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ABSTRACT

We determine the action of the Kauffman bracket skein algebra of the torus on the

Kauffman bracket skein module of the complement of the 3-twist knot. The point is to

study the relationship between knot complements and their boundary tori, an idea that

has proved very fruitful in knot theory. We place this idea in the context of Chern-Simons

theory, where such actions arose in connection with the computation of the noncommu-

tative version of the A-polynomial that was defined by Frohman, the first author, and

Lofaro, but they can also be interpreted as quantum mechanical systems. Our goal is to

exhibit a detailed example in a part of Chern-Simons theory where examples are scarce.

Keywords: Kauffman bracket, skein modules, Chern-Simons theory, 3-twist knot com-
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1. Introduction

This paper should be viewed as a piece of experimental mathematics. It describes

the action of the Kauffman bracket skein algebra of the torus on the Kauffman

bracket skein module of the complement of the 3-twist knot, which is listed as the

52 knot in the knot table. Such computations have been done before for the trefoil

knot [8], the figure-eight knot [11], and (2, 2p+1) torus knots [18] as the main step

in the computation of the noncommutative version of the A-polynomial defined in

[6]. The noncommutative version of the A-polynomial has been linked to colored

Jones polynomials in [6], [9], [7], and to SL(2,C)-Chern-Simons theory [13], [4], a

difficult area of mathematics that has yet to be thoroughly understood. The theory

of Kauffman bracket skein modules has been linked to SL(2,C)-character varieties

[2], [20], as deformations of rings of affine characters, and as such they are also

supposed to be related to SL(2,C)-Chern-Simons theory, though it is not known

how.
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The case of the 3-twist knot is probably the most complicated example that can

still be done by hand; this is why we want to present it to the public. Computational

complexity grows very fast in the theory of skein modules, hence there are few

examples. A striking feature exhibited in this paper is the ocurrence of Jones-

Wenzl idempotents in the computations within skein modules. This feature has been

observed before by the first author; it seems that (arbitrary) skein computations

tend to structure themselves in terms of Jones-Wenzl idempotents.

In [21], E. Witten has related SU(2)-Chern-Simons theory to quantizations of

moduli spaces of flat connections on surfaces, which then leads to quantum mechan-

ical models (see [12] for a complete discussion). These quantum mechanical models

have a combinatorial version that arises from quantizing Wilson lines, formulated

using reduced skein modules (which are the building blocks of the topological quan-

tum field theory of Blanchet, Habbegger, Masbaum and Vogel [1]). The action of

the Kauffman bracket skein algebra of the torus on the skein module of the knot

complement that makes the object of this paper is similar to that quantum mechan-

ical model, but here we work with the non-reduced version of skein modules. One

might ask what does the model in which we work with the actual skein modules

and not their reduced versions represent? Given such questions, the lack of exam-

ples, and recent renewed interest in skein modules, we consider worth showing this

particular situation, as it might help clarify the general situation.

Given that the structure of the Kauffman bracket skein modules is now known

for a fairly large family of knot and link complements [16], [17], we hope that

the above work will be expanded to the study of structures that arise from skein

modules in other knot complements.

We start with some backgroundmaterial. Throughout the paper t is a variable. A

framed link in an orientable 3-manifold M is a disjoint union of embedded annuli. If

M is the cylinder over the torus, framed links are identified with curves on the torus,

with the annulus being parallel to the torus. If we draw a framed link on paper, its

framing is parallel to the plane of the paper, unless the link is drawn on the torus,

when we use the previous convention. Let L be the set of isotopy classes of framed

links in the manifoldM , including the empty link. Consider the free C[t, t−1]-module

with basis L, and factor it by the smallest subspace containing all expressions of the

form − t − t−1 and ©+ t2 + t−2, where the links in each expression

are identical except in a ball in which they look like depicted. This quotient is

denoted by Kt(M) and is called the Kauffman bracket skein module of the manifold

[19]. The factorization allows us to smoothen crossings (which we can create at

will using isotopy) and to replace trivial link components by a scalar. Because at

each application of the first skein relation one term is replaced by two terms, the

complexity of computations grows exponentially, and so the computations in this

paper are quite involved.

For the cylinder over torus, T2 × I (where I = [0, 1]), the skein module has a

multiplication induced by the operation of gluing one cylinder on top of another.
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This multiplication has been explicated in [5], here it is: As a module, Kt(T
2 × I)

is free with basis (p, q)T , p, q ∈ Z, p ≥ 0, where (p, q)T = Tn((p, q)) with Tn the

(normalized) Chebyshev polynomial of first kind defined by T0(x) = 2, T1(x) = x,

and Tn+1(x) = xTn(x)−Tn−1(x), n = gcd(p, q), and (p, q) is the curve of slope p/q

on the torus. We have product-to-sum formula

(p, q)T ∗ (r, s)T = t|
pq

rs
|(p+ r, q + s)T + t−|pq

rs
|(p− r, q − s)T .

In this paper we focus on the 3-twist knot K drawn in bold line in Figure 1. By

y

x

Fig. 1.

the complement of K we mean the compact orientable manifold S3\N(K) obtained

by removing from the 3-sphere an open regular neighborhood N(K) of K. The

gluing of the cylinder over ∂N(K) = T2 to S3\N(K) induces a Kt(T
2 × I)-left

module structure on Kt(S
3\N(K)); we want to explicate this structure.

It was shown in [3] that Kt(S
3\N(K)) is a free C[t, t−1]-module with basis xnyk,

n ≥ 0, 0 ≤ k ≤ 3, where x, y are shown in Figure 1. It suffices to understand the

action of a set of generators of Kt(T
2 × I) on the basis, and as generators we have

chosen (0, 1)T , (1,−3)T and (1,−2)T . The action of (0, 1)T is (0, 1)Tx
nyk = xn+1yk,

so we focus on the other two.

Using the fact the x can be pulled back into the cylinder over the boundary as

the skein (0, 1)T , and using the relations (1, q)T (0, 1)T = t(1, q+1)T+t−1(1, q−1)T ,

and (0, 1)T (1, q)T = t−1(1, q + 1)T + t(1, q − 1)T , we see that the action of (1, q)T
on xnyk can be found easily if we know how (1, q)T acts on the basis elements

1 = y0, y, y2, y3. It should also be noted that in computations from this paper x

behaves like a scalar.

We change the basis of Kt(S
3\N(K)) to Sn(x)Sk(y), where Sn is the (normal-

ized) Chebyshev polynomial of the second kind: S0(x) = 1, S1(x) = x, Sn+1(x) =

xSn(x) − Sn−1(x). As such, the basis elements are the curves x and y colored by

Jones-Wenzl idempotents. There are two explanations for this, one is practical: the

formulas become simpler. But there is a deeper explanation for this, namely that

the polynomial Sn is the character of the n + 1-dimensional irreducible represen-

tation of SL(2,C), and as such the skein Sn(x)Sk(y) consists of two Wilson lines

(one for x and one for y) associated to irreducible representations. Note also that

the colored Jones polynomials of a knot K are (−1)n 〈Sn(K)〉, where 〈·〉 denotes

the Kauffman bracket of knots and links in S3.

