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Chapter 1

Absolute Geometry

1.1 The axioms

1.1.1 Properties of incidence

Lines and points are primary notions, they are not defined. A point can belong to a line or not.

I1. Given two points, there is one and only one line containing those points.

I2. Any line has at least two points.

I3. There exist three non-collinear points in the plