to cases of relatively small crossing numbers. Next we study the

representations of this algebra motivated by the associated quantum theory. The algebra

will act on skein modules of the solid torus with a distinguished disk on the boundary.

Using these representations we will derive the the Reshetikhin-Turaev representation of

the mapping class group of a punctured torus.

3
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CHAPTER 2

THE MULTIPLICATIVE STRUCTURE OF THE KAUFFMAN BRACKET SKEIN

ALGEBRA OF THE PUNCTURED TORUS

Before we examine the multiplicative structure of the Kauffman bracket skein algebra

of a punctured torus, we will review the required background materials.

2.1 Background material

2.1.1 Basic terminology

Throughtout this paper, t will denote a variable or a complex number. By definition, a

knot in a 3-dimensional manifold M is an embedding of a circle in M . A link is an

embedding of a disjoint union of finitely many circles in M . A framed knot or link in M

is defined as the embedding in M of one, respectively several disjoint annluli. We always

draw these annuli to be parallel to the plane of the paper, or in case the knot or link is

embedded in the cylinder over a surface to be parallel to the surface. We call this

framing as blackboard framing. Once this convention is made, for each annulus it suffices

to draw just one boundary components, thus framed knots and links can actually be

drawn as knots and links.

Definition 1. Consider the set ℒ of a isotopy classes of framed links in M , including the

empty link (that has no component). Consider ℂ[t, t−1]ℒ denote free ℂ[t, t−1]-module with

a basis ℒ. Define S(M) to be the smallest submodule of ℂ[t, t−1]ℒ contaning all the

expressions of the form shown in Figure 2.1, where the links in each expression are

identical except inside an embedded ball, where they look as depicted. The Kauffman

bracket skein module Kt(M) of M is defined to be quotient ℂ[t, t−1]ℒ/S(M).

− t − t−1

2 −2+ (t  +t  ) φ

Figure 2.1.

When t is set to be a complex number, the Kauffman bracket skein module becomes a

ℂ-vector space. However, by abuse of language, it is still called a module.

4
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If M = Σ× I, where Σ is a surface and I = [0, 1], then the Kauffman bracket skein

module has a natural multiplication which turns it into an algebra. This multiplication is

obtain by gluing two copies of the cylinder to obtain another copy of the cylinder.

Explicitly, let � , � be two element in Kt[Σ× I]. We can assume � ,� as links in two

diffrent cylinders over surface. We glue the 0-end of the cylinder containing � to the

1-end of the cylinder containing �. We get a cylinder containing both � and �. By

evaluating these framed links in Kt(Σ× I) ,we can get � ∗ �. As such we obtain the

Kauffman bracket skein algebra of the cylinder over a surface Kt(Σ× [0, 1]).

If M is a 3-dimensional manifold with boundary ∂M , then the topological operation of

gluing the cylinder over the boundary to M induces a Kt(∂M × I)-module structure on

Kt(M). Explicitly, if � is an element of Kt(∂M × I), and x is an element of Kt(M), glue

the 0-end of ∂M × I the boundary of M . We obtain something that is homeomorphic to

M , which now contains both � and x. Define this to be � ⋅ x. Now project link � onto N .

When t is a complex number, we obtain a representation of Kt(Σ× I), where Σ = ∂M .

In this chapter M will be cylinder over the torus, the cylinder over the torus with one

puncture, or the solid torus. Throughout this paper, Σi,j denote surface of genus i with j

punctures.

2.1.2 Basic properties of Kt(Σ1,0 × I)

First, we recall the multiplicative structure to the Kauffman bracket skein module

Kt(Σ1,0 × I) of the cylinder over the torus as it was given by Frohman and Gelca [4].

The Kauffman bracket skein module Kt(S
1 ×D) of the solid torus is a

Kt(Σ1,0 × I)-module. In addition to this, we also know that Kt(S
1 ×D) has a

mulitiplicative structure, being isomorphic to polynomial algebra over C[t, t−1][�], where

� is the simple closed curve in the solid torus that generates its fundamental group. We

make the convention that �n consists of n parallel copies of �.

Let Tn be the n-th Chebyshev polynomial defined recursively by T0 = x ,

Tn+1 = Tn ⋅ T1 − Tn−1. For p, q in ℤ , if p, q are coprime , define (p, q)T =(p, q) to be the

curve of slope q/p on the torus (which defines the first homology class (p, q) of the

homology with integer coefficients). We let (p, q)k denote k parallel copies of the

(p, q)-curve on the torus. Then, for general p and q not necessarily coprime, we define

(p, q)T = Tn(
p

n
, q

n
), which is an element of Kt(Σ1,0 × I) defined by replacing the variable

of the Chebyshev polynomial by the ( p
n
, q

n
)-curve,where n is the greatest common divisor

of p and q. For m,n and gcd(p, q) = gcd(r, s) = 1, the geometric intersection number (the

5
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crossing number) of Tn(p, q) and Tm(r, s) is the absolute value of mn∣pqrs∣ ,where ∣pqrs∣ is the

determinant.

The main result about Kt(Σ1,0 × I) from [4] is:

Theorem 2.1.1 (the product-to-sum formula). In Kt(Σ1,0 × I) the following relation

holds

(p, q)T ∗ (r, s)T = t∣
pq
rs ∣(p+ r, q + s)T + t−∣pqrs ∣(p− r, q − s)T , (2.1)

for any p, q, r, s ∈ ℤ.

2.2 The multiplication structure of Kt(Σ1,1 × I)

As we saw in theorem 2.2.1 , the multiplicative structure of Kauffman Bracket Skein

algebra Kt(Σ1,0 × I)of torus can be expressed explicitly in the form of the

product-to-sum formula. The multiplicative structure of Kauffman Bracket Skein algebra

Kt(Σ1,1 × I)of a pundtured torus dosen’t follow the product-to-sum formula as we will

see later. For our purpose, we will restrict to the cases with small crossing number

1,2,3,4. To explain multiplicative structure of that case ,it will be sufficient to think

about (p, q)T ∗ (0, 1)T where p > q and p = 1, 2, 3, 4. .

2.2.1 Basic material about Kt(Σ1,1 × I)

Since, every element in Kt(Σ1,1 × I) can be described through the (p, q)-curve on the

punctured torus Σ1,1,and multiplicative structure can be explained through the

multiplication of curves of the punctured torus Σ1,1, we give way to describe (p, q)-curve

before everything.

At first, we can regard (p, q)-curves as a line segment with two end points (0, 0) and

(p, q) in ℂ by viewing ℂas a covering space of Σ1,0 .This way of viewing curve can be

applied to Σ1,1 also. The description of some elements in Kt(Σ1,1 × I) as curves on a

functured torus Σ1,1 is given in the following example.

Example 2.2.1. The simplest skeins are shown in Figure 2.2.

we disregard the orientation of curve on the punctured torus, so (p, q)-curve and

(−p,−q)-curve denote same curve. In general,(p, q)-curve on the punctured torus can be

described as follow. Assume p, q are coprime, and p > q. A punctured torus is a quotient

space of a unit square with a hole, described as follow. As we can see through the

6
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T T T

T

(1,0)  = (0,1)  = (1,1)  =

(2,1)  = (1,2)  =T T

T

(1,−1)  =

(2,0)  =

Figure 2.2.

picture, we gave coordinate for all edges of unit square as follow. Left and right vertical

edges have coordinate (0, i
p
), (1, i

q
) and upper and lower edges have coordinate ( j

q
, 1)

and( j
q
, 0) ,respectively , where 0 ≤ i ≤ p and 0 ≤ j ≤ q. At fist, draw a line from (0, 0) to

(1, q

p
)with slope q

p
),next, draw a line from(0, q

p
)to (x

q
, 1)with slope q

p
.Thirdly, draw another

line from (x
q
, 0) to (1, y) with slope q

p
. By keeping continuing this process untill we have

last point as (1, 1) we can get (p, q)-curve on the punctured torus.

