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Abstract 3

In this paper we describe progress made toward the construction of the Witten–Reshetikhin–Turaev 4

theory of knot invariants from a geometric point of view. This is done in the perspective of a joint result 5

of the author with A. Uribe which relates the quantum group and the Weyl quantizations of the moduli 6

space of flat SU(2)-connections on the torus. Two results are emphasized: the reconstruction from Weyl 7

quantization of the restriction to the torus of the modular functor, and a description of a basis of the space of 8

quantum observables on the torus in terms of colored curves, which answers a question related to quantum 9

computing. 10

c© 2005 Elsevier B.V. All rights reserved. 11

MSC: 81T45; 57M27; 81R50; 81S10

Keywords: Witten–Reshetikhin–Turaev invariants; Theta functions; Weyl quantization; Modular functor
12

1. Introduction 13

It is known that, for a compact simple Lie group G, the Hilbert space of the quantization 14

of the moduli space of flat G-connections on a surface is the space of holomorphic sections 15

of the Chern–Simons line bundle. Alternately, this space has a basis consisting of admissible 16

colorings of the core of the handlebody bounded by the surface by irreducible representations of 17

the quantum group of G. 18
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The quantization of the moduli space of flat SU(2)-connections on the torus was studied1

in detail in [8]. In that work two quantization models were compared, the equivariant Weyl2

quantization of the complex plane that covers the moduli space and the quantum group3

quantization, performed after Witten’s ideas [14] with the techniques of Reshetikhin and Turaev4

[11,13]. There, it was shown that these two quantizations are unitarily equivalent.5

This result gives rise to new possibilities for developing SU(2) Chern–Simons theory, and in6

particular the study of the Jones polynomial [10], from a geometric point of view. The present7

paper describes some progress made in this direction. For other contributions to the subject see8

[1–3,5].9

Here is a description of the contents of the paper. Section 2 gives a brief overview of the two10

quantization models. In Section 3 we show how the projective representation of the mapping class11

group of the torus, which arises in the Reshetikhin–Turaev topological quantum field theory, can12

be recovered from the Weyl quantization model. It is important to note that the Weyl quantization13

contains all the necessary information about the modular functor restricted to the torus. The next14

section contains explicit descriptions of quantum knot invariants as holomorphic sections of the15

Chern–Simons line bundle. Section 5 is devoted to the quantum observables. They are described16

as integral operators, much in the spirit of Witten’s path integral, then their spectra are computed.17

The paper ends with an application to quantum computing. It determines the basis of the Hilbert18

space of ground states of a certain quantum system, which is the same as the vector space of19

the Chern–Simons theory of the quantum double of the group SU(2). This solves a problem that20

arose in [6]. The author would like to thank the referee, whose comments considerably improved21

the quality of the manuscript.22

2. The quantization of the moduli space of flat SU(2)-connections on the torus23

The Hilbert space of the quantization of the moduli space of flat SU(2)-connections on the24

torus was described in [8]. Since in that paper a small error occurred in the exposition, but25

fortunately not in the final result, we briefly explain the construction again.26

Denote by M the moduli space of flat SU(2)-connections on the torus T2, which is known27

informally as the “pillow case”. M is the quotient of the complex plane by the symmetries28

z → z + m + ni , m, n ∈ Z, and σ(z) = −z. The symplectic form which determines the29

Poisson bracket and consequently the “classical mechanics” on M is ω = −πdz ∧ dz̄ = 2π i30

dx ∧ dy.31

The Hilbert space of the quantization consists of holomorphic 1-forms on the smooth part of32

M with values in a line bundle of curvature ωN , where N = 1/h̄ is the reciprocal of Planck’s33

constant. Constrains given by the Weil integrality condition and the Reshetikhin–Turaev theory34

require N to be an even integer, N = 2r . In Witten’s theory, the number r − 2 is called the level35

of the quantization. The inner product is defined by integrating the cup product of two 1-forms36

overM.37

A 1-form on M can be written locally as f (z)dz, where f (z) is a section of the line bundle.38

This could almost be done globally, by lifting it to C, except that on C the symmetry with respect39

to the origin σ changes dz to −dz. This sign change can be incorporated into the line bundle.40

Consequently, the line bundle is determined by a cocycle χ on C satisfying41

χ(z, m + in) = exp 2rπ(−2inz + n2), m, n ∈ Z,42

χ(z, σ ) = −1.43
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The Hilbert space of the quantization is then identified with the space of odd theta functions 1