The goal of this paper is to find (1,−3)T ·Sk(y) and (1,−2)T ·Sk(y), k = 0, 1, 2, 3.
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2. Formulas in a quotient of the Kauffman bracket skein module

of cylinder over the twice punctured disk

It is known that the Kauffman bracket skein module of the cylinder over the twice

punctured disk, i.e. a disk with two disjoint open disks being removed, is free with

basis xmynzk, m,n, k ≥ 0, where x and z are curves that are parallel with the

boundaries of the two open disks that have been removed, and y is a curve parallel

to the boundary of the original disk. In Sections 2 and 3, we make the following

convention. We schematically represent the cylinder over the twice punctured disk

sideways, by drawing only the two curves that trace the punctures in the cylinder.

These curves will either be represented as twisting around each other, such as in

the first diagram from Figure 2, or as two parallel lines such as in the second and

third diagram from the same figure. Closed curves in the diagram comprise skeins,

taken with the blackboard framing. Whenever a number is written next to a curve,

such as the k written next to the y-curve in the first diagram from Figure 2, that

number indicates that the skein contains that many parallel copies of that curve,

as such as in our example there are k parallel copies of y.

We factor the Kauffman bracket skein module of the cylinder over the twice

punctured disk by the relation x = z and perform all computations from this

section of the paper in this quotient. All computations in this section can be used

for general twist knots.

In Figure 2, we recall the skeins Xi ∗ y
k from [10] and define the skeins Y1 ∗ y

k.

In the first diagram, the index i counts the crossings of the two strands that define

the genus 2 handlebody. For Y1 ∗ y
k, the undercrossings can be at the bottom and

the overcrossings at the top, as one diagram is mapped into the other by isotopy.

...

i i− 1

k

k kY1 ∗ y
k :X1 ∗ y

k :

Xi ∗ y
k :

Fig. 2.

Lemma 2.1. The skeins X1 ∗ y
k and Y1 ∗ y

k, k ≥ 0, satisfy the recursions:

X1 ∗ y
k+1 = t4yX1 ∗ y

k + (t−2 − t6)Y1 ∗ y
k + 2(1− t4)x2yk, k ≥ 0,

Y1 ∗ y
k+1 = t−4yY1 ∗ y

k + (t2 − t−6)X1 ∗ y
k + 2(1− t−4)x2yk, k ≥ 0,

X1 ∗ y
0 = X1 = −t4y − t2x2, Y1 ∗ y

0 = Y1 = −t2 − t−2.
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Proof. We start computing X1∗y
k+1 as in Figure 3. The first diagram is computed

X1 ∗ y
k+1 =

=t2

+ + +t−2

k

k k
k

k

Fig. 3.

as in Figure 4, and is equal to t2yX1 ∗ y
k − t4Y1 ∗ y

k − 2t2x2yk. So the first term

is t4yX1 ∗ y
k − t6Y1 ∗ y

k − 2t4x2yk. The sum of the other terms is equal to x2yk +

x2yk + t−2Y1 ∗ yk. Adding we obtain the first recursion. Similarly for the second

recursion.

Applying Lemma 2.1 we obtain

X1 ∗ y = −t8S2(y)− t6x2S1(y) + 2(1− t4)x2 + (t4 − 1− t−4);

Y1 ∗ y = −(t6 + t−6)S1(y) + (2− t4 − t−4)x2;

X1 ∗ y
2 = −t12S3(y) + (−t10)x2S2(y) + (−2t8 + 2)x2S1(y)

+(t8 − 2t4 − t−8)S1(y) + (−2t6 + 2t−2 − t−6)x2;

Y1 ∗ y
2 = (−t10 − t−10)S2(y) + (2− t8 − t−8)x2S1(y)

+(−2t6 − 2t−6 + 2t2 + 2t−2)x2 + (t6 + t−6 − 2t2 − 2t−2);

The following result is a straighforward generalization of Lemma 1 in [10].

Lemma 2.2. The skeins Xi ∗ y
k, i, k ≥ 0, satisfy the recursive relation

Xi+2 ∗ y
k = t2yXi+1 ∗ y

k − t4Xi ∗ y
k − 2t2x2yk,

X2 ∗ y
k = t2yX1 ∗ y

k − t4Y1 ∗ y
k − 2t2x2yk.
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+(−t2)

=−t4(−t−3) −t2x2yk

=t2 + −t2x2yk

=t2yX1 ∗ y
k + (−t3) −t2x2yk

=t2yX1 ∗ y
k − t4 −t2 −t2x2yk

=−t4k

k

k

k

k k

(−t3)
k

k

k

Fig. 4.

As a consequence, we obtain

X2 = −t6S2(y)− t4S2(x)S1(y)− t4S1(y)− 2t2S2(x)− t2;

X3 = −t8S3(y)− t6S2(x)S2(y)− t6S2(y)− 2t4S2(x)S1(y)

−t4S1(y)− 2t2S2(x) − 2t2;

X4 = −t10S4(y)− t8S2(x)S3(y)− t8S3(y)− 2t6S2(x)S2(y)

−t6S2(y)− 2t4S2(x)S1(y)− 2t4S1(y)− 2t2S2(x)− 2t2;

X2 ∗ y = −t10S3(y)− t8S2(x)S2(y)− t8S2(y)− 2t6S2(x)S1(y)

+(−t6 − t2)S1(y) + (−2t4 + 1)S2(x) + (−2t4 + 1);
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X3 ∗ y = −t12S4(y)− t10S2(x)S3(y)− t10S3(y)− 2t8S2(x)S2(y)

+(−t8 − t4)S2(y) + (−2t6 − t2)S2(x)S1(y) + (−2t6 − t2)S1(y)

−2t4S2(x) + (−2t4 + 1);

X4 ∗ y = −t14S5(y)− t12S2(x)S4(y)− t12S4(y)− 2t10S2(x)S3(y)

+(−t10 − t6)S3(y) + (−2t8 − t4)S2(x)S2(y) + (−2t8 − t4)S2(y)

+(−2t6 − 2t2)S2(x)S1(y) + (−2t6 − t2)S1(y)− 2t4S2(x)− 2t4;

X2 ∗ y
2 = −t14S4(y)− t12S2(x)S3(y)− t−12S2(y)− 2t10S2(x)S2(y)

+(−t10 − 2t6)S2(y) + (−2t4 − 2t8 + 2)S2(x)S1(y)

+(−2t4 − 2t8 + 2)S1(y) + (−2t6 − 2t2 + 2t−2)S2(x)

+(−2t6 + t−2 − t−6);