Now we will give the basic results about Kt(Σ1,1 × I)

Lemma 2.2.1. The following formula holds

(1, 0)T ∗ (0, 1)T = t(1, 1)T + t−1(1,−1)T .

Proof. The computation is shown in Figure 2.3.

=  t +  t −1

Figure 2.3.

7
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For the next result, let us introduce the element � defined in Figure 2.4.

+t   +tη =  2 −2

Figure 2.4.

Lemma 2.2.2. The following formula holds

(2, 1)T ∗ (0, 1)T = t2(2, 2)T + t−2(2, 0)T + t2 + t−2 + �.

Proof. We proceed as in Figure 2.5. This is further equal to

=  t

= t + + + t2 −2

+ t −1

Figure 2.5.

formula

This lemma shows the difference between the multiplication rule in Kt(Σ1,1 × I) and

that in Kt(Σ1,0 × I), in particular we see that the product-to-sum formula does not

extend to this situation.

Lemma 2.2.3. The following formula holds

(2, 0)T ∗ (0, 1)T = t2(2, 1)T + t−2(2,−1)T .

8
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Proof. Using the definition of (2, 0)T , we can write

(2, 0)T ∗ (0, 1)T = [(1, 0)T ∗ (1, 0)T − 2] ∗ (0, 1)T

= [t(1, 0)T ∗ (1, 1)T ] + [t−1(1, 0)T ∗ (1,−1)T ]− 2(0, 1)T

= t2(2, 1)T + (0, 1)T + t−2(2,−1)T + (0, 1)T − 2(0, 1)T

= t2(2, 1)T + t−2(2,−1)T

as desired.

Using these two results we will exhibit a formula for the multiplication of two skeins

with algebraic intersection number equal to 2.

Let L denote the longitude and M the meridian curves in Σ1,0 respectively Σ1,1. Let

ℎL, ℎM , and, ℎR : Σ1,i → Σ1,i be the maps definded by ℎL(e
i�, ei�) = (ei(�+�), ei�),

ℎM(ei�, ei�) = (ei�, ei(�+�)), ℎR(e
i�, ei�) = (ei�, ei�), repectively, where 0 ≤ �, � ≤ 2�. As

such ℎL and ℎM are the longitudinal respectively meridinal twist (or Dehn twist). We

know that ℎL∣M = ℎM ∣L = identity in Σ1,i where i = 0, 1.

Now we consider homology group with integer coefficients H1(Σ1,i,ℤ), which is

isomorphic to ℤ⊕ ℤ. We know that L and M determine the basis elements (1, 0) and

(0, 1) respectively.

Let ℎL∗
, ℎM∗

, ℎR∗
: H1(Σ1,i) → H1(Σ1,i) be the induced homology maps. Under this

basis, the matrix representations for ℎL∗
, ℎM∗

, and, ℎR∗
are as follows:

ℎL∗
=

(
1 0

1 1

)
, ℎM∗

=

(
1 1

0 1

)
, ℎR∗

=

(
0 1

1 0

)
.

The images of a (p,q)-curve on the torus under these maps and their inverses are

ℎL∗
(p, q) = (p, p+ q), ℎM∗

(p, q) = (p+ q, q), ℎR∗
(p, q) = (q, p),

ℎ−1
L∗

(p, q) = (p, q − p), ℎ−1
M∗

(p, q) = (p− q, q), ℎ−1
R∗

(p, q) = (q, p).

Lemma 2.2.4. Let (p, q) , (r, s) be the (p, q)− curve , (r, s)− curve in Σ1,i ,respectively

and i = 0, 1. Suppose ∣pqrs∣=m(> 0) and gcd(r, s) = 1, then there exist

(
a b

c d

)
in SL2(ℤ)

such that

(
a b

c d

)(
p

q

)
=

(
m

k

)
and

(
a b

c d

)(
r

s

)
=

(
0

1

)
,where k = 1, 2, ...,m− 1.

9



Texas Tech University, Jea-Pil Cho, May 2011

Proof. If

∣∣∣∣∣
p q

r s

∣∣∣∣∣=m, then we know that the crossing number of curves (p, q) and (r, s) is

m. Suppose ∣r∣ > ∣s∣, then, by division algorithm, there are i and j in ℤ such that

r = s ⋅ i+ j where 0 ≦ j < ∣s∣. So ℎ−i
L∗

(r, s) = (j, s). Suppose ∣r∣ < ∣s∣, then there are t and

u in ℤ such that s = r ⋅ t+ u with 0 ≦ u < ∣r∣. This time ℎ−t
M∗

(r, s) = (r, u). By repeating

these alternately, we can reach the curves (0, 1) or (1, 0). If it is (1, 0) , then we can

switch this into (0, 1) using ℎR∗
(1, 0) = (0, 1). This implies that there exist 2× 2 matrix(

a1 b1

c1 d1

)
in SL2(ℤ) such that

(
a1 b1

c1 d1

)(
r

s

)
=

(
0

1

)
and

(
a1 b1

c1 d1

)(
p

q

)
=

(
p1

q1

)
,

where p1, q1 belong to ℤ. We also know that

∣∣∣∣∣
p1 q1

0 1

∣∣∣∣∣=m. This implies that p1 = m. If

∣q1∣ > m, then q1 = m ⋅ l + k where 0 ≦ k < m. Now ℎ−l
M∗

⋅

(
a1 b1

c1 d1

)(
p

q

)
=

(
m

k

)
and

ℎ−l
M∗

⋅

(
a1 b1

c1 d1

)(
r

s

)
=

(
0

1

)
.

Let

(
a b

c d

)
= ℎ−l

M∗

⋅

(
a1 b1

c1 d1

)
. Then this matrix belongs to SL2(ℤ).

Theorem 2.2.5. If

∣∣∣∣∣
p q

r s

∣∣∣∣∣ =±2, then

(p, q)T ∗ (r, s)T = t∣
pq
rs ∣(p+ r, q + s)T + t−∣pqrs ∣(p− r, q − s)T + �

where � =

⎧
⎨
⎩
� if gcd(p,q)=gcd(r,s)=1;

0 otherwise.
.

Proof. It suffices to check the case

∣∣∣∣∣
p q

r s

∣∣∣∣∣=2. Then we know that the curves (p, q) and

(r, s) cross in two points. By above proposition, we know that there exist a

homeomorphism f : Σ1,1 → Σ1,1 such that the induced isomorphism

f∗ =

(
a b

c d

)
∈ SL2(Z) satisifies f∗(p, q) = (p0, q0) and f∗(r, s) = (0, d) where

d = gcd(r, s). Also we know that

∣∣∣∣∣
p0 q0

0 d

∣∣∣∣∣ = 2, and

(p0, q0) ∗ (0, 1) = tp0(p0, q0 + 1)T + t−p0(p0, q0 − 1)T + � where p0 = 1, 2, orq0 = 0. In

10
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particular, if gcd(p, q) = gcd(r, s) = 1, then d = 1, p0 = 2, and , q0 = 1. This implies that

f∗(p, q)T = (2, 1)T , f∗(r, s)T = (0, 1)T . So

(p, q)T ∗ (r, s)T = f−1
∗ [(2, 1)T ∗ (0, 1)T ] = f−1

∗ [t2(2, 2)T + t−2(2, 0)T + �].