Hr = { f ∈ Hol(C) | f (z + m + in) = e2rπ(n2
−2inz) f (z), f (z) = − f (−z)}. 2

If we denote 3

θ j (z) =

∞∑
n=−∞

e−π(2rn2
+2 jn)+2π i z( j+2rn), 4

then the functions 5

ζ j (z) =
4
√

re−π j2/2r (θ j (z) − θ− j (z)), j = 1, 2, . . . , r − 1 6

form an orthonormal basis ofHr . For later use we extend the definition of ζ j (z) to all integers j 7

by the relations ζr+ j (z) = −ζr− j (z) and ζ− j (z) = −ζ j (z). Note that ζ0(z) = ζr (z) = 0. 8

The quantum observables are defined using Weyl quantization. For a classical observable 9

f ∈ C∞(M), the associated quantum observable is the Toeplitz operator with symbol e−
∆
8r f . 10

Here ∆ is the Laplace operator 1
2π

(
∂2

∂x2 +
∂2

∂y2

)
. We use view Weyl quantization as interpolating 11

between Wick and anti-Wick, as explained in [4]. 12

The alternative quantization model, which appears in the realm of quantum groups [11], is 13

the following. The orthonormal basis of the Hilbert space is formally identified with V j (α), 14

j = 1, 2, . . . , r −1, the colorings of the core α of the solid torus by the j-dimensional irreducible 15

representations of the quantum group of SL(2, C) at a root of unity q = exp(2π i/r). The 16

algebra of classical observables contains as a dense subset the ring generated by the traces 17

of holonomies of SU(2)-connections along simple closed curves on the torus. The quantum 18

observable associated to the trace in the k-dimensional irreducible representation of SU(2) of 19

such a holonomy along a curve γ is simply the curve γ colored by the k-dimensional irreducible 20

representation of the quantum group of SL(2, C) (with the usual convention when k is larger 21

than r , the level of the quantization). There is a way of identifying colored curves with linear 22

operators using knot invariants. For details we refer the reader to [8]. 23

The main result of [8] is that the unitary map ζ j (z) → V j (α), j = 1, 2, . . . , r − 1, is an 24

equivalence between the Weyl quantization and the quantum group quantization. In the process 25

of proving this result we discovered a formula which will be used in what follows. Denote 26

by C(p, q), p, q ∈ Z the operator obtained by performing Weyl quantization with symbol 27

2 cos 2π(px + qy). Then 28

C(p, q)ζm(z) = t−pq(t2qmζm−p(z) + t−2qmζm+p(z)), m = 1, 2, . . . , r − 1, 29

where t = exp(π i/2r) (and so t4
= q). 30

This paper describes some features of the Witten–Reshetikhin–Turaev theory from the 31

analytical-geometric point of view. We will need an alternative formula for ζ j (z). To obtain 32

it we write ζ j (z) as 33

4
√

re−
π j2

2r

∞∑
n=−∞

(e−π(2rn2
+2 jn)+2π i z( j+2rn)

− e−π(2rn2
−2 jn)+2π i z(− j+2rn)). 34

Note that 35

e−
π j2

2r e−π(2rn2
+2 jn)+2π i z( j+2rn)

= e−
π j2

2r e2π i z j e−π(2rn2
+2 jn)+4π irnz

36

= e−2πr z2
e
−2πr

(
n+

j
2r −i z

)2

. 37
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Using the Poisson formula for e−x2
, the first sum can be transformed into1

e−2πr z2
∞∑

n=−∞

e−
πn2
2r e

2π i
(

j
2r −i z

)
n

=

∞∑
n=−∞

e−2πr z2
−

πn2
2r +2πnze

π i jn
r .2

Replacing j by − j we obtain that the other sum is equal to3

∞∑
n=−∞

e−2πr z2
−

πn2
2r +2πnze−

π i jn
r .4

Subtracting the two and recalling the definition of the quantized integer5

[n] =
e

π in
r − e−

π in
r

e
π i
r − e−

π i
r

=
sin nπ

r

sin π
r

=
t2n

− t−2n

t2 − t−2 .6

we obtain the following:7

Lemma 2.1. For j = 1, 2, . . . , r − 1,8

ζ j (z) = 2i 4
√

r sin
π

r

∞∑
n=−∞

e−2πr(z− n
2r )

2
[nj].9

As a corollary we find that the reproducing kernel of the Hilbert spaceHr is10

K (z, w) = 2r
3
2

∞∑
n,m=−∞

2r |m−n

e
−2rπ

[
(z− n

2r )
2
+(w−

m
2r )

2
]

11

− 2r
3
2

∞∑
n,m=−∞

2r |m+n

e
−2rπ

[
(z− n

2r )
2
+(w−

m
2r )

2
]