X3 ∗ y
2 = −t16S5(y)− t14S2(x)S4(y)− t14S4(y) + (−2t12)S2(x)S3(y)

+(−t12 − 2t8)S3(y) + (−2t10 − 2t6)S2(x)S2(y) + (−2t10 − 2t6)S2(y)

+(−2t8 − 4t4 + 2)S2(x)S1(y) + (−2t8 − 2t4 + 1)S1(y)

+(−2t6 − 2t2 + t−2)S2(x) + (−2t6 − 2t2 + t−2);

X4 ∗ y
2 = −t18S6(y)− t16S2(x)S5(y)− t16S5(y)− 2t14S2(x)S4(y)

+(−t14 − 2t10)S4(y) + (−2t12 − 2t8)S2(x)S3(y)

+(−2t12 − 2t8)S3(y) + (−2t10 − 4t6)S2(x)S2(y)

+(−2t10 − 2t6 − t2)S2(y) + (−2t8 − 4t4 + 1)S2(x)S1(y)

+(−2t8 − 4t4 + 1)S1(y) + (−2t6 − 2t2)S2(x) + (−2t6 − 2t2 + t−2).

Lemma 2.3. The skeins Xi ∗ y
k, i, k ≥ 0, satisfy the recursive relation

X2 ∗ y
k = t−2X1 ∗ y

k+1 − 2t−2x2yk − t−4Y1 ∗ y
k

and for i ≥ 1,

Xi+2 ∗ y
k = t−2Xi+1 ∗ y

k+1 − 2t−2x2yk − t−4Xi ∗ y
k.

Proof. To compute Xi ∗ y
k+1, we separate a y from yk+1, slide it so as to produce

two crossings in the link diagram, then solve the crossings using the Kauffman

bracket skein relation as in Figure 5.

In the first term, by sliding the strand to the right we see that this term equals

t2Xi+1 ∗ y
k. The second and third terms are each equal to 2x2y2. The last term is

equal to Xi−1 ∗ y
k if i ≥ 2 and to Y1 ∗ y

k if i = 1.

Define the skeins A ∗ yk, A ∗ yk, B ∗ yk, B ∗ yk as in Figure 6.
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...
i i− 1

k

+

+ ...

i i− 1

k

...

i i− 1

k

...

i i− 1

k

...

i i− 1

k

+t−2

t2

Fig. 5.

k

A ∗ yk

k

A ∗ yk

k

k

B ∗ yk
B ∗ yk

Fig. 6.

Lemma 2.4. The following relations hold

A ∗ Sk(y) = (−t2k+2 − t−2k−2)B ∗ Sk(y),

A ∗ Sk(y) = (−t2k+2 − t−2k−2)B ∗ Sk(y)

B ∗ yk = t2yB ∗ yk−1 + (1− t−4)B ∗ yk−1,

B ∗ yk = t−2yB ∗ yk−1 + (1− t4)B ∗ yk−1,

B ∗ y0 = B ∗ y0 = x.

Proof. The formulas for A ∗ Sk(y), A ∗ Sk(y) follow from the standard properties

of Jones-Wenzl idempotents.

For B ∗ yk (see Figure 7) resolve the crossings specified by the arrow to obtain

the first sum in this figure. Perform an isotopy of the first skein from the sum to

obtain the first skein on the second row (in the process we remove and then add a

positive twist), then remove a negative twist from the second term and perform an

isotopy in this term. Then apply the Kauffman bracket skein relation in the place

specified by the arrow to obtain the desired relation.
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B ∗ yk is obtained by reflecting B ∗ yk over a horizontal line, and under reflec-

tions, in the Kauffman bracket t is replaced by t−1.

= t +t−1(−t−3)

+t−1
= t

k − 1 k − 1 k − 1

k − 1

k − 1

Fig. 7.

Corollary 2.5. The following formulas hold

A ∗ y0 = (−t2 − t−2)x,

A ∗ y = (−t6 − t−2)xS1(y) + (−t4 + 1− t−4 + t−8)x,

A ∗ y2 = (−t10 − t−2)xS2(y) + (−t8 + 1− t−4 + t−12)xS1(y)

+(−t6 − t−6 − t−2 + t−10)x

A ∗ y3 = (−t14 − t−2)xS3(y) + (−t12 + 1− t−4 + t−16)xS2(y)

+(−t10 − 2t−2 + t2 − t−6 + t−14 − 2t6)xS1(y)

+(−t8 − t4 + 2 + t−12 − 2t−4 + t−8)x.

Corollary 2.6. The following formulas hold

A ∗ y0 = (−t2 − t−2)x,

A ∗ y = (−t2 − t−6)xy + (t8 − t4 + 1− t−4)x,

A ∗ y2 = (−t2 − t−10)xS2(y) + (t12 − t4 + 1− t−8)xS1(y)

+(−t6 − t−6 − t2 + t10)x

A ∗ y3 = (−t2 − t−14)xS3(y) + (t16 − t4 + 1− t−12)xS2(y)

+(−t−10 + t−2 − 2t2 − t6 + t14 − 2t−6)xS1(y)

+(−t−8 − t−4 + 2 + t12 − 2t4 + t8)x.

Proof. The skein A0 ∗ yk is the reflection of A0 ∗ y
k over a horizontal line. To get

the formulas for A0 ∗ yk, swap t and t−1 in the formulas for A0 ∗ y
k.
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We define the skeins Cj ∗ y
k, Dj ∗ y

k, Ej , Fj as in Figure 8.

j jk

k

Cj ∗ y
k

Dj ∗ y
k

j
j

E ∗ yj F ∗ yj

Fig. 8.

Lemma 2.7. The skeins Cj ∗y
k, Dj ∗y

k, E∗yj , F ∗yj satisfy the following relations

Cj ∗ y
k = t2Cj+1 ∗ y

k−1 + (1− t−4)Dj ∗ y
k−1

Dj ∗ y
k = t−2Dj+1 ∗ y

k−1 + (1− t4)Cj ∗ y
k−1

Cj ∗ y
0 = xB ∗ yj , Dj ∗ y

0 = t−2xB ∗ yj + (1 − t4)E ∗ yj

E ∗ Sj(y) = (−t2j+2 − t−2j−2)Sj(y), F ∗ Sj(y) = (t2j+2 + t−2j−2)2Sj(y).

Proof. For Cj ∗y
k, separate a strand from yk as in the skein on the left in Figure 9,

then resolve the crossings defined by arrows to obtain

t2Cj+1 ∗ y
k−1 +Dj ∗ y

k−1 +Dj ∗ y
k−1 + t−2(−t2 − t−2)Dj ∗ y

k−1,

which yields the relation. For Dj ∗ y
k do the same in the skein on the right.

k j

k

j

Fig. 9.