Therefore

(p, q)T ∗ (r, s)T = t2(p+ r, q + s)T + t−2(p− r, q − s)T + �.

If gcd(r, s) = d, d ∕= 1, then d = 2, p0 = 1 and q0 = 0. Hence

(1, q0)T ∗ (0, 2)T = t2(1, q0 + 2)T + t−2(1, q0 − 2)T = t2(1, 2)T + t−2(1,−2)T .

We obtain (p, q)T ∗ (r, s)T = t2(p+ r, q + s)T + t−2(p− r, q − s)T .

In particular, if

∣∣∣∣∣
p q

r s

∣∣∣∣∣ = ±1, the product-to-sum fomula from [4] holds.

Let us consider a few other situations.

Proposition 2.2.6. The following formula holds

(3, 0)T ∗ (0, 1)T = t3(3, 1)T + t−3(3, 1)T .

Proof. By applying the above result, and using the fact that (3, 0)T = (1, 0)3T − 3(1, 0)T ,

we obtain

(3, 0)T ∗ (0, 1)T = [(1, 0)3T − 3(1, 0)T ] ∗ (0, 1)T = [(1, 0)3T ∗ (0, 1)T ]− 3[(1, 0)T ∗ (0, 1)T ]

= ((1, 0)T ∗ [t(1, 0)T ∗ (1, 1)T ] + [t−1(1, 0)T ∗ (1,−1)T ])− [3(1, 0)T ∗ (0, 1)T ]

= t2[t(3, 1)T + t−1(1, 1)T ] + 2t(1, 1)T + 2t−1(1, 1)T + t−2[t(1, 1)T + t−1(3,−1)T ]

−[3(1, 0)T ∗ (0, 1)T ] = t3(3, 1)T + t−3(3,−1)T ,

as desired.

Proposition 2.2.7. The following formula holds

(3, 1)T ∗ (0, 1)T = t3(3, 2)T + t−3(3, 0)T + t−1(1, 0)T�

Proof. Write (3, 1)T = t−1(1, 0)T ∗ (2, 1)T − t−2(1, 1)T . Applying Theorem 2.2.5, we can

11
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write

(3, 1)T ∗ (0, 1)T = [t−1(1, 0)T ∗ (2, 1)T − t−2(1, 1)T ] ∗ (0, 1)T

= t−1(1, 0)T [t
2(2, 2)T + t−2(2, 0)T + �]− t−2[t(1, 2)T + t−1(1, 0)T ]

= t[t2(3, 2)T + t−2(1, 2)T ] + t−3[(3, 0)T + (1, 0)T ] + t−1(1, 0)T� − t−1(1, 2)T

+t−3(1, 0)T = t3(3, 2)T + t−3(3, 0)T + t−1(1, 0)T�.

Next we use the reflection homeomorphism fΣ1,i → Σ1,i defined by f(x, y) = (x,−y).

The induced mapf∗ can be represented as f∗ =

(
1 0

0 −1

)
We will use this to prove

following result.

Proposition 2.2.8. The following formula holds

(3, 2)T ∗ (0, 1)T = t3(3, 3)T + t−3(3, 1)T + t−1(1, 1)T�.

Proof. We have

(3, 2)T ∗ (0, 1)T = ℎL∗
(f∗(3, 1)T ∗ (0, 1))

= ℎL∗(f∗(t
3(3, 2)T + t−3(3, 0)T + t−1

T (1, 0)T�))

= ℎL∗(t
−3(3,−2)T + t3(3, 0)T + t(1, 0)T ) = t−3(3, 1)T + t3(3, 3)T + t(1, 1)T�.

Here, when we applied f∗, the coefficient changed to its reciprocal due to the change of

sign in the intersection number. As a matter of fact, we can also use the method of

Proposition 2.2.9 to derive this result.

Now we investigate the case of the crossing number equal to 4.

Proposition 2.2.9. The following formula holds

(4, 0)T ∗ (0, 1)T = t4(4, 1)T + t−4(4,−1)T

Proof. Note that (4, 0)T = (1, 0)4T − 4(1, 0)2T + 2, so

(4, 0)T ∗ (0, 1)T = [(1, 0)4T ∗ (0, 1)T ]− 4[(1, 0)2T ∗ (0, 1)T ] + 2(0, 1)T

12
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Now we know that

(1, 0)4T ∗ (0, 1)T = (1, 0)3T [(1, 0)T ∗ (0, 1)T ] = (1, 0)2T [t(1, 0)T ∗ (1, 1)T

+t−1(1, 0)T ∗ (1,−1)T ] = (1, 0)2T [t
2(2, 1)T + (0,−1)T + t−2(2,−1)T + (0, 1)T ]

= (1, 0)T [t
3(3, 1)T + t(−1,−1)T + 2t(1, 1)T + 2t−1(1,−1)T + t−1(−1, 1)T

+t−3(3,−1)T ].

This is further equal to

t3(1, 0)T ∗ (3, 1)T + t(1, 0)T ∗ (−1,−1)T + 2t(1, 0)T ∗ (1, 1)T

+2t−1(1, 0)T ∗ (1,−1)T + t−1(1, 0)T ∗ (−1, 1)T + t−3(1, 0)T ∗ (3,−1)T

= t4(4, 1)T + t2(−2,−1)T + (0, 1)T + t2(2, 1)T + 2t2(2, 1)T + 2(0, 1)T

+2t−2(2,−1)T + 2(0, 1)T + (0, 1)T

+t−2(2,−1)T + t−4(4,−1)T + t−2(−2, 1)T = t4(4, 1)T + t−4(4,−1)T

+4t2(2, 1)T + 4t−2(2,−1)T + 6(0, 1)T

Also

4(1, 0)2T ∗ (0, 1)T = 4[t(1, 0)T ∗ (1, 1)T + t−1(1, 0)T ∗ (1,−1)T ]

= 4[t2(2, 1)T + (0,−1)T + t−2(2,−1)T + (0, 1)T ]

This implies that (4, 0)T ∗ (0, 1)T = t4(4, 1)T + t−4(4,−1)T , as desired.

Next three results proposition show some other aspects of the multiplication of

Kt(Σ1,1 × I). Let Sn(x) be the Chebyshev polynomial of second kind defined by S0 = 1,

S1 = x, and Sn+1 = xSn − Sn−1.

Proposition 2.2.10. The following formula holds,

(4, 1)T ∗ (0, 1)T = t4(4, 2)T + t−4(4, 0)T + [t−2(2, 0)S + t(0, 0)S]�

where (p, q)S = Sn(
p

n
, q

n
) with n = gcd(p, q).

13
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Proof. Write (4, 1)T = t−1[(1, 0)T ∗ (3, 1)T ]− t−2(2, 1)T .This implies that

(4, 1)T ∗ (0, 1)T = t−1(1, 0)T [(3, 1)T ∗ (0, 1)T ]− t−2[(2, 1)T ∗ (0, 1)T ]

= t−1(1, 0)T [t
3(3, 2)T + t−3(3, 0)T + t−1(1, 0)T�]− t−2[t2(2, 2)T + t−2(2, 0)T + �]

= t2[(1, 0)T ∗ (3, 2)T ] + t−4[(1, 0)T ∗ (3, 0)T ] + t−2[(1, 0)T ∗ (1, 0)T�]− (2, 2)T

−t−4(2, 0)T − t−2�

= t2[t2(4, 2)T + t−2(2, 2)T + �] + t−4[(4, 0)T + (2, 0)T ] + t−2(1, 0)2�

−(2, 2)T − t−4(2, 0)T − t−2�

= t4(4, 2)T + (2, 2)T + t2� + t−4(4, 0)T + t−4(2, 0)T + t−2(2, 0)T + t−2(1, 0)2�

−(2, 2)T − t−4(2, 0)T − t−2�

= t4(4, 2)T + t−4(4, 0)T + t−2(1, 0)2� + t2� − t−2�

= t4(4, 2)T + t−4(4, 0)T + [t−2(2, 0)S + t2(0, 0)S]�

This is the result what we wanted.