12

= 4r
3
2

∞∑
k,m=−∞

e
−2rπ

[
(z+k)2

+
m2

4r2 +(w−
m
2r )

2
]

sinh mπ(z + k).13

This means that if f (z) is an element of the Hilbert space of the quantization, namely an odd14

theta function, then f (z) =
∫
M f (w)K (z, w)dw, for all z ∈M.15

3. The projective representation of the mapping class group of the torus on the Hilbert16

space of the quantization17

Part of the Reshetikhin–Turaev topological quantum field theory is a projective representation18

of the mapping class group of the torus onto the Hilbert space of the quantization. This19

representation is the restriction of the modular functor to the torus. We will show how this20

projective representation can be recovered from Weyl quantization.21

A simple closed curve γ on the torus defines a smooth function on the moduli space of22

flat SU(2)-connections by taking the trace in the fundamental representation of SU(2) of the23

holonomy along γ of the connection. Call this function fγ and op( fγ ) the operator associated to24

it through Weyl quantization.25
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There is a right action of the mapping class group of the torus on C∞(M). It is defined 1

as follows. Identify the moduli space M with the algebraic variety of characters of SU(2)- 2

representations of the fundamental group of the torus. If g is an element of the mapping class 3

group of the torus and σ is an SU(2)-representation of the fundamental group of the torus, then 4

g · σ : γ → σ(g(γ )), 5

We therefore have a left action of the mapping class group of the torus on the moduli space 6

M, which then induces a right action on C∞(M) by ( f · g)(x) = f (g · x). Through Weyl 7

quantization we obtain a right action on quantum observables. 8

In particular, if the element g of the mapping class group maps the curve γ to g(γ ), then 9

fγ · g = fg(γ ). In this sense we have a natural action of the mapping class group on symbols of 10

operators and therefore a natural action on operators themselves. 11

If we view the torus as R2/Z2, then its mapping class group is generated by the maps S and 12

T defined by S(x, y) = (−y, x), T (x, y) = (x, x + y). They act on quantum observables by 13

op( f (x, y)) · S = op( f (−y, x)), op( f (x, y)) · T = op( f (x, x + y)). 14

The Reshetikhin–Turaev topological quantum field theory comes with a projective 15

representation of the mapping class group of the torus on Hr defined by ρ(S) = S and 16

ρ(T ) = T , where 17

S = ([ jk])1≤ j,k≤r−1 , and T = (δ j,k t j2
−1)1≤ j,k≤r−1. 18

Here, as before, [ jk] is the quantized integer, t = e
iπ
2r , and δ j,k is the Kronecker symbol (as 19

we are only interested in projective representations we did not incorporate the factor 1/X , with 20

X =

√∑r−1
k=1[k]2, in the definition of S). 21

In order for the entire theory to be consistent, this representation must be compatible with the 22

natural action on the algebra of quantum observables, which means that if op( f ) is a quantum 23

observable and g and element of the mapping class group, then 24

op( f ) · g = ρ(g)−1op( f )ρ(g). 25

The next result shows that Weyl quantization together with this condition determine the 26

projective representation of the mapping class group. 27

Theorem 3.1. There is a unique projective representation of the mapping class group of the 28

torus on the Hilbert space of the quantization which is compatible with the natural action of the 29

mapping class group on quantum observables, and this is the projective representation from the 30

Reshetikhin–Turaev theory. 31

Proof. Let S = (ak, j )1≤k, j≤r−1 and T = (bk, j )1≤k, j≤r−1 be the S- and T -matrices of such a 32

projective representation. 33

First, let us extend the definition of ak, j so that the indices can be any integer numbers. The 34

equalities 35

r−1∑
k=1

ak,2r− jζk(z) = Sζ2r− j (z) = S(−ζ j (z)) = −Sζ j (z) = −

r−1∑
k=1

ak, jζk(z) 36

r−1∑
k=1

ak+r, jζk+r (z) = Sζ j (z) =

r−1∑
k=1

ak, jζk(z) 37
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show that the correct choice for ak, j is as odd and periodic in j and k of period 2r , that is1

ak,− j = a−k, j = −ak, j . Moreover, ζ0 = 0 means that we can choose ak,0 = a0, j = 0. The same2

conventions apply for bk, j .3

Recall that C(p, q), p, q ∈ Z denotes the operator with symbol 2 cos 2π(px + qy). We will4

use the previously mentioned formula5

C(p, q)ζm(z) = t−pq(t2qmζm−p(z) + t−2qmζm+p(z)).6

Let us look at the action of S on the quantum observables C(p, q), p, q ∈ Z. The equality7

