Homework 2

1. Using either the properties of limits and/or the squeezing principle, find the following limits:

(a)
$$\lim_{n \to \infty} \frac{3n^4 + (-1)^n n^2 + 1}{4n^4 + 3n^3 + 2n}$$

(b)
$$\lim_{n \to \infty} \frac{n^2 + 2}{n^2 \sqrt{n} + 1}$$
(c)
$$\lim_{n \to \infty} \frac{2^n + 3}{3^n + 2}$$

$$(c) \quad \lim_{n \to \infty} \frac{2^n + 3}{3^n + 2}$$

$$(d) \quad \lim_{n \to \infty} \sqrt[n]{3}$$

$$(d) \quad \lim_{n \to \infty} \sqrt[n]{3}$$

$$(e) \quad \lim_{n \to \infty} (2^n + 3^n)^{1/n}$$

2. Find, with proof,

$$\lim_{n \to \infty} (\sqrt{(n+2)(n+3)} - n).$$

3. Let $x_1 = 1$, and $x_{n+1} = \sqrt{2 + x_n}$, $n \ge 1$. Show that (x_n) converges and find its limit.