Proposition 2.2.11. The following formula holds

(4, 2)T ∗ (0, 1)T = t4(4, 3)T + t−4(4, 1)T + (2, 1)S�

Proof. We have

(4, 2)T ∗ (0, 1)T = [(2, 1)T ∗ (2, 1)T − 2] ∗ (0, 1)T

= (2, 1)T ∗ [t2(2, 2)T + t−2(2, 0)T + �]− 2(0, 1)T

= t2(2, 1)T [(1, 1)
2
T − 2] + t−2(2, 1)T [(1, 0)T − 2] + (2, 1)T� − 2(0, 1)T

= t2[(2, 1)T ∗ (1, 1)T ] ∗ (1, 1)T + 2t2(2, 1)T + t−2[(2, 1)T ∗ (0, 1)T ](1, 1)T

−2t−2(2, 1)T + (2, 1)T� − 2(0, 1)T

= t2[t(3, 2)T + t−1(1, 0)T ] ∗ (1, 1)T − 2t2(2, 1)T + t−2[t−1(3, 1)T + t(1, 1)T ] ∗ (1, 0)T

−2t−2(2, 1)T + (2, 1)T� − 2(0, 1)T

= t4(4, 3)T + 2t2(2, 1)T + (0, 1)T − 2t2(2, 1)T + t−4(4, 1)T + 2t−2(2, 1)T + (0, 1)T

−2t−2(2, 1)T − (2, 0)T + (2, 1)T�

= t4(4, 3)T + t−4(4, 1)T + (2, 1)S�,

and the formula is proved.

14
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Proposition 2.2.12. The following formula holds

(4, 3)T ∗ (0, 1)T = t4(4, 4)T + t−4(4, 2)T + [t2(2, 2)S + t−2(0, 0)S]�.

Proof. We have

(4, 3)T ∗ (0, 1)T = ℎL∗
(f∗[(4, 1)T ∗ (0, 1)T ])

= ℎL∗
(f∗[t

4(4, 2)T + t−4(4, 0)T + t−2(2, 0)S + t2(0, 0)S])

= ℎL∗
(t−4(4,−2)T + t4(4, 0)T + t2(2, 0)S + t−2(0, 0)S)

= t−4(4, 2)T + t4(4, 0)T + t2(2, 2)S + t−2(0, 0)S.

So the formula is proved.
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CHAPTER 3

REPRESENTATIONS OF THE KAUFFMAN BRACKET SKEIN ALGEBRA OF THE

PUNCTURED TORUS

So far, we described the basic multiplicative structure of Kt(Σ1,1 × I). Now we will

focus on its representation on the vector space with a special basis called Kauffman triad

defined in terms of trivalent graphs in the solid torus. As we mentioned in Chapter 2, the

skein module of manifold having a punctured torus on the boundary can be endowed with

a Kt(Σ1,1 × I)-module structure via multiplication described , inducing a representation.

We will consider the manifold as the solid torus and consider skeins defined by trivalent

graphs. We will examine the action of Kt(Σ1,1 × I) on these basis elements.

3.1 Background material

3.1.1 Basic terminologies and properties

We will now explain how the basis elements are constructed. For this we need some

background material. At first we will start with the definition and properties of

elementary tangles, following [11].

Definition 2. We define the elementary tangles U1, U2, ..., Un−1, where each Ui is a

tangle with n-input strands and n-output strands. In each Ui, the kth input is connected

to the kth output for k ∕= i, i+ 1, while the ith input is connected to i+ 1-st input and the

ith output is connected to the i+ 1st output.

Example 3.1.1. The elementary tangles 15, U1, U2, U3, U4 are shown in Figure 3.1.

Figure 3.1.

Now we will give multiplicative structure on these n-strand elementary tangles by

attaching the n output strands of the first tangles to the n input strands of second

tangle. Two tangles are called equivalent if they are regularly isotopic relative to their

end points. The basic properties of the tangles under this multiplication are as follows.
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The Ui satisify U2
i = dUi, where d is the value assigned to a loop. In our work

d = −t2 − t−2. Also UiUi±1Ui = Ui, and UiUj = UjUi for ∣i− j∣ > 1.

Definition 3. The Temperley-Lieb algebra Tn is the free additive algebra over ℂ̄[t, t−1]

with multiplicative generator 1n, U1, U2, ..., Un−1 and relations, given above and

ℂ̄[t, t−1] = { p

q
∣ p, q ∈ ℂ[t, t−1] }

We can interpret Tn as the Kauffman bracket skein algebra Kt(D
2, 2n) of (D2, 2n),

namely of a disk with 2n boundary points, where the links in (D2, 2n) consist of arcs and

closed curves within D2 with the end points of arcs being the specified 2n points on the

boundary. By viewing (D2, 2n) as rectangle with n points on the left edge and n points

on the right edge and attaching right edge of one rectangle to left edge of another, we

can define mutiplication.

Now we will define, for each n, an essential element in Tn called Jones-Wenzl

idempotent. These were introduced by Jones and Wenzl (see [16]) in their studies of von

Neumann algebras.

Definition 4. Let fi ∈ Tn be defined inductively for i = 0, 1, 2, ..., n− 1 by the following

f0 = 1n

fk+1 = fk − �k+1fkUk+1fk.

where �1 = d−1, �k+1 = (d− �k)
−1. Here d is loop value defined above in Tn, and

U2
i = dUi for each i.

If x is a n-tangle , then we let x̄ be the standard closure of x obtained by attaching the

i-th input to i-th output, and denote tr(x) =< x̄ > , where <,> denotes the bracket

polynomial.

Lemma 3.1.1. The elements fi, (i = 0, 1, 2, ..., n− 1), satisify following properties.

f 2
i = fi, for each i (3.1)

fiUj = Ujfi = 0, for j ≤ i (3.2)

tr(fn−1) = Δn = Δn(−t2) and �k+1 =
Δk

Δk+1

with Δ0 = 1 (3.3)

where Δn(x) =
xn+1 − x−(n+ 1)

x− x−1
is the n-th Chebyschev polynomial .
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Now we can prove the existence of the Jones-Wenzl idempotent in Tn.

Proposition 3.1.2. There exist a unique non-zero element f ∈ Tn such that f 2 = f ,

fUi = Uif = 0.

Proof. By Lemma 3.1.1, f = fn−1 satisfies the desired property.

Definition 5. The element f from Proposition 3.1.2 in Tn is called the n− 1st

Jones-Wenzl idempotent.

As an example, in T2,

f1 = f0 − �f0U1f0 = 12 − d−1U1.

This is equal to the tangle in Figure 3.2.

− 1
d

Figure 3.2.

The trace of f1 is shown in Figure 3.3.

1
d

Figure 3.3.

This is futher equal to

d2 −

(
1

d

)2

= d2 − 1 = (−t2 − t−2)2 − 1

and this equals t4 + t−4 + 1. Also

Δ2(x) =
x3 − x−3

x− x−1
= x2 + x−2 + 1

In this example we can check that tr(f1) = Δ2(−t2).
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Definition 6. For a given positive integer n, define the Jones-Wenzl idempotent by the

formula. 1
{n}!