The skein Cj ∗ y
0 is the mirror image of xAj over a vertical line, so, as a skein,

equals xAj . Resolving the two crossings in Dj ∗ y0 specified in Figure 10, we get
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j

Fig. 10.

t2(−t2− t−2)Ej+Ej+Ej+ t−2xAj . The formulas for E ∗Sj(y) and F ∗Sj(y) follow

from standard properties of Jones-Wenzl idempotents.

Corollary 2.8. The following formulas hold

C0 ∗ y
0 = x2

C0 ∗ y = x2S1(y) + (t−2 + t2 − t6 − t−6)x2 + (t6 − t−2 − t2 + t−6)

C0 ∗ y
2 = x2S2(y) + (t2 + t−2 − t10 − t−10)x2S1(y) + (3− t8 − t−8)x2

+(−t−6 − t6 + t10 + t−10)S1(y)

C0 ∗ y
3 = x2S3(y) + (t−2 + t2 − t14 − t−14)x2S2(y) + (t4 + t−4 + 4

−t12 − t−12 − t−8 − t8)x2S1(y) + (−2t−6 − 2t10 + 4t−2 + 5t2

+2t14 − 3t6 − t−10 + t−14)x2 + (−t10 + t14 − t−10 + t−14)S2(y)

+(−3t−2 + 3t−6 − 3t2 + 3t6).

We define the skeins G ∗ yk, H ∗ yk, and H ∗ yk as in Figure 11. The next result

has a proof analogous to that to Lemma 2.4.

k

G ∗ yk

k k

H ∗ yk J ∗ yk

Fig. 11.

Lemma 2.9. The following formulas hold

G ∗ Sk(y) = (−t2k+2 − t−2k−2)H ∗ Sk(y),

H ∗ yk = t2yH ∗ yk−1 + (1− t−4)J ∗ yk−1, H ∗ y0 = y,

J ∗ Sk(y) = (−t2k+2 − t−2k−2)Sk(y).
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Corollary 2.10. The following formulas hold

G ∗ y0 = (−t2 − t−2)S1(y),

G ∗ y = (−t6 − t−2)S2(y) + (−t−2 − t−10),

G ∗ y2 = (−t10 − t−2)S3(y) + (−t2 − 2t−2 − t−14)S1(y),

G ∗ y3 = (−t14 − t−2)S4(y) + (−2t6 − 3t−2 − t−18)S2(y) + (−2t−2 − 2t−10).

3. Formulas in the Kauffman bracket skein module of the 3-twist

knot complement

For the complement of the 3-twist knot Lemma 6 in [10] gives

Lemma 3.1. For all k ≥ 0 we have

X4 ∗ y
k = −t−4X3 ∗ y

k − t−2x2yk.

Lemma 3.1 yields different formulas for X4 ∗ y
k, which, combined with those in

§ 2, give relations that successively compute S4(y), S5(y), S6(y):

S4(y) = [−t−2S2(x)− (t−2 + t−6)]S3(y) + [−(2t−4 + t−8)S2(x)

−(t−8 + t−4)]S2(y) + [−2(t−10 + t−6)S2(x) − (t−10 + 2t−6)]S1(y)

+[−(t−12 + 2t−8)S2(x) − (t−12 + 2t−8)];

S5(y) = [(t−4S4(x) + (t−4 + t−8)S2(x) + (t−4 + t−12)]S3(y)

+[(2t−6 + t−10)S4(x) + (3t−6 + 2t−10 + t−14)S2(x) + (t−6 + t−10)]S2(y)

+[(2t−12 + 2t−8)S4(x) + (3t−12 + 4t−8 + 2t−16)S2(x)

+(2t−12 + 2t−8 + t−16)]S1(y) + (t−14 + 2t−10)S4(x)

+(3t−14 + 4t−10 + t−18)S2(x) + (2t−18 + 2t−14 + 2t−10);

S6(y) = [−t−6S6(x) + (−t−6 − t−10)S4(x) + (−t−6 − t−14)S2(x)

+(−t−6 − t−18)]S3(y) + [(−2t−8 − t−12)S6(x)

+(−3t−8 − 2t−12 − t−16)S4(x) + (−3t−8 − t−12 − t−16)S2(x) +

+(−t−20 − t−16 − t−8)]S2(y) + [(−2t−14 − 2t−10)S6(x)

+(−4t−10 − 3t−14 − 2t−18)S4(x) + (−2t−14 − 4t−10 − 2t−18)S2(x)

+(−2t−10 − t−18)]S1(y) + [(−2t−12 − t−16)S6(x)

+(−4t−12 − 3t−16 − t−20)S4(x) + (−4t−12 − 2t−16 − 3t−20)S2(x)

+(−t−20 − 2t−12 − t−24)].

Also, from Lemma 3.1, we obtain

X4 = t4S3(y) + (t2S2(x) + t2)S2(y) + (2S2(x) + 1)S1(y) + t−2S2(x) + t−2.
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Combining Lemma 2.3 and Lemma 3.1 we obtain the following recursive scheme

that allows the writing of Xj ∗ Sk(y), 1 ≤ j ≤ 4, 1 ≤ k ≤ 6 in terms of the basis

Sj(x)Sk(y), 0 ≤ j, 0 ≤ k ≤ 3:

X1 ∗ Sk+1(y) = t2X2 ∗ Sk(y) + t−2Y1 ∗ Sk(y)−X1 ∗ Sk−1(y) + (2S2(x) + 2)Sk(y),

X2 ∗ Sk+1(y) = t2X3 ∗ Sk(y) + t−2X1 ∗ Sk(y)−X2 ∗ Sk−1(y) + (2S2(x) + 2)Sk(y),

X3 ∗ Sk+1(y) = t2X4 ∗ Sk(y) + t−2X2 ∗ Sk(y)−X3 ∗ Sk−1(y) + (2S2(x) + 2)Sk(y),

X4 ∗ Sk(y) = −t−4X3 ∗ Sk(y)− t2x2Sk(y).

Using also the formulas for X1, X2, X3, X4 and those that express S4(y), S5(y), and

S6(y) in terms of the basis we obtain

X3 ∗ S1(y) = t6S3(y) + t4S2(x)S2(y) + t2S2(x)S1(y) + S2(x) + 2;

X4 ∗ S1(y) = −t2S3(y)− S2(x)S2(y) + (−2t−2S2(x)− t−2)S1(y)

−t−4S2(x)− 2t−4.

X2 ∗ S2(y) = t8S3(y) + t6S2(x)S2(y) + [(2 + t4)S2(x) + 2]S1(y)

+(t2 + 2t−2)S2(x) + (2t2 + t−2 − t−6);

X3 ∗ S2(y) = −t4S3(y)− t2S2(x)S2(y)− t−2;

X4 ∗ S2(y) = S3(y)− t−2S2(y) + t−6.