S−1C(p, q)S = C(−q, p) implies8

C(p, q)Sζ j (z) = SC(−q, p)ζ j (z), j = 1, 2, . . . , r − 1.9

At this point we need to make sure that we are able to shift indices in the summation, and for10

that we have to let these indices range between 1 and 2r (and not just between 1 and r − 1). To11

this end we write Sζ j (z) =
∑2r

k=1
1
2 ak, jζk(z), j = 1, 2, . . . , 2r . This is no longer an expansion12

in the basis of the Hilbert space, as each element of the basis appears twice. Consequently, for a13

fixed j we have14

2r∑
k=1

(
t−pq+2q(k+p)ak+p, j + t−pq−2q(k−p)ak−p, j

)
ζk(z)15

=

2r∑
k=1

(
t pq+2pj ak, j+q + t pq−2pj ak, j−q

)
ζk(z).16

Both sides of the equality are antisymmetric under k → 2r − k. For this reason we can equation17

the coefficients of ζk(z) to obtain that for any p, q, k, j ,18

t2qkak+p, j + t−2qkak−p, j = t2pj ak, j+q + t−2pj ak, j−q .19

Setting p = 0, q = k = 1 we obtain the recursive relation20

a1, j+1 = (t2
+ t−2)a1, j − a1, j−1.21

Since we are looking for a projective representation, we can set a1,1 = 1, which combined with22

a1,0 = 0 yields a1, j = [ j].23

Also, setting q = 0, p = 1, we obtain the recursive relation24

ak+1, j + ak−1, j = (t2 j
+ t−2 j )ak, j ,25

whence inductively we obtain ak, j = [k j], as desired.26

Let us study the T -matrix now. Similarly27

C(p, q)T ζ j (z) = T C(p, q + p)ζ j (z), j = 1, 2, . . . , r − 1.28

Again we extend the indices to the full range 1 through 2r to be able to shift indices in the29

summation, and write the above equality in expanded form as30

2r∑
k=1

(t−pq+2q(k+p)bk+p, j + t−pq−2q(k−p)bk−p, j )ζk(z)31

=

2r∑
k=1

(t−p(q+p)+2(q+p) j bk, j−p + t−p(q+p)−2(q+p) j bk, j+p)ζk(z).32
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Hence for any p, q, k, j , 1

t2qk+2pqbk+p, j + t−2qk+2pqbk−p, j = t−p2
+2q j+2pj bk, j−p + t−p2

−2q j−2pj bk, j+p. 2

For p = 0 we obtain 3

(t2qk
+ t−2qk)bk, j = (t2q j

+ t−2q j )bk, j . 4

This implies that bk, j = 0 if k 6= j ; therefore T is diagonal. Setting p = 1, k = j − 1 we obtain 5

b j, j = t2 j−1b j−1, j−1, j = 1, 2, . . . , r − 1. 6

Again, since we are looking for a projective representation, we are allowed to choose b1,1 = 1, 7

in which case we obtain inductively b j, j = t j2
−1, j = 1, 2, . . . , r − 1, as desired. � 8

We stress again that this theorem shows how the well known projective representation of the 9

mapping class group of the torus on the Hilbert space can be introduced naturally using Weyl 10

quantization. 11

It is time now to describe the action of S and T on the vectors of the basis. There is nothing 12

to discuss about T since it is diagonal. For S we have 13

Proposition 3.2. The action of S on the basis ζm(z), m = 1, 2, . . . , r − 1 is given by 14

Sζm(z) = 2i
√

2r
3
4 e

−πm2
2r

∞∑
k=−∞

e−2πr(z−k)2
sinh 2πm(z − k). 15

Proof. We have Sζm(z) =
1
X

∑r−1
j=1[ jm]ζ j (z). By Lemma 2.1 this is equal to 16

2i
√

2
4
√

r
sin2 π

r
e−2πr z2

∞∑
n=−∞

e2πnz− πn2
2r

r−1∑
j=1

[nj][ jm]. 17

We compute
∑r−1

j=1[nj][ jm], which is 18

(t2
− t−2)−2

r−1∑
j=0

(
e

π in j
r − e−

π in j
r

) (
e

π i jm
r − e−

π i jm
r

)
19

= (t2
− t−2)−2

∑
−r+1≤ j≤r−1

(
e

π i j (n+m)
r − e

π i j (n−m)
r

)
. 20

But 21∑
−r+1≤ j≤r−1

(
e

π ik
r

) j
=

{
2r − 1 if 2r divides k
−(−1)k otherwise.