∑
�∈Sn

(t−3)t(�)�̂, where �̂ is described in Figure 3.4. Here

{n}! =
∑

�∈Sn
(t−4)t(�) =

∏n

k=1(
1−t−4k

1−t−4 ). Here Sn denote symmetric group on n letter , so

that � ∈ Sn may be thougth as a permutation of 1, 2,..., n and �̂ denote the n-tangle

obtained from any minimal representation of � as a product of transposition , so that

each tranaposition is replaced by a braid in the forn � for i = 1, 2, ..., n− 1.

σ̂

Figure 3.4.

We will denote the nth Jones-Wenzl idempotent by fn, and in a diagram, as shown in

Figure 3.5. As such, a link component decorated by the nth Jones-Wenzl idempotent

consist of n parallel copies of it, with the Jones-Wenzl idempotent inserted as shown by

the box. We also denote by Δn, the Kauffman bracket of the trivial knot decorated by

the nth Jones-Wenzl idempotent. It is not hard to prove inductively that

Δn = (−1)n
t2n+2 − t−2n−2

t2 − t−2
.

n

Figure 3.5.

of permutation � . In the example above , t(�) = 2

Now we will give some important properties related to Jones-Wenzl idempotent

described in terms of diagram.

Proposition 3.1.3. The identities described in Figure 3.6 hold.

Now we now recall the definition of a 3-vertex from [11]

Definition 7. A 3-vertex (also known as Kauffman triad) is defined as shown in

Figure 3.7, where i = b+c−a
2

, j = a+c−b
2

, and k = a+b−c
2

.
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jk

Figure 3.7.

A 3-vertex with adjacent labels a, b, c will be denoted shortly as shown in Figure 3.8.

Finally, we recall the vanishing condition for the Jones-Wenzl idempotent.

Proposition 3.1.4. If t is not a root of unity , then Jones-wenzl idempotent are defined

for all n , while if t = e
i�
2r , then the Jones-Wenzl idempotents are defined only for

n = 0, 1, 2, ..., r − 2.

3.1.2 The representations of Kt(Σ1,1 × I)

From now on, throughout the paper we set t = e
i�
2r where r is a positive integer. As

such t4 is a primitive rth root of unity. Because we work at roots of unity, both the

Jones-Wenzl idempotents and the 3-vertices come with additional conditions which we

recall below (a detailed discussion can be found in [11].
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b c

a

Figure 3.8.

The condition imposed on Jones-Wenzl idempotents is that the r − 1st Jones-Wenzl

idempotent is equal to zero. We require that 3-vertices are of admissible type (according

to Lickorish [12]).

Definition 8. A 3-vertex with labels a, b, c is called admissible if a+ b+ c is even,

a+ b+ c ≤ 2(r − 2),∣b− c∣ ≤ a ≤ min{b+ c, 2(r − 2)− b− c}.

The vector spaces on which we represent the Kauffman bracket skein algebra

Kt(Σ1,1 × I) of the punctured torus are parametrized by the integers n with the property

that 0 ≦ 2n ≦ r − 2 . These are the vector spaces Vr,n defined as follows.

Consider a solid torus (S1 ×D2, 2n) with a ”puncture disk” on the boundary and 2n

disjoint marked points in the punctured disk, numbered 1, 2, ...2n. We think of these

points as lying on a diameter, in this order.

Definition 9. The Kauffman bracket skein module of the solid torus with 2n points on

the boundary, Kt(S
1 ×D2, 2n), as the quotient of the free C[t, t−1]-module with basis the

set of isotopy classes of framed tangles with ends the 2n marked points by Kauffman

bracket skein relations.

The space Kt(S
1 ×D2, 2n) is spanned by elements that consist of several embedded

circles together with n embedded arcs whose end-points are the 2n points. The skein

relations allow us to remove any trivial circles and any crossings.

The topological operation of gluing the cylinder over the punctured torus Σ1,1 × [0, 1]

to the complement of the puncturing disk in the boundary of solid torus gives rise to an

action of Kt(Σ1,1 × [0, 1]) on Kt(S
1 ×D2, 2n).

For k < n, we will define a family of inclusions of Kt(S
1 ×D2, 2k) into Kt(S

1 ×D2, 2n).

Let � be the data consisting of a function f : { 1, 2, ..., 2k } → { 1, 2, ..., 2n } such that

f(i)− f(i− 1) is odd for i = 2, 3, ..., 2k and a pairing of 2n− 2k numbers in the

complement of Imf such that if (p, q) is a pair then p and q belong to same interval

(f(i− 1), f(i)) and for every two pairs (p, q) and (r, s), (r − p)(r − q)(s− p)(s− q) > 0.
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For each such � we define the inclusion i� : Kt(S
1 ×D2, 2k) → Kt(S

1 ×D2, 2n) by

identifying the 2k boundary points of Kt(S
1 ×D2, 2k) with the boundary points of

Kt(S
1 ×D2, 2n) idexed by f(i) , i = 1, 2, ..., 2k, for esch pair (p, q), connecting these

points by an arch isotopic to the segment [p, q].

Definition 10. The reduced Kauffman bracket skein module Kt,r(S
1 ×D2) is the

quotient of Kt(S
1 ×D2) by the skein relation f r−1 = 0, where fn, n ≥ 1 is Jones-Wenzl

idempotent defined above.

For n ≤ m ≤ r − 2− n, define the skein v2n,m as shown in the picture. Now we

examine the structure of Kt,r(S
1 ×D2, 2n)

Lemma 3.1.5. The Kt,r(S
1 ×D2, 2n) is a finite dimensional vector space with basis

i�(v2k,m) where 0 ≤ k ≤ n, k ≤ m ≤ r − 2− k and � ranges over all possible setof data

defined above.

Proof. All elements of Kt,r(S
1 ×D2, 2n) consist of some circles homotopic to (1, 0), some

folds of arcs not homotopic to interval [p, q] and/or some folds of arcs homotopic to

interval [p, q], without crossings in the projection onto the annulus with a puncturing

disk with specific marked 2n points on the boundary of disk in the plane. These elements

can be written as a linear combination of the skeins of the form i�(�), where � is a skein

in some Kt,r(S
1 ×D2, 2k). Note that the n-th Jones-Wenzl idempotent can be expanded

as the sum of n− 1 strands plus a sum of Temperley-Lieb elements, each containing a

“turn-back”. Now by the definition of the Kauffman triad, we can transform the

Kauffman triad into the combination of two Jones-Wenzl idempotents. By expanding one

of the Jones-Wenzl idempotents, we obtain 2k strands plus a sum of Temperley-Lieb

elements, eaching containing a “turn-back”. This “turn-back” in one Jones-Wenzl

idempotent combines with the other Jones-Wenzl idempotent leaving us with circles and

arcs not homotopic to interval [p, q] and one 2k-Jones-Wenzl idempotent attached to

these archs for k < n. By Definition 6, we know that the 2k Jones-Wenzl idempotent can

be expanded in terms of permutations of tangles, and we know that those elements are

all possible “turn-backs” and arcs without crossing. This implies that v2k,m generate

Kt,r(S
1 ×D2, 2k). So we know that the set i�(v2k,m), indexed by

0 ≤ k ≤ m, k ≤ m ≤ r − 2 and � span Kt,r(S
1 ×D2, 2n). Their linear independence is

trivial.