X2 ∗ S3(y) = −t6S3(y) + (−t4 + 1)S2(x)S2(y) + 2S2(y) + [2t−2S2(x)

+(−2t−2 − t−10)]S1(y) + (2t−4 − t−8)S2(x) + (−1 + 2t−4 − t8);

X3 ∗ S3(y) = t2S3(y) + 2S2(x)S2(y) + S2(y) + [2t−2S2(x) + 2t−2]S1(y);

X4 ∗ S3(y) = [−t−2S2(x)− 2t−2]S3(y) + [−2t−4S2(x) − t−4]S2(y)

+[−2t−6S2(x) − 2t−6]S1(y);

X2 ∗ S4(y) = [2S2(x) + (t4 + 2)]S3(y) + [(2t2 + 2t−2)S2(x)

+(t2 − t−14)]S2(y) + [(2 + 2t−4 − t−12)S2(x)

+(2 + 2t−4 − t−12)]S1(y) + (2 + 2t−6 − 2t−10)S2(x)

+(2t−2 + t−6 − t−10);

X3 ∗ S4(y) = S2(x)S3(y) + t−2S2(y)− t−12S1(y)− t−10S2(x);

X4 ∗ S4(y) = [t−4S4(x) + (2t−4 + t−8)S2(x) + (2t−4 + t−8)]S3(y)

+[(2t−6 + 2t−10)S4(x) + (5t−6 + 6t−10)S2(x) + (2t−6 + 4t−10)]S2(y)

+[(2t−8 + 2t−12)S4(x) + (10t−8 + 5t−12)S2(x) + (3t−12 + t−16)]S1(y)

+(2t−10 + t−14)S4(x) + (6t−10 + 3t−14)S2(x) + (4t−10 + 2t−14).

4. The action of the skeins (1,−3)T and (1,−2)T on the skein

module of the 3-twist knot complement

As said in the introduction, we compute the action of (1,−3)T , (1,−2)T from

Kt(T
2 × I) on the basis elements Sk(y), 0 ≤ k ≤ 3 of Kt(S

3\N(K)). The skeins
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(1,−3)T and (1,−2)T are depicted in Figure 12, with the cylinder T2 × [0, 1] em-

bedded as a regular neighborhood of the boundary of the knot complement. Before

starting the computation we prove a lemma.

(1,−3)T (1,−2)T

Fig. 12.

Lemma 4.1. The identities from Figure 13 hold. Here the curved strand can en-

circle several parallel straight strands.

= −t−2 −t−4

= −t2 −t4

Fig. 13.

Proof. Pull the strand in the term on the left until you create a negative twist

in the first identity and a positive twist in the second identity, then resolve the

crossing.

First we find (1,−3)T · yk, k = 0, 1, 2, 3. For that we add yk to the skein repre-

sented by the curve on the left side of Figure 12, then push this curve inside the

knot complement. There is a small technical detail. The framing that the curve

inherits from the torus does not coincide with the framing defined by the plane of

the paper. The resulting skein (with framing defined by the plane of the paper) is

the skein from Figure 14 multiplied by t6. We compute this skein from the figure

first, then multiply by the adjusting factor in the end. In Figure 14 we have labeled

the 5 crossings in the order in which they are resolved. We use a boldface curve for

yk, and here and in subsequent figures no longer write the label yk next to it.
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13

4 5

2

Fig. 14.

We denote by a string of length k consisting of +’s and −’s inside double brackets

the skein obtained from (1,−3)T · yk by smoothening the first k crossings (in the

order of labels), horizontally for a plus and vertically for a minus. For example the

Kauffman bracket skein relation applied to the first crossing reads (1,−3)T · yk =

t((+)) + t−1((−)). Applying the Kauffman bracket skein relation repeatedly we

obtain

(1,−3)T · yk = t4((+ + ++)) + t3((+ + +−+)) + t((+ + +−−))

+t((+ +−)) + ((+−)) + t−1((−))

where the skeins from this expression are shown in Figure 15.

((+ + ++)) ((+ + +− +)) ((+ + +−−))

((+ +−)) ((+−)) ((−))

Fig. 15.
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After removing two negative twists in ((−)) and focusing on the lower part of

the twist knot only, we obtain that ((−)) is equal to the first skein in Figure 16

multiplied by t−6. This new skein is computed as shown in the figure by using the

skein relation and sliding the strands. In this sum the first term is t2xyk+1, the

third is xyk, and the fourth is t−2xX3 ∗ y
k.

= t2 +

+ +t−2

Fig. 16.

Let us focus on the second term in the sum. Applying Lemma 4.1 in the place

specified by the arrow, we can transform it as in Figure 17. The first term is just

−t2xyk+1. By applying Lemma 4.1 at the two places specified by arrows we can

transform the first term into −t4x3yk − t4xyk − t6xX4 ∗ yk − t2xX3 ∗ yk. So the

term we are computing equals −t2xyk+1 − t4x3yk − t4yk − t6xX4 ∗ y
k − t2xX3 ∗ y

k.

= −t2 −t4

Fig. 17.

Therefore ((−)) = −xX4 ∗ y
k +(t−8− t−4)xX3 ∗ y

k − t−2x3yk +(t−6− t−2)xyk,

which after applying Lemma 3.1 becomes

((−)) = t−8xX3 ∗ y
k + (t−6 − t−2)xyk.

To compute ((+ + −)) we look again at the lower part of the twist knot and

apply Lemma 4.1 in the places specified by arrows in Figure 18. In the last sum, by

resolving the two crossings in each diagram by the skein relation we find that the
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first term is

t−4xX3 ∗ y
k+1 + t−2x3yk+1 + t−4xX3 ∗ y

k+1 + (−t−4 − t−8)xX3 ∗ y
k+1

= (t−4 − t−8)xX3 ∗ y
k+1 + t−2x3yk+1.

−t−4

= t−4 +t−6 −t−4

= −t−2

Fig. 18.

Resolving the crossings in the second term we obtain that it is equal to

t−4xyk+1X1 + t−6A+ t−6B + t−8xX3 ∗ y
k+1,

where skeins A and B are as in Figure 19. Compute B by applying Lemma 4.1

B :A :

Fig. 19.

at the location specified by arrow to obtain B = −t2xX3 ∗ y
k+1 − t4xyk+1. Then

transform A by an isotopy, use Lemma 4.1 as shown in Figure 20 to obtain A =

t−2xX2∗y
k+1+t2xyk+2+x3yk+1+xyk+1. Substitute X1 by −t4y−t2x2 to conclude

that the second term in the three-term sum from the second line in Figure 18 equals

(t−8 − t−4)xX3 ∗ y
k+1 + t−8xX2 ∗ y

k+1 + (t−4 − 1)xyk+2

+(t−6 − t−2)x3yk+1 + (t−6 − t−2)xyk+1.