22

Therefore the sum we are computing is equal to 23

2r
∑

n,2r |n+m

e−2πr z2
−

πn2
2r +2πnz

− 2r
∑

n,2r |n−m

e−2πr z2
−

πn2
2r +2πnz

24

multiplied by ir−
1
4 /

√
2. Writing n = 2rk ± m we obtain the formula from the statement. � 25
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4. Knot and link invariants as holomorphic sections1

In the Reshetikhin–Turaev theory, the quantum invariant of a knot, viewed as a vector in the2

Hilbert space associated to the torus, is expressed as3

Z(K ) =
1
X

r−1∑
k=1

J (K , j)V j (α),4

where X =

√∑r−1
k=1[k]2, J (K , j) is the j th colored Jones polynomial of K , and V j (α) is5

the orthonormal basis consisting of colorings of the core of the solid torus by irreducible6

representations. As explained in Section 2, the result from [8] allows us to identify the elements of7

this orthonormal basis with holomorphic sections of the Chern–Simons line bundle. We therefore8

have9

Proposition 4.1. The quantum invariant in level r of a knot K is the holomorphic section of the10

Chern–Simons line bundle over M defined by the formula11

Z(K ) = 2
√

2ir−
1
4 sin2 π

r

∞∑
n=−∞

e−2πr(z− n
2r )

2
r−1∑
j=1

[nj]J (K , j),12

where J (K , j) is the j th colored Jones polynomial of K .13

Proof. It follows from Lemma 2.1 since14

Z(K ) =
1
X

r−1∑
j=1

J (K , j)ζ j (z). �15

Example 1. The quantum invariant of the trivial knot is16

Z(0) = 2i
√

2r
3
4 e−

π
2r

∞∑
n=−∞

e−2πr(z−n)2
sinh 2π(z − n).17

Because J (0, j) = [ j], the formula is a particular case of Proposition 3.2, since Z(0) =18

Sζ1(z).19

Example 2. The quantum invariant of the (p, q)-torus knot is20

Z(K p,q) = −
1

√
2

r−
1
4 sin

π

r

∞∑
n=−∞

Cne−2πr(z− n
2r )

2
,21

where22

Cn =
1

sin nπ
r

r−1∑
k=1

t−pqk2
([

2n

⌊
r − 1 − k

2

⌋
+ kn + n

]
− [kn − n]

)
23

× ([kp + kq + 1] − [kp − kq + 1]) .24

In this formula square brackets represent quantized integers while b·c represents the greatest25

integer function.26
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This is a consequence of the formula for the j th colored Jones polynomial of a torus knot 1

deduced in [9]: 2

J (K p,q , j) =

∑
0≤k≤ j

k≡ j (mod 2)

t−pqk2

t2 − t−2 ([kp + kq + 1] − [kp − kq + 1]). 3

Explicitly 4

Z(K p,q) = 2
√

2ir−
1
4 sin2 π

r

∞∑
n=−∞

e−2πr(z− n
2r )

2
r−1∑
j=1

[nj]J (Tp,q , j) 5

= −
i

√
2

r−
1
4 sin

π

r

∞∑
n=−∞

e−2πr(z− n
2r )

2
6

×

r−1∑
j=1

[nj]
∑

0≤k≤ j
k≡ j (mod 2)

t−pqk2
([kp + kq + 1] − [kp − kq + 1]). 7

Changing the order of summation in the double sum we find that it is equal to 8

r−1∑
k=1

t−pqk2
([kp + kq + 1] − [kp − kq + 1])

∑
k≤ j≤r−1
j≡k(mod 2)

[nj] 9

=

r−1∑
k=1

t−pqk2
([kp + kq + 1] − [kp − kq + 1])

∑
0≤m≤b

r−1−k
2 c

[n(2m + k)]. 10

Write the quantized integer in explicit form, then sum the exponentials as geometric series to 11

obtain that the inside sum is equal to 12

e−
nπ i

r

exp
(

nπ i
r

(
2

(⌊
r−1−k

2

⌋
+ 1

)
+ k

))
− exp

( nkπ i
r

)
exp

( nπ i
r

)
− exp

(
−

nπ i
r

) 13

− e
nπ i

r

exp
(
−

nπ i
r

(
2

(⌊
r−1−k

2

⌋
+ 1

)
+ k

))
− exp

(
−

nkπ i
r

)
exp

( nπ i
r

)
− exp

(
−

nπ i
r

) 14

everything multiplied by a factor of (e
π i
r − e−

−π i
r )−1. Using the definition of quantized integers, 15

we find that this is equal to Cn . 16

Because of the presence of the greatest integer function, the formula cannot be further 17

simplified using a Gauss sum. 18

For a link L with k components, the Hilbert space is obtained by taking the tensor product of 19

k copies of the Hilbert space of the torus. The formula for the quantum invariant is then 20

