Homework 6

- 1. Prove that for every real number $x, e^x \ge x + 1$.
- 2. Find all positive real solutions to the equation $2^x = x^2$.
- 3. Show that for every positive numbers a, b, and positive integer n, one has $a^n + (n 1)b^n \ge nab^{n-1}$.
- 4. Compute the following limits using l'Hospital's theorem:

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

$$\lim_{x \to \infty} \frac{\ln x}{x^2}$$

$$\lim_{x \to 0+} x \ln \sin x$$

$$\lim_{x \to 0+} x^x.$$