Similarly, the third term is (1− t−4)xyk − t−6xX3 ∗ y
k. Hence

((+ +−)) = −t−6xX3 ∗ y
k + t−8xX2 ∗ y

k+1 + (t−4 − 1)xyk+2

+t−6x3yk+1 + (t−6 − t−2)xyk+1 + (1− t−4)xyk.
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After applying Lemma 2.3 this becomes

((+ +−)) = t−10xX1 ∗ y
k + (t−4 − 1)xyk+2 + t−6x3yk+1

+(t−6 − t−2)xyk+1 + 2t−8x3yk + (1− t−4)xyk.

We turn to ((+−)) and by working in the lower part of the knot, we apply

=

++t−2

+t2

Fig. 20.

Lemma 4.1 as specified by an arrow in Figure 21, then remove a negative twist

in each resulting diagram, to obtain the two-term sum in Figure 21. A close exam-

ination shows that the last diagram in the figure is the same as the last diagram in

Figure 18. Adjusting for the different coefficient, we deduce that the second term

from the sum in Figure 21 is (−t−3 + t−7)xyk + t−9xX3 ∗ y
k. Computing similarly

by resolving both crossings with the Kauffman bracket skein relation, we find that

the first term is t−7xX3 ∗ y
k+1 + (t−5 − t−1)xyk+1. Combining, we get

((+−)) = t−7xX3 ∗ y
k+1 + t−9xX3 ∗ y

k + (t−5 − t−1)xyk+1 + (t−7 − t−3)xyk.

= t−5 +t−7

Fig. 21.

Now turn to the computation of ((+++−−)). After an isotopy at the top part

of the twist knot we obtain the first diagram in Figure 22, where in this diagram

we ignore the top part of the twist knot, as we will not use it again. We apply

Lemma 4.1 as specified by the arrow to obtain the sum on the right. The first

term is computed by applying Lemma 4.1 at the point specified by the arrow, as

in Figure 23. In the sum from Figure 23, the second term is t−6xY1 ∗ y
k. For the

first term, we perform an isotopy to make it look like in Figure 24, then apply
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= −t−2 −t−4

Fig. 22.

+t−6
t−4

Fig. 23.

Lemma 4.1 to obtain that it is equal to −t−6x3yk+1 − t−8xyX1 ∗ y
k. Thus the first

term of the sum in Figure 22 equals −t−6x3yk+1 − t−8xyX1 ∗ y
k + t−6xY1 ∗ y

k.

t−4

Fig. 24.

The second term in Figure 22 can be transformed by an isotopy into the first

skein in Figure 25. Then apply Lemma 4.1 as specified by the arrow to obtain the

sum on the right. The second term is t−8xyk. The first term can be computed by

applying the Lemma 4.1 as specified, and is −t−8x3yk − t−10X1 ∗ y
k.

−t−4 = t−6 +t−8

Fig. 25.

Combining the results we obtain

((+ + +−−)) = −t−6x3yk+1 − t−8xyX1 ∗ y
k + t−6xY1 ∗ y

k − t−8x3yk

−t−10xX1 ∗ y
k + t−8xyk.

Using Lemma 2.2 we write this as

((+ + +−−)) = −t−10xX2 ∗ y
k − t−10xX1 ∗ y

k − t−6x3yk+1 − 3t−8x3yk

+t−8xyk.



February 10, 2021 12:43 gelcawang

20

To compute the term ((+ + + − +)) we slide the skein to an area where the

two strands of the twist knot are parallel, as in the first diagram from Figure 26,

then apply Lemma 4.1 at the point specified by the arrow, to obtain the first sum

in this figure.

= −t−2
−t−4

= t−4(y2 − 1) +t−6

Fig. 26.

Next, apply Lemma 4.1 at the point specified by the second arrow in Figure 26

to obtain the sum on the second row. Resolve the crossings in the first diagram to

obtain that the first term is t−4(y2 − 1)(t2xyk + A ∗ yk + xyk+1 + t−2xyk). The

second term is yA ∗ yk. Hence

((+ + +−+)) = (t−4y2 − t−4)A ∗ yk + t−6yA ∗ yk + t−4xyk+3

+(t−2 + t−6)xyk+2 − t−4xyk+1 + (−t−2 − t−6)xyk.

Finally, for ((+ + ++)), remove the twist and multiply the skein by −t3, slide

the skein over the top of the diagram to get the first skein from Figure 27 (again

only the bottom of the diagram of the twist knot is shown, and the skein has been

moved to the left off the area where the crossings occur).

Apply Lemma 4.1 as specified by first arrow to obtain the first equality, then

apply the lemma again as specified by second arrow to obtain (after arranging the

terms) the last sum in Figure 27. The second term is −t−3yA ∗ yk. After applying

Lemma 4.1 as specified by the arrow, the first term is equal to t−1(−y2+1)(−t−2yA∗

yk − t−4A ∗ yk). So

((+ + ++)) = t−3(y3 − 2y)A ∗ yk − t−5(−y2 + 1)A ∗ yk.

To simplify the formulas we set ui = S2i+1(x) and q = t4.

Theorem 4.2. The action of (1,−3)T on Kt(T
2 × I) is given by

(1,−3)T · Sk(y) =
∑

0≤j≤3

t2k+2j−1αkjSj(y)
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−t3 = t +t−1

= t−1(−y2 + 1) −t−3

Fig. 27.

where

α0,3 = (−q − 1)u0, α0,2 = −u1 − 2(q + 1)u0, α0,1 = −2u1 + (q − 1)u0

α0,0 = −2u1 + (−6q − 1)u0, α1,3 = qu1 + (1 + q−1)u0,

α1,2 = (2q + 1 + q−1)u1 + (q + q−1 − 4q−2)u0, α1,1 = (q + 2)u1 + (q + 3)u0,

α1,0 = (2q + 1 + q−1)u1 + (2q + 4 + 2q−1)u0, α2,3 = −qu2 + (q − 1)u1

+(−q − 2q−2)u0, α2,2 = (−2q − 1)u2 + (−3q − 1− q−1 − 2q−2)u1

+(−3q − 2− q−2 − q−3 + q−4)u0, α2,1 = (−2q − 2)u2 + (2q − 3− 2q−1)u1

+(q3 − q2 − 6q − 1− 3q−1 − 3q−2 − q−3)u0, α2,0 = (−2q − 1)u2

+(−4q − 5 + q−1)u1 + (q3 − 2q2 − 3q + 2− 5q−1 − 2q−2)u0,

α3,3 = qu3 + u2 + (−1 + q−1)u2 + (2q−3 − 3q−5)u0, α3,2 = (2q + 1)u3

+(q + 1 + q−1)u2 − u1 + (q−1 + q−2 + q−4 − 2q−5)u0, α3,1 = (2q + 2)u3

+(2q + 1 + 2q−1)u2 + (−1 + 2q−1 + 2q−3)u1 + (−q−2 + 2q−3 − q−4)u0,

α3,0 = (2q + 1)u3 + (4q + 2 + q−1)u2 + (6q − 1 + 2q−1)u1

+(4q − 1− 3q−1 + q−2 − 2q−3 + q−4)u0.