1
X

r−1∑
j1, j2,..., jk=1

J (L , j1, j2, . . . , jk)V j1(α) ⊗ V j2(α) ⊗ · · · ⊗ V jk (α). 21

This can again be translated to the analytical setting replacing V j (α)’s by ζ j (z)’s. Here is one 22

example. 23
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Example 3. The quantum invariant of the Hopf link is1

Z(L) = −r
√

2 sin
π

r

∞∑
n=−∞

∞∑
k=−∞

[nk]e
−2rπ

[
(z− n

2r )
2
+

(
w−

k
2r

)2
]
.2

Indeed,3

Z(L) =
1
X

r−1∑
j,m=1

[ jm]ζ j (z)ζm(w).4

Using Lemma 2.1 we transform this into5

−
i

2
√

2

∞∑
n=−∞

∞∑
k=−∞

e
−2rπ

[
(z− n

2r )
2
+

(
w−

k
2r

)2
]

r−1∑
m, j=1

(
e

π in j
r − e−

π in j
r

)
6

×

(
e

π i jm
r − e−

π i jm
r

) (
e

π imk
r − e−

π imk
r

)
.7

A computation with roots of unity similar to the one from the proof of Proposition 3.2 shows that8

the innermost double sum is equal to9

−2r
(

e
π ink

r − e−
π ink

r

)
10

and the formula follows.11

5. Some properties of the quantum observables12

In the Feynman path integral formulation, the operator C(p, q) representing the quantization13

of the function 2 cos 2π(px + qy) is the integral operator with kernel14

Kp,q(A1, A2) =

∫
MA1,A2

ei NL(A)(trV n+1 − trV n−1)(holC (A))DA.15

Here A1, A2 are conjugacy classes of connections on the torus T2 modulo gauge transformations,16

A is a conjugacy class of connections on T2
× [0, 1] modulo gauge transformations such17

that A
∣∣T2×{0} = A1 and A

∣∣T2×{1} = A2, n is the greatest common divisor of p and q,18

and trV n (holC (A)), known as the Wilson line, is the trace of the n-dimensional irreducible19

representation of SU(2) evaluated on the holonomy of A around the curve C of slope p/q. The20

“integral” is taken over all conjugacy classes of connections A.21

We now exhibit a mathematically well defined formula for this kernel. In complex coordinates,22

the kernel is given by23

Kp,q(z, w) =

r−1∑
j=1

(
C(p, q)ζ j

)
(z)ζ j (w).24

A straightforward computation shows that25

Proposition 5.1. The kernel of the operator C(p, q) is given by26

Kp,q(z, w) = 2r
3
2

∞∑
m,n=−∞

2r |q±(n−m)

e
−2rπ

[
(z− n

2r )
2
+(w−

m
2r )

2
]
∓

npiπ
r

27
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− 2r
3
2

∞∑
m,n=−∞

2r |q±(n+m)

e
−2rπ

[
(z− n

2r )
2
+(w−

m
2r )

2
]
∓

npiπ
r . 1

The operator C(p, q) acts on theta functions in the Hilbert spaceHr by 2

(C(p, q) f )(z) =

∫
M
Kp,q(z, w) f (w)dw. 3

Clearly K p,q(z, w) is holomorphic in z and antiholomorphic in w. 4

Proposition 5.2. The characteristic polynomial of the operator C(p, q) is 5

r−1∏
k=1

(
λ − 2 cos

gcd(p, q, 2r)kπ

r

)
. 6

Proof. Note that if p = np′, q = nq ′, with p′, q ′ coprime, then C(p, q) = Tn(C(p′, q ′)), where 7

Tn(x) is the nth Chebyshev polynomial (subject to the normalization T0(x) = 2, T1(x) = x , 8

Tn+1(x) = xTn(x) − Tn−1(x), n ≥ 1). So the case where p and q have a common divisor 9

follows from the case where they are coprime via the spectral mapping theorem. Let us assume 10

that p and q are coprime. As a consequence of Theorem 3.1, there exists an invertible matrix A 11

such that C(p, q) = A−1C(1, 0)A. In fact A = ρ(g), where g is the element of the mapping 12

class group that maps the (1, 0) curve on the torus to the (p, q) curve. Because the characteristic 13

polynomial is invariant under conjugation, it suffices to prove the property for C(1, 0). It is 14

easy to check that the characteristic polynomials in dimensions r + 1, r , and r − 1 are related 15

by pr+1(λ) = λpr (λ) − pr−1(λ). Also p1(λ) = λ and p2(λ) = λ2
− 1. It follows that 16

pr (λ) = Sr (λ), where Sn(λ) denotes the Chebyshev polynomial of second type, S0(λ) = 1, 17