The action of Kt(Σ1,1 × [0, 1]) on Kt,r(S
1 ×D2) induces a representation. We will

consider the represetation on some subspaces. Now let ∂ be the elemet of Kt(Σ1,1× [0, 1]).
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We know that this element is in the center of Kt(Σ1,1 × [0, 1]). This implies that the

eigenspaces associated with ∂ are invariant subspaces of the representation. We also

know that the eigenvalues of ∂ are −t4k+2 − t−4k−2, k ≤ n. The eigenspace associated

with eigenvalue −t4k+2 − t−4k−2 has a basis i�(v2k,m) for all � and m, k ≤ m ≤ r − 2− k.

Our main concern is the case when k = n. Let Vr,n be the eigenspace of ∂ associated with

the eigenvalue −t4n+2 − t−4n−2,with basis v2n,m, where n = 0, 1, 2, ..., r − 2. To describe

the representation of Kt(Σ1,1 × [0, 1]) on Vr,n ,we will start with case r = 5, 6, 8 to get

some insight about the representation and will extend to general positive integer r.

We will start with the first non-trivial case, r = 5. In this case there are two possible

5-admissible 3-vertex embedded in the solid torus with a puncture, these are v2,1 and

v2,2. Now, we will explain the representation of Kt(Σ1,1 × I) on the vector space of these

basis. Since all the closed loops in the Kt(Σ1,1 × I) can be generated from the curves

(0, 1), (1, 0),and (1, 1) curves, it suffices to explain the action of these curves on the

elements described above. important information about the action of (1,0) on the v2,2.

Proposition 3.1.6. The action of the Kauffman bracket skein algebra of the punctured

torus on V5,1 is given by

(1, 0)v2,1 = v2,2,

(1, 0)v2,2 = (1−
Δ1

Δ2

⋅
1

d
)v2,1 = (1−

[1][2]

[2][3]
)v2,1,

(0, 1)v2,1 = −(t4 + t−4)v2,1

(0, 1)v2,2 = −(t6 + t−6)v2,2

(1, 1)v2,1 = (−t−5)v2,2

(1, 1)v2,2 = (−t5)(1−
[1][2]

[2][3]
)v2,1.

where quantized integer [k] = t2k−t−2k

t2−t−2 implying Δk = (−1)k[k + 1].

Proof. We proceed as in Figure 3.9, where we use the defining condition for 5-admissible

3-vertices. By the defining condition of 5-addmissible 3-vertex , we know the following.

This proves that

(1, 0)v2,2 =

(
1−

Δ1

Δ2

1

d

)
v2,1.

To compute the action of (1, 0) on v21, we evaluate v2,2 as shown in Figure 3.10. This
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0 = v2,3 = = ∆
∆

1

2

=
∆1
∆2

(
1
d

)

=
∆1
∆2

( ∆
∆1

2 1
d

)

Figure 3.9.

shows that

(1, 0)v2,1 = v2,2

The action of (0, 1) on the basis elements is a consequence of Proposition 3.1.3 (5)

Now we turn to the action of (1, 1) By lemma 2.2.1.

(1, 0) ∗ (0, 1) = t(1, 1) + t−1(1,−1), and (3.4)

(0, 1) ∗ (1, 0) = t−1(1, 1) + t(1,−1), (3.5)

From this, we can deduce the following by multiplying (3.4) by t and (3.5) by t−1 and

then substracting the result.

t[(1, 0) ∗ (0, 1)]− t−1[(0, 1) ∗ (1, 0)] = (t2 − t−2)(1, 1) this gives us that

(1, 1) =
t

t2 − t−2
[(1, 0) ∗ (0, 1)]−

t−1

t2 − t−2
[(0, 1) ∗ (1, 0)].
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=
d
1

= 0 =

Figure 3.10.

We compute

(1, 1)v2,1 =
t

t2 − t−2
(1, 0)(0, 1)v2,1 −

t−1

t2 − t−2
(0, 1)(1, 0)v2,1

=
t(−t4 − t−4)

t2 − t−2
(1, 0)v2,1 −

t−1

t2 − t−2
(0, 1)v2,2

=
−t5 − t−3

t2 − t−2
v2,2 −

(t−1)(−t6 − t−6)

t2 − t−2
v2,2

=
−t5 − t−3

t2 − t−2
v2,2 +

t5 + t−7

t2 − t−2
v2,2

=
t−7 − t−3

t2 − t−2
v2,2

=
(t−5)(t−2 − t2)

t2 − t−2
v2,2 = −t−5v2,2

Similarly, we can determine the action of (1, 1) on v2,2 as follows

(1, 1)v2,2 =
t

t2 − t−2
(1, 0)(0, 1)v2,2 −

t−1

t2 − t−2
(0, 1)(1, 0)v2,2

=
t(−t6 − t−6)

t2 − t−2
(1, 0)v2,2 − (

t−1

t2 − t−2
)(1−

Δ11

Δ2d
)(0, 1)v2,1

= (
−t7 − t−5

t2 − t−2
)(1−

Δ11

Δ2d
)v2,1 −

t−1(t4 − t−4)

t2 − t−2
(1−

Δ11

Δ2d
)v2,1

=
−t7 + t−3

t2 − t−2
(1−

Δ11

Δ2d
)v2,1 =

−t5(t2 − t−2)

t2 − t−2
(1−

Δ11

Δ2d
)v2,1

= (−t5)(1−
[1][2]

[2][3]
)v2,1
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This completes the proof.

As we saw from above Proposition, if r = 5, then the action of (1, 0), (0, 1), and (1, 1)

on the basis elements v2,1 v2,2 are relatively simple. We will now examine the case r = 6,

to gain more insight about the general case.

Proposition 3.1.7. Assume that t4 is primitive 6th root of unity, then the action of the

Kauffman bracket skein algebra of the punctured torus on V6,1 is given by

(1, 0)v2,1 = v2,2

(1, 0)v2,2 = v2,3 + (1−
Δ11

Δ2d
)v2,1 = v2,3 + (1−

[1][2]

[2][3]
)v2,1

(1, 0)v2,3 = (1−
Δ11

Δ3Δ2

)v2,2 = (1−
[1][2]

[3][4]
)v2,2

(0, 1)v2,1 = −(t4 + t−4)v2,1

(0, 1)v2,2 = −(t6 + t−6)v2,2

(0, 1)v2,3 = −(t8 + t−8)v2,3

(1, 1)v2,1 = −t−5v2,2

(1, 1)v2,2 = −t−7v2,3 + (−t5)(1−
[1][2]

[2][3]
)v2,1

(1, 1)v2,3 = −t7(1−
[1][2]

[3][4]
)v2,2.

Proof. The action of (1, 0) on v2,1 is done in the previous proposition 3.1.5. We will prove

the remaining two formulas. First we know that

v2,3 = (1, 0)v2,2 +

(
Δ1 ⋅ 1

Δ2 ⋅ d
− 1

)
v2,1

as seen in the proof of the Proposition 3.1.6. This implies that

(1, 0)v2,2 = v2,3 +

(
1−

Δ1

Δ2d

)
v2,1 = v2,3 +

(
1−

[1][2]

[2][3]

)
v2,1

To show that

(1, 0)v2,3 =

(
1−

[1][2]

[3][4]

)
v2,2

we begin as shown in Figure 3.11. The second skein in the parenthesis is equal to zero.
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v
2,40 =  =

∆
∆

2

3

=(1,0)v2,3
∆
∆

2

3
(

∆
∆2

1 )

=(1,0)v2,3
∆ 2

∆3
[∆3

∆2

∆1

∆2
(

1

∆1

)]

Figure 3.11.

So this is equal to the expression shown in Figure 3.12. This is further equal to

(1,0)v2,3
v2,2

∆
∆

0

3

∆
∆

1

2

Figure 3.12.