Proof. Combining the terms computed above, applying Lemmas 2.3 and 3.1, and

multiplying with the frame adjusting factor t6, we obtain:

(1,−3)T · yk = t−3xX3 ∗ y
k + (t7S3(y) + t5S2(y))A ∗ yk

+(t3y + t5S2(y))A ∗ yk + [t5S3(y) + 2t3S2(y) + (−t5 + 2t)S1(y)

+(−2t3 + 2t−1)]xyk.

Substituting the formulas from § 2 and § 3, switching to the basis Sj(x)Sk(y), we

obtain the formulas from the statement.

Let us compute (1,−2)T · yk, k = 0, 1, 2, 3. Again we push the (1,−2)T skein

inside the knot complement and adjust the framing from the plane of the torus
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to the plane of the paper, to get the skein from Figure 28 multiplied by −t9. We

compute first the skein from the figure, then adjust framing. In the figure we label

the 5 crossings in the order they are resolved, and use a boldface curve for yk, as

before.

13

4 5

2

Fig. 28.

As this skein looks similar to (1,−3)T · yk, we expand it in the same way:

(1,−2)T · yk = t4((+ + ++)) + t3((+ + +−+)) + t((+ + +−−))

+t((+ +−)) + ((+−)) + t−1((−)),

but now the diagrams of the 6 skeins are different (see Figure 29).

((+ + ++)) ((+ + +− +)) ((+ + +−−))

((+ +−)) ((+−)) ((−))

Fig. 29.
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To compute ((−)) we remove the two negative twists (and multiply the skein

by t−6), then resolve the two crossings using the Kauffman bracket skein relation.

We obtain

((−)) = t−6[t2x2yk +X3 ∗ y
k +X3 ∗ y

k + t−2(−t2 − t−2)X3 ∗ y
k]

= t−4x2yk + (t−6 − t−10)X3 ∗ y
k.

Next, we focus on ((+−)). After removing a twist and performing an isotopy,

we obtain the first skein from Figure 30. Now use Lemma 4.1 to obtain the sum in

the figure.

−t−3 = t−5 +t−7

Fig. 30.

Resolving the crossings with the skein relation, we find the first term:

t−5[t2(−t2 − t−2)X4 ∗ y
k+1 +X4 ∗ y

k+1 +X4 ∗ y
k+1 + t−2x2yk+1]

= (t−5 − t−1)X4 ∗ y
k+1 + t−7xyk+1,

and the second term:

t−7(t2x2yk +X3 ∗ y
k +X3 ∗ y

k + t−2(−t2 − t−2)X3 ∗ y
k)

= (t−7 − t−11)X3 ∗ y
k + t−5x2yk.

Combining we obtain

((+−)) = (t−5 − t−1)X4 ∗ y
k+1 + (t−7 − t−11)X3 ∗ y

k + t−7xyk+1 + t−5x2yk.

Next we compute ((+ + −)), which after an isotopy becomes the first skein in

Figure 31.

= −t−2
−t−4

Fig. 31.

Apply Lemma 4.1 to transform this into the sum on the right side of Figure 31.

Apply Lemma 4.1 in the first term on the right, then resolve the crossings to obtain
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that this term equals

−t−2[(−t−2)(t2x2yk+2 + t−2(−t2 − t−2)X3 ∗ y
k+2 +X3 ∗ y

k+2 +X3 ∗ y
k+2))

−t−4(t2(−t2 − t−2)X4 ∗ y
k+1 + t−2x2yk+1 +X4 ∗ y

k+1 +X4 ∗ y
k+1)]

= (t−4 − t−8)X3 ∗ y
k+2 + (−t−2 + t−6)X4 ∗ y

k+1 + t−2x2yk+2 + t−8x2yk+1.

Then resolve the crossings in the second term to obtain that it is equal to

−t−4[t2x2yk + t−2(−t2 − t−2)X3 ∗ y
k + 2X3 ∗ y

k]

= (−t−4 + t−8)X3 ∗ y
k − t−2x2yk.

Combining, we obtain that

((+ +−)) = (t−4 − t−8)X3 ∗ y
k+2 + (−t−4 + t−8)X3 ∗ y

k

+(t−6 − t−2)X4 ∗ y
k+1 + t−2x2yk+2 + t−8x2yk+1 − t−2x2yk.

Which after applying Lemma 2.3 for the first and third terms becomes

((+ +−)) = (−t−4 + t−8)X3 ∗ y
k + (t−6 − t−10)X2 ∗ y

k+1

+t−2x2yk+2 + (2t−4 − t−8)x2yk+1 − t−2x2yk.

Compute ((+++−−)) by performing an isotopy over the top of the knot to obtain

the first skein in Figure 32 (again, ignore the top of the knot), then apply Lemma 4.1

as specified by arrow to obtain the next sum. Continue applying Lemma 4.1 to

each term as specified, to obtain the sum on the second row in Figure 32. Applying

Lemma 4.1 three more times yields

((+ + +−−)) = −t−6x2yk+2 − t−8x2yk+1 + t−6x2yk − t−8x2yk+1

−t−10x2yk − t−10x2yk − t−12Y1 ∗ y
k

= −t−12Y1 ∗ y
k − t−6x2yk+2 − 2t−8x2yk+1 + (t−6 − 2t−10)x2yk.

= −t−2

= t−4

−t−4

+t−6x2yk + t−6 +t−8

Fig. 32.

To compute ((+++−+)), apply Lemma 4.1 as in Figure 33. The first diagram on

the right is x times the second diagram in Figure 15 (that denoted by ((+++−+))
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in that figure). So the first term on the right is

(−t−6y2 + t−6)xA ∗ yk − t−8xyA ∗ yk − t−4x2yk+2 − t−8x2yk+2

−t−6x2yk+3 + t−4x2yk + t−8x2yk + t−6x2yk+1.

= −t−2 −t−4

Fig. 33.

The second term on the right can be transformed by an isotopy into the first

skein in Figure 34. Apply Lemma 4.1 (see arrow) to transform it into the sum on

the right. Now apply Lemma 4.1 in each term as specified by the arrows to obtain

the sum on the second row.

= −t−8 −t−10−t−10

−t−4 = t−6
+t−8

−t−12

Fig. 34.

The first and third terms can be combined into (−t−8xy − t−10x)Z ∗ yk, where

Z ∗ yk is the skein in Figure 35. We resolve the crossings marked by arrows using

the skein relation to obtain that Z ∗ yk = t2xyk + A ∗ yk + xyk+1 + t−2xyk. The

second term from the last sum in Figure 34 can be slid back to the left over the

crossing of the twist knot. Then the second term is just −t−10xA ∗ yk, while the

last is −t−12 times the 180◦ rotation of C0 ∗ y
k in the plane of the paper, so it is in
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fact equal to −t−12C0 ∗ y
k. Thus

((+ + +−+)) = (−t−6y2 − t−8y − t−10 + t−6)xA ∗ yk

+(−t−8y − t−10)xA ∗ yk − t−12C0 ∗ y
k − t−6x2yk+3

+(−t−4 − 2t−8)x2yk+2 − 2t−10x2yk+1 + (t−4 − t−12)x2yk.