S1(λ) = λ, Sn+1(λ) = λSn(λ) − Sn−1(λ), n ≥ 1. Factoring Sr (λ) we obtain the desired 18

formula. � 19

As a corollary, we recover in analytical setting the well known topological fact that a simple 20

closed curve on the torus colored by the r -dimensional irreducible representation of the quantum 21

group of SL(2, C) is equal to zero, i.e., the operator with symbol equal to the trace of the 22

holonomy along a curve in the r -dimensional irreducible representation of SU(2) is the zero 23

operator. 24

6. An application to quantum computing 25

In [6] the authors analyzed a possible quantum system suitable for quantum computation 26

which is based on the fractional quantum Hall system. The model we have in mind happens at 27

the plateau corresponding to the fraction 12/5, where a non-abelian statistics has been predicted. 28

The subspace of ground states of the Hilbert space of the quantum system can be identified with 29

the vector space of an SU(2)r × SU(2)r Chern–Simons quantum field theory for r = 5. This 30

in turn can be obtained through Drinfeld’s double construction, or can be simply identified with 31

the linear space of operators (quantum observables) of the SU(2)r Chern–Simons theory. The 32

authors considered the case of the torus and were particularly interested in finding a basis of this 33

vector space in terms of curves on the torus colored by representations of the quantum group of 34

SU(2). They succeeded for the case r = 3, but the real goal was r = 5. In this section we will 35

answer their question for an arbitrary r . The problem was bought to our attention by Zh. Wang. 36
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It is known that the vector space in discussion has dimension (r − 1)2 and is generated by1

the operators C(p, q), p, q ∈ Z introduced before. Recall that if n denotes the greatest common2

divisor of p and q , and p′
= p/n, q ′

= q/n, then C(p, q) can be identified with the curve3

of slope p′/q ′ on the torus colored by the difference of the n + 1st and n − 1st dimensional4

irreducible representations of SU(2). Our goal is to find a basis consisting of operators of the5

form C(p, q). The key idea is to work in the basis ζ j (z), j = 1, 2, . . . , r − 1, and use the6

formula7

C(p, q)ζm(z) = t−pq(t2qmζm−p(z) + t−2qmζm+p(z)).8

We see now that in the basis ζ j (z), j = 1, 2, . . . , r − 1 the matrices of the operators C(p, q)9

are particularly simple. To summarize our approach, through a linear isomorphism we identify10

the Hilbert space with a space of operators, then choose a basis in which the matrices of these11

operators are simple enough. We obtain12

Theorem 6.1. A basis of the linear space of quantum observables of the SU(2)r Chern–Simons13

theory on the torus is given by the operators14

C(0, q), 0 ≤ q ≤ r − 2,15

C(p, q), 1 ≤ p ≤ r − 2, −r + p + 2 ≤ q ≤ r − p − 1.16

Proof. We will show that the C(p, q), with p, q ranging as described in the statement, span the17

space of (r − 1) × (r − 1) matrices. Start with the diagonal. �18

19

Lemma 6.2. The diagonal matrices are spanned by C(0, q), 0 ≤ q ≤ r − 2.20

Proof. The matrix of C(0, q) is the diagonal matrix with entries21 (
cos

qπ

r
, cos

2qπ

r
, . . . , cos

(r − 1)qπ

r

)
.22

Denote α =
π
r . We have to show that the determinant23 ∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
cos α cos 2α · · · cos(r − 1)α

cos 2α cos 4α · · · cos 2(r − 1)α

· · · · · ·
. . . · · ·

cos(r − 2)α cos 2(r − 2)α · · · cos(r − 1)(r − 2)α

∣∣∣∣∣∣∣∣∣∣
24

is nonzero. To compute the determinant, let x1 = 2 cos α, x2 = 2 cos 2α, . . . , xr−1 = 2 cos(r −25

1)α. Denote by Tn(x) the nth Chebyshev polynomial (T0(x) = 2, T1(x) = x, Tn+1(x) =26

xTn(x) − Tn−1(x)). Then the determinant is27

1

2r−1

∣∣∣∣∣∣∣∣∣
T0(x1) T0(x2) · · · T0(xr−1)

T1(x1) T1(x2) · · · T1(xr−1)

· · · · · ·
. . . · · ·

Tr−2(x1) Tr−2(x2) · · · Tr−2(xr−1)

∣∣∣∣∣∣∣∣∣ .28
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Row operations transform this into the Vandermonde determinant. We conclude that the value of 1

the original determinant is 2

1

2r−1

∏
1≤k< j≤r−1

(
cos

jπ

r
− cos

kπ

r

)
6= 0. � 3

Let us return to the proof of the theorem. For some nonzero k ≤ r − 2, let us look at those 4