(1, 0)v2,3 − v2,2 +

(
Δ1

Δ3

Δ0

Δ2

)
v2,2

= (1, 0)v2,3 −

(
1−

Δ1Δ0

Δ3Δ2

)
v2,2.

We obtain

(1, 0)v2,3 = v2,4 +

(
1−

Δ1Δ0

Δ3Δ2

)
v2,2 =

(
1−

[2][1]

[4][3]

)
v2,2,

as desired. The action of (0, 1) is again a direct consequence of Proposition 3.1.3.

Now we want to describe the action of (1,1) on the basis elements v2,1, v2,2, andv2,3.

This is similar to the computation in Proposition 3.1.7, so we give a proof of the action
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of (1, 1) on v2,2 only. We have

(1, 1)v2,2 =
t

t2 − t−2
(1, 0)(0, 1)v2,2 −

t−1

t2 − t−2
(0, 1)(1, 0)v2,2

=
−t(t6 + t−6)

t2 − t−2
(1, 0)v2,2 −

t−1

t2 − t−2
(0, 1)[v2,3 + (1−

[1][2]

[2][3]
)v2,1]

=
−(t7 + t−5)

t2 − t−2
[v2,3 + (1−

[1][2]

[2][3]
)v2,1] +

t7 + t−9

t2 − t−2
v2,3

+
t3 + t−5

t2 − t−2
(1−

[1][2]

[2][3]
)v2,1

=
−t−5 + t−9

t2 − t−2
v2,3 +

−t7 + t3

t2 − t−2
(1−

[1][2]

[2][3]
)v2,1

= −t−7v2,3 + (−t5)(1−
[1][2]

[2][3]
)v2,1.

This completes the proof.

We now turn to a situation where n = 2. The first non-trivial case is for r = 7, in

which case V7,2 is 2-dimensional and has the basis elements v4,2, v4,3.

Proposition 3.1.8. The action of the Kauffman bracket skein algebra of the punctured

torus on V7,2 is given by

(1, 0)v4,2 = v4,3

(1, 0)v4,3 = (1−
[2][3]

[3][4]
)v4,2

(0, 1)v4,2 = (−t2(2)+2 − t−2(2)−2)v4,2

(0, 1)v4,3 = (−t2(3)+2 − t−2(3)−2)v4,3

(1, 1)v4,2 = (−t−2(2)−3)v4,2

(1, 1)v4,3 = (−t2(3)+1)(1−
[2][3]

[3][4]
)v4,2

Proof. The action of (1, 0) on v4,2 is trivial. To determine the action of (1, 0) on v4,3, we

will use again the diagramatic method, as shown in Figure 3.13

(1, 0)v4,3 − v4,2 +
Δ2

Δ3

[
Δ1

Δ2

(v4,2 − 0)

]

= (1, 0)v4,3 − v4,2 +
Δ2Δ1

Δ3Δ2

v4,2
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0 = v
4,4 =

=
∆
∆

2

3

= (1,0)v
4,3

∆ 2

∆ 3
(

∆
∆ 2

1 )

Figure 3.13.

This implies that

(1, 0)v4,3 =

(
1−

[2][3]

[3][4]

)
v4,2.

The action of (0, 1) is again a consequence of Proposition 3.1.3, while for the action of

(1, 1) we again use the multiplicative structure of the Kauffman bracket skein algebra of

the punctured torus.

We are now able to introduce the main result, which is a generalization of the previous

propositions.

Theorem 3.1.9. Let r be a positive integer greater than or equal to 5, and let n be a

positive integer such that 0 ≤ n ≤ r−2
2
. The representation of Kt(Σ1,1 × I) on Vr,n is
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given by

(1, 0)v2n,m = v2n,m+1 +

(
1−

[n][n+ 1]

[m][m+ 1]

)
v2n,m−1

= v2n,m+1 +
[m− n][m+ n+ 1]

[m][m+ 1]
v2n,m−1

(0, 1)v2n,m = (−t2m+2 − t−2m−2)v2n,m

(1, 1)v2n,m = (−t−2m−3)v2n,m+1 + (−t2m+1)
[m− n][m+ n+ 1]

[m][m+ 1]
v2n,m−1,

where n ≤ m ≤ r − 2− n, with the convention that v2n,n−1 = v2n,r−1−n = 0.

Proof. First let us recall the skein v2n,m shown in Figure 3.14.

m
m−n

2n

n

2n

Figure 3.14.

Note that the number of strands not attached to the 2nth Jones-Wenzl idempotent is

m− n.

The basic strategy is to expand v2n,m+1 to an expression in which we will recognize

(1, 0)v2n,m and v2n,m−1. We start by expanding repeatedly the m+ 1st Jones-Wenzl

idempotent (on the left in the the diagram). We begin our computation as shown in

Figure 3.15.

n

1
n2v

2n,m+1

∆ m−

∆m

1
2n

2n

nm−n−1

1

1

n

m−n+1 m−n

Figure 3.15.

We expand the upper Jones-Wenzl idempotent in the last diagram from Figure 3.15 as

shown in Figure 3.16.
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2n2n

n
nm−n−

1

1
m−n−2

1
1

1

∆
∆

m−

m−

2

1

Figure 3.16.

Using Proposition 3.1.3 we deduce that this is further equal to

Δm

Δm−1

v2n,m−1 −
Δm−2

Δm−1

A0,

where Ak is defined in Figure 3.17. By expanding the upper Jones-Wenzl idempotent in

12k ...

m−n−k−2

n

n2

1

1

1
1

Figure 3.17.

Figure 3.17 and using the fact that skeins involving turn-backs are equal to zero we

obtain the recursive relation

Ak = −
Δm−(k+1)

Δm−k

Ak+1

and consequently

v2n,m+1 = (1, 0)v2n,m − v2n,m−1 + (−1)m−nΔm−1

Δm

⋅
Δm−2

Δm−1

⋅ ⋅ ⋅
Δn−1

Δn

Am−n. (3.6)

It is not hard to see that Am−n is the skein from Figure 3.18.

We compute the skein Am−n recursively. We let Bk be the skein in Figure 3.19.

Expand the Jones-Wenzl idempotent in Bk as described in Figure 3.20. The first skein
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n

n−

n−

2

1

1

1

1

1

m−n−1

Figure 3.18.

k

2n

1 1
1

n−

n−

1

1
m−n−k−1

Figure 3.19.

is zero because it contains a “turn back”. This shows that Bk satisfies the recursive

relation

Bk = −
Δm−k−2

Δm−k−1

Bk+1. (3.7)

It is not hard to see that Bm−n = v2n,m−1.

2n
1

1

1

n−1

n−1

k

m−n−k−1

Figure 3.20.
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Combining (3.6) and (3.7), we obtain

(1, 0)v2n,m = (1−
Δn

Δm

Δn−1

Δm−1

)v2n,m−1 = (1−
[n][n+ 1]

[m][m+ 1]
)v2n,m−1.

Now we will simplify this by the following computation:

1−
[n][n+ 1]

[m][m+ 1]
= 1−

(t2n − t−2n)

(t2m − t−2m)

(t2n+2 − t−2n−2)

(t2m+2 − t−2m−2)

= 1−
t4n+2 − t2 − t−2 + t−4n−2

t4m+2 − t2 − t−2 + t−4m−2

=
t4m+2 + t−4m−2 − t4n−2 − t−4n−2

t4m+2 − t2 − t−2 + t−4n−2

=
t2m+2n+2(t2m−2n − t−2m+2n) + t−2m−2n−2(t−2m+2n − t2m−2n)

(t2m − t−2m)(t2m+2 − t−2m−2)

=
(t2m+2n+2 − t−2m−2n−2)(t2m−2n − t−2m−2n)

(t2m − t−2m)(t2m+2 − t−2m−2)

=
[m− n][m+ n+ 1]

[m][m+ 1]

This prove the first equation from the statement. The second is a direct consequence of

Proposition 3.1.3.

Using these two relations and the expression of (1, 1) in terms of (1, 0) and (0, 1) we

have

(1, 1)v2n,m =
t

t2 − t−2
(1, 0)(0, 1)v2n,m −

t−1

t2 − t−2
(0, 1)(1, 0)v2n,m,

and by setting k = [m−n][m+n+1]
[m][m+1]

we can write

(1, 1)v2n,m =
t(−t2m+2 − t−2m−2)

t2 − t−2
(1, 0)v2n,m −

t−1

t2 − t−2
(0, 1)(v2n,m + kv2n,m−1)

=
−t2m+3 − t−2m−1

t2 − t−2
(v2n,m+1 + kv2n,m−1) +

t−2m−5 − t−2m−1

t2 − t−2
v2n,m+1

+
t2m−1 + t−2m−1

t2 − t−2
kv2n,m−1

=
t−2m−5 − t−2m−1

t2 − t−2
v2n,m+1 +

t2m−1 − t2m+3

t2 − t−2
kv2n,m−1

= (−t2m−3)v2n,m+1 + (−t2m+1)(
[m− n][m+ n+ 1]

[m][m+ 1]
)v2n,m−1
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This proves the third equation, and we are done.

Remark. After this result has been announced at the Knots in Washington XXXII

Conference [3], it has also been announced in [13].
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CHAPTER 4

THE RESHETIKHIN-TURAEV REPRESENTATION OF THE MAPPING CLASS

GROUP OF THE PUNCTURED TORUS

In Chapter 3 we described the representation of Kauffman bracket skein algebra of a

punctured torus Kt(Σ1,1 × [0, 1]) on Vr,n. In this section, we will show a method of

calculating the matrices of the Reshetikhin-Turaev representation of mapping class group

of the punctured torus from the representation of Kauffman bracket skein algebra of a

punctured torus Kt((Σ1,1 × [0, 1]) described in Theorem 3.18. A different approach for

deriving these formulas was taken in [6], and in particular a different formula for the

S-map was found there.

4.1 Representation of mapping class group of Σ1,1 on Vr,n

Because a linear trasformation is best understood by its action on the basis elements,

an element of mapping class group can be best understood by its action on the simple

closed curves. It is known that the mapping class group of a punctured torus Σ1,1 is

isomorphic to the special linear group SL2(Z). Also it is known that the mapping class

group of a punctured torus Σ1,1 is generated by the maps S, T, and T1 described in

Figure 4.1.

The Reshetikhin-Turaev representation � of the mapping class group of the punctured

torus Σ1,1 on Vr,n is determined by the representation of the Kauffman bracket skein

algebra Kt(Σ1,1 × [0, 1]) by the relation

ℎ() = �(ℎ)�(ℎ)−1,

where  is a skein in the cylinder over the punctured torus, and ℎ() is the image of that

skein under the homeomorphism ℎ× id of the cylinder over the torus. This relation has

been identified to be an exact Egorov identity in [8]. The main goal of this chapter is to

determine the matrices of the S-map and T -map. We apply these equations for the

particular cases where  = (1, 0) and  = (0, 1).

For the S-matrix, the exact Egorov identity becomes

(1, 0)Sv2n,n+j = S(0, 1)v2n,n+j ,

(0, 1)Sv2n,n+j = S(1, 0)v2n,n+j .
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T1

T

S

Figure 4.1.

Proposition 4.1.1. Let S = (aj,k) be the S-matrix, where 0 ≤ j, k ≤ r − 2n− 2. Then S

is given by following recursive relation.

aj−1,k = (−t2n+2k+2 − t−2n−2k−2)aj,k −
[j+1][2n+j+2]
[n+j+1][n+j+2]

aj+1,k

aj,k−1 = (−t2n+2j+2 − t−2n−2j−2)aj,k −
[k+1][2n+k+2]
[n+k+1][n+k+2]

aj+1,k

Proof. Let Sv2n,k+n =
∑n−2r−2

j=1 aj,kv2n,n+j. Then

(1, 0)Sv2n,n+k =
∑r−2n−2

j=1 aj,k[(1, 0)v2n,n+j ], which is further computed as follows

r−2n−2∑

j=1

aj,k[v2n,n+j+1 +
[j][2n+ j + 1]

[j + n][j + n+ 1]
v2n,j−1+n]

=
r−2n−2∑

j=1

[aj−1,k + aj+1,k(
[j + 1][2n+ j + 2]

[n+ j + 1][n+ j + 2]
)]v2n,n+j
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We also know that

S(0, 1)v2n,n+k = S(−t2(n+k)+2 − t−2(n+k)−2)v2n,n+k

=
r−2n−2∑

j=1

(−t2n+2k+2 − t−2n−2k−2)aj,kv2n,n+j

By comparing the coefficients, we notice that

aj−1,k = (−t2n+2k+2 − t−2n−2k−2)aj+1,k −
[j+1][2n+j+2]
[n+j+1][n+j+2]

aj+1,k.

Now we can prove second fact. Since (0, 1)Sv2n,n+j = S(1, 0)v2n,n+j , we have

S(1, 0)v2n,k+n = S[v2n,k+1+n +
[k][2n+ k + 1]

[k + n][k + n+ 1]
v2n,k−1+n]

=
r−2n−2∑

j=1

aj,k+1v2n,j+n +
[k][2n+ k + 2]

[k + n][k + n+ 1]

r−2n−2∑

j=1

aj,k−1v2n,j+n

=
r−2n−2∑

j=1

(aj,k+1v2n,j+n +
[k][2n+ k + 1]

[k + n][k + 1 + n]
aj,k−1)v2n,j+n

On the other hand, we know that

(0, 1)Sv2n,n+k = (0, 1)
r−2n−2∑

j=1

aj,kv2n,j+n

=
r−2n−2∑

j=1

aj,k(−t2j+2n+2 − t−2j−2n−2)v2n,j+n

Comparing the coefficient we obtain

aj,k+1 = (−t2j+2n+2 − t−2j−2n−2)aj,k −
[k][2n+ k + 1]

[k + n][k + 1 + n]
aj,k+1.

The conclusion follows.

To compute T matrix, we will use again the two instances of the exact Egorov identity,

which now read

(1, 0)Tv2n,n+j = T (1, 1)v2n,n+j ,

(0, 1)Tv2n,n+j = T (0, 1)v2n,n+j .
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Proposition 4.1.2. Let T = (bj,k)be the T -matrix, where 0 ≤ j, k ≤ r − 2n− 2. Then T

is diagonal matrix (bj,j), where

bj,j = (−1)n+jt(n+j)2−1.

Proof. First, we know that T (0, 1) = (0, 1)T and (0, 1) has 1-dimensional eigenspaces.

From the commutativity, we deduce that T is diagonal. Since

(1, 0)Tv2n,n+j = T (1, 1)v2n,n+j ,

by comparing the respective coefficients, we obtain the recursive relation

bj,j = −t2n+2j+1bj−1,j−1.

Setting b1,1 = (−1)ntn
2−1, we obtain bj,j = (−1)n+jt(n+j)2−1, as desired.

The twist T1 on the boundary commutes with all operators in Kt(Σ1,1 × [0, 1]).

Because the representation of Kt(Σ1,1 × [0, 1]) on Vr,n is irreducible, it follows that T1

acts as multiplication by a scalar. We may choose this scalar to be t(2n)
2−1.
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