=

Fig. 35.

For ((+ +++)), remove the positive twist, multiply by −t3, then slide through

the top of the knot diagram to obtain the skein in Figure 36. Apply Lemma 4.1 as

shown by arrow to obtain the first sum, then apply the lemma again in each term,

as shown by arrows, to obtain the second sum. Apply again Lemma 4.1 in each

−t3 = t +t−1

= −t−1 −t−3 −t−3 −t−5

Fig. 36.

term to obtain

((+ + ++)) = t−3x2yG ∗ yk + t−5x2F ∗ yk + t−5xyA ∗ yk

+t−7xA ∗ yk + t−5x2G ∗ yk + t−7xA ∗ yk + t−7xA ∗ yk + t−9F ∗ yk

= (t−3y + t−5)x2G ∗ yk + (t−5x2 + t−9)F ∗ yk + (t−5y + 2t−7)xA ∗ yk

+t−7xA ∗ yk.

We set vi = S2i(x) and q = t4.



February 10, 2021 12:43 gelcawang

27

Theorem 4.3. The action of (1,−2)T on Kt(T
2 × I) is given by

(1,−2) · Sk(y) =

3∑

j=0

t−2k−2jβkjSj(y),

where

β0,3 = v1 + qv0, β0,2 = (q2 + q + 1)v1 + (q2 + 2q)v0, β0,1 = (2q2 + 2q)v1

+(2q2 + 2q)v0, β0,0 = (2q2 + 2q)v1 + (q2 − 1− q−1)v0,

β1,3 = −q−1v2 + (q2 − q + 1− q−1 − q−2)v1 + (q2 − 1 + q−1 − q−2)v0,

β1,2 = (−2q−1 − q−2)v2 + (2q2 − q − q−1 − 3q−2)v1 + (2q2 + 2q−1)v0,

β1,1 = (−2q−1 − 2q−2)v2 + (3q2 − 3q − 5− q−1 − q−2)v1

+(q2 − 3q − 7 + 3q−1 − 6q−2)v0, β1,0 = (−2q−1 − q−2)v2

+(−q2 − 4q + 1− 3q−1 − 4q−2)v1 + (−q2 − 5q + 2− 4q−1 − 4q−2)v0,

β2,3 = q−2v3 + (−q2 + q − q−1 + q−2 + q−3)v2 + (−q2 + 1− q−1 + q−4)v1

+(−1 + 3q−1 − q−2 − q−3)v0, β2,2 = (2q−1 + q−2)v3 + (−2q3 + q2 + q

−2− 4q−1 + 2q−2 + q−3)v2 + (−2q3 + q − 4q−1 + 2q−3)v1 + (−q3 − q2 − 2

+3q−1 − q−2 − q−4)v0, β2,1 = (2q−2 + 2q−3)v3 + (−2q2 + 2− 2q−1 + 2q−2

+3q−3 + 2q−4)v2 + (−q2 + 1 + q−1 − q−2 − q−3 + 4q−4)v1 + (−q2 − q − 1

+q−1 − q−2 − q−3 + 2q−4)v0, β2,0 = (2q−2 + q−3)v3 + (−2q2 + q + 1− 2q−1

+3q−2 + 3q−3 + q−4)v2 + (−3q2 − 3q + 6− q−1 − 5q−2 + 3q−3 + 4q−4)v1

+(−4q2 − 3q + 1 + 3q−1 − 9q−2 − 3q−3)v0, β3,3 = −q−3v4 + (q2 − q

+q−2 − q−3 − q−4)v3 + (q2 − q + 2q−2 − 4q−3 + 2q−5 + q−6 − q−7)v2 + (q3 + q2

−3q + 3− q−1 + 4q−2 − 11q−3 + 5q−4 + 7q−5 − q−6 − 2q−7 − q−8)v1

(−q3 + 3q2 + 1 + 5q−1 − q−2 − 6q−3 + 2q−4 + 6q−5 − 2q−6 − 2q−7 − q−8)v0,

β3,2 = (−2q−3 − q−4)v4 + (2q2 − q − 1 + 2q−2 − 2q−3 − 2q−4 − q−5)v3

+(−q3 + 10q2 − 2q − q−1 − 5q−2 − 4q−3 + 2q−6 − 7q−7 − q−8)v2 + (−3q3

+24q2 − 8q + 4− 3q−1 + 9q−2 − 11q−3 + q−4 − q−5 + 8q6 − 20q−7 − q−8)v1

+(−2q3 + 16q2 − 6q + 3− 4q−1 + 6q−2 − 12q−3 − 2q−5 + 6q−6 − 13q−7)v0,

β3,1 = (−2q−3 − 2q−4)v4 + (2q2 − 2 + 2q−2 − 2q−3 − 3q−4 − 2q−5)v3

+(−2q3 + 3q2 − 1− 2q−1 + 5q−2 − 2q−4 + 2q−6 − 2q−8)v2 + (−5q3 − 2q

+6 + 8q−1 + 6q−2 − 9q−3 − 3q−4 + 6q−5 − q−7 − 5q−8)v1 + (−q2 + 5

+12q−1 − 5q−2 + 3q−3 − 2q−4 + 4q−5)v0, β3,0 = (−2q−3 − q−4)v4 + (2q2 − q

−1− 2q−1 + 8q−2 + 10q−3 − q−4 − 2q−5 + 2q−6 − 3q−7 − q−8)v2 + (−3q3

+5q2 + 3q + 6 + 9q−2 + 24q−3 + t−4 − 5t−5 + 5t−6)v1 + (−3q3 + 3q2 + 3q + 6

+9q−2 + 19q3 − 4q−5 + 3q−6 + 3q−7)v0.
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Proof. Adding the terms and adjusting framing by −t9 we obtain

(1,−2)T · yk = (t8 − t4)X4 ∗ y
k+1 + (t6 + 2t−2 − 3t2)X3 ∗ y

k

+(−t4 + 1)X2 ∗ y
k+1 + t−2Y1 ∗ y

k + [t6y2 + (−t8 + t4)y

+(−3t6 + t2)]xA ∗ yk + (t4y + t2 − t6)xA ∗ yk + C0 ∗ y
k

+(−t8x2 − t4)F ∗ yk + (−t10y − t8)x2G ∗ yk + t6x2yk+3

+3t4x2yk+2 + (4t2 − 2t6)x2yk+1 + (−3t4 + 3)x2yk.

Then use the formulas in § 2, § 3 and switch to the basis Sj(x)Sk(y).
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