
HOMEWORK 2
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Problem 1. Show that if one space is a deformation retract of another,
then their fundamental groups are isomorphic.
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Problem 1. Show that if one space is a deformation retract of another,
then their fundamental groups are isomorphic.

Solution: Let H : X × [0, 1] → X be the deformation retraction.
Define r : X → A, r(x) = H(x, 1). Then r ◦ i = 1A. On the
other hand i ◦ r is homotopic to 1X , the homotopy being H itself. The
conclusion follows from Theorem 4.2.3.
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Problem 2. The Klein bottle is obtained as a quotient space of [0, 1]×
[0, 1] by the equivalence relations (s, 0) ≡ (s, 1) and (0, t) ≡ (1, 1− t),
for all s, t ∈ [0, 1]. Compute the fundamental group of the Klein bottle.
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Problem 2. The Klein bottle is obtained as a quotient space of [0, 1]×
[0, 1] by the equivalence relations (s, 0) ≡ (s, 1) and (0, t) ≡ (1, 1− t),
for all s, t ∈ [0, 1]. Compute the fundamental group of the Klein bottle.

Solution: Here is a picture of the Klein bottle.
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Problem 2. The Klein bottle is obtained as a quotient space of [0, 1]×
[0, 1] by the equivalence relations (s, 0) ≡ (s, 1) and (0, t) ≡ (1, 1− t),
for all s, t ∈ [0, 1]. Compute the fundamental group of the Klein bottle.

Solution: Here is a picture of the Klein bottle.

On this picture we can distinguish a Möbius band.
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On this picture we can distinguish a Möbius band.
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In fact we can distinguish two Möbius bands:

8



In fact we can distinguish two Möbius bands:

Hence the Klein bottle is obtained by gluing two Möbius bands along
their boundary! Each Möbius band has just one boundary component!
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In fact we can distinguish two Möbius bands:

Hence the Klein bottle is obtained by gluing two Möbius bands along
their boundary! Each Möbius band has just one boundary component!

Now we can apply the Seifert-van Kampen theorem.
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To be able to apply the Seifert-van Kampen theorem, we need to en-
large the two Möbius bands so that they overlap. Now we have X=Klein
bottle, U1 = U2 =Möbius bands, U1 ∩ U2 =pink region.
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To be able to apply the Seifert-van Kampen theorem, we need to en-
large the two Möbius bands so that they overlap. Now we have X=Klein
bottle, U1 = U2 =Möbius bands, U1 ∩ U2 =pink region.

What is the pink region topologically?
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To be able to apply the Seifert-van Kampen theorem, we need to en-
large the two Möbius bands so that they overlap. Now we have X=Klein
bottle, U1 = U2 =Möbius bands, U1 ∩ U2 =pink region.

What is the pink region topologically?

It is a cylinder! If you don’t believe me go home, make a Möbius band
out of paper (use some Scotch tape), then cut out a regular neighbor-
hood of its boundary. You will see that the regular neighborhood twists
twice, thus is homeomorphic to a cylinder.
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U1, U2, U1 ∩U2 are all deformation retracts of a circle, so by Problem
1, their fundamental groups are Z.
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U1, U2, U1 ∩U2 are all deformation retracts of a circle, so by Problem
1, their fundamental groups are Z.

The Seifert-van Kampen theorem tells us that the fundamental group
of the Klein bottle is the free product of Z with Z, with amalgamation
over Z.
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U1, U2, U1 ∩U2 are all deformation retracts of a circle, so by Problem
1, their fundamental groups are Z.

The Seifert-van Kampen theorem tells us that the fundamental group
of the Klein bottle is the free product of Z with Z, with amalgamation
over Z.

That is

π1(K) = (Z ∗ Z)/N.

Let us identify N .
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U1, U2, U1 ∩U2 are all deformation retracts of a circle, so by Problem
1, their fundamental groups are Z.

The Seifert-van Kampen theorem tells us that the fundamental group
of the Klein bottle is the free product of Z with Z, with amalgamation
over Z.

That is

π1(K) = (Z ∗ Z)/N.

Let us identify N .
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The generator of the fundamental group of the boundary of the Möbius
band is mapped by the inclusion to twice the generator of the fundamen-
tal group of the Möbius band.
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The generator of the fundamental group of the boundary of the Möbius
band is mapped by the inclusion to twice the generator of the fundamen-
tal group of the Möbius band.