C(p, q) 0 ≤ p ≤ k. The nonzero entries of the matrix of such an element lie at distance at most 5

k from the main diagonal, i.e., they are among the ai j ’s with i − k ≤ j ≤ i + k. 6

We prove by induction on p that C(k, q) with q subject to the conditions from the statement 7

and 0 ≤ k ≤ p span Mp, the set of all matrices whose only nonzero elements are of the form 8

ai j , with i − p ≤ j ≤ i + p. The base case p = 0 was proved in the lemma. 9

Assume that the property is true for p − 1, and let us prove it for p. Consider the matrix of 10

t pqC(p, q). Using the inductive hypothesis we can add to it an element of Mp−1, so that the 11

resulting matrix Ap,q is of the form 12

0 0 · · · t−2q 0 · · · 0
0 0 · · · 0 t−4q

· · · 0

· · · · · ·
. . . · · · · · · · · · · · ·

0 0 · · · 0 0 · · · t−2(r−1−p)q

· · · · · ·
. . . · · · · · ·

. . . · · ·

t2(p+1)q 0 . . . 0 0 . . . 0
0 t2(p+2)q . . . 0 0 . . . 0

· · · · · ·
. . . · · · · · ·

. . . · · ·


. 13

The nonzero entries of Ap,q are those of indices (1, p +1), (2, p +2), . . . , (r − p −1, r −1), 14

(p + 1, 1), (p + 2, 2), . . . , (r − 1, r − p − 1) (those at distance p from the main diagonal 15

of the matrix). The space Mp 	 Mp−1 has dimension 2r − 2k − 2, and a basis Ei, j , (i, j) ∈ 16

{(1, p + 1), (2, p + 2), . . .}, where Ei, j denotes the matrix whose only nonzero entry is equal to 17

1 and is that of index (i, j). In this basis the coordinates of Ap,q are 18(
t (−2)q , t (−4)q , . . . , t−2(r−p−1)q , t2(p+1)q , . . . , t2(r−1)q

)
. 19

To show that Ap,q , −r + p + 2 ≤ q ≤ r − p − 1 form a basis of Mp 	 Mp−1 we arrange the 20

entries of these vectors in a determinant, and show that this determinant is not equal to 0. With 21

the convention x1 = t−2, x2 = t−4, x3 = t−6, . . ., the determinant is 22∣∣∣∣∣∣∣∣∣∣
x−r+p+2

1 x−r+p+2
2 . . . x−r+p+2

2r−2p−2

x−r+p+3
1 x−r+p+3

2 . . . x−r+p+3
2r−2p−2

· · · · · ·
. . . · · ·

xr−p−1
1 xr−p−1

2 . . . xr−p−1
2r−2p−2

∣∣∣∣∣∣∣∣∣∣
. 23

Multiplying this determinant by 24

(x1x2 · · · x2r−2p)
r−p−2

25

produces a Vandermonde determinant, which is nonzero since the xi ’s are distinct. This 26

completes the inductive argument, and consequently the proof of the theorem. � 27
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We point out that contrary to a naive intuition, the indices of the basis elements do not range in1

an (r − 1)× (r − 1) rectangle, but in a triangular region, a surprising fact already observed in [6]2

for r = 3. For r = 5, we would like to describe a basis more in the spirit of the above-mentioned3

paper. For that let us denote by V k(m, n) the curve of slope m/n on the torus colored by the4

k-dimensional irreducible representation of the quantum group of SL(2, C).5

Corollary 1. The linear space of quantum observables for r = 5 has a basis formed by6

the identity operator together with the operators V 2(0, 1), V 3(0, 1), V 4(0, 1), V 2(1, −2),7

V 2(1, −1), V 2(1, 0), V 2(1, 1), V 2(1, 2), V 2(1, 3), V 2(2, −1), V 3(1, 0), V 2(2, 1), V 3(1, 1),8

V 4(1, 0), V 2(3, 1).9

Proof. This follows from the theorem using the identity10

C(p, q) = V n+1(p′, q ′) − V n−1(p′, q ′),11

where n is the greatest common divisor of p and q , and p′
= p/n, q ′

= q/n. �12

With the usual conventions for curves (for example that (4, 2) means the double of the curve13

(2, 1)), we can rephrase this as14

Corollary 2. The linear space of quantum observables for r = 5 has a basis formed by the15

identity operator together with the operators (0, 1), (0, 2), (0, 3), (1, −2), (1, −1), (1, 0), (1, 1),16

(1, 2), (1, 3), (2, −1), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1).17
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