Thus N , which consists of the elements of the form i1∗(h)(i2∗(h)−1),
is generated by the element x2y−2, where x and y are the generators of
the first, respectively second Z.
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The generator of the fundamental group of the boundary of the Möbius
band is mapped by the inclusion to twice the generator of the fundamen-
tal group of the Möbius band.

Thus N , which consists of the elements of the form i1∗(h)(i2∗(h)−1),
is generated by the element x2y−2, where x and y are the generators of
the first, respectively second Z.

Consequently N introduces the only relation x2 = y2 and so

π1(K) =
〈
x, y |x2 = y2

〉
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Problem 3. What is the fundamental group of S1 ∨
S2?
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Problem 3. What is the fundamental group of S1 ∨
S2?

Solution: The proof for showing that the fundamental group of a
wedge of two circles is a free group with two elements goes through to
this case.
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Problem 3. What is the fundamental group of S1 ∨
S2?

Solution: The proof for showing that the fundamental group of a
wedge of two circles is a free group with two elements goes through to
this case.

In fact we have the following general result, which is a consequence of
the Seifert-van Kampen theorem.

Proposition: Let X and Y be path connected spaces and x0 ∈ X ,
y0 ∈ Y be points that have simply connected neighborhoods. Define
X

∨
Y as the quotient of X t Y by the equivalence relation x0 ∼ y0.

Then

π1(X
∨

Y ) = π1(X) ∗ π1(Y ).
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Problem 3. What is the fundamental group of S1 ∨
S2?

Solution: The proof for showing that the fundamental group of a
wedge of two circles is a free group with two elements goes through to
this case.

In fact we have the following general result, which is a consequence of
the Seifert-van Kampen theorem.

Proposition: Let X and Y be path connected spaces and x0 ∈ X ,
y0 ∈ Y be points that have simply connected neighborhoods. Define
X

∨
Y as the quotient of X t Y by the equivalence relation x0 ∼ y0.

Then

π1(X
∨

Y ) = π1(X) ∗ π1(Y ).

In particular

π1(S
1
∨

S2) = Z
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Problem 4. Let X be the space obtained by gluing B2 to S1 by the
map on the boundary z → zn. What is the fundamental group of X?
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Problem 4. Let X be the space obtained by gluing B2 to S1 by the
map on the boundary z → zn. What is the fundamental group of X?

Solution: We use Proposition 5.4.3. Here the disk is glued to S1,
which has fundamental group Z, and the gluing map g maps the gener-

ator of π1(∂B2) to n ∈ Z.
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Problem 4. Let X be the space obtained by gluing B2 to S1 by the
map on the boundary z → zn. What is the fundamental group of X?

Solution: We use Proposition 5.4.3. Here the disk is glued to S1,
which has fundamental group Z, and the gluing map g maps the gener-

ator of π1(∂B2) to n ∈ Z.

Hence

Im g∗ = nZ ⊂ Z.
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Problem 4. Let X be the space obtained by gluing B2 to S1 by the
map on the boundary z → zn. What is the fundamental group of X?

Solution: We use Proposition 5.4.3. Here the disk is glued to S1,
which has fundamental group Z, and the gluing map g maps the gener-

ator of π1(∂B2) to n ∈ Z.

Hence

Im g∗ = nZ ⊂ Z.

Consequently

π1(X) = Z/nZ = Zn
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Problem 5. Find a space whose fundamental group is Z3 × Z5.
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Problem 5. Find a space whose fundamental group is Z3 × Z5.

Solution: Think about the space X in Problem 4. Call that Xn, since
it depends on n.
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Problem 5. Find a space whose fundamental group is Z3 × Z5.

Solution: Think about the space X in Problem 4. Call that Xn, since
it depends on n. Then

π1(X3) = Z3 π1(X5) = Z5.
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Problem 5. Find a space whose fundamental group is Z3 × Z5.

Solution: Think about the space X in Problem 4. Call that Xn, since
it depends on n. Then

π1(X3) = Z3 π1(X5) = Z5.

Recall that π1(X × Y ) = π1(X)× π1(Y ) (Problem 3, Homework 5,
first semester).
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Problem 5. Find a space whose fundamental group is Z3 × Z5.

Solution: Think about the space X in Problem 4. Call that Xn, since
it depends on n. Then

π1(X3) = Z3 π1(X5) = Z5.

Recall that π1(X × Y ) = π1(X)× π1(Y ) (Problem 3, Homework 5,
first semester).

Hence

π1(X3 ×X5) = π1(X3)× π1(X5) = Z3 × Z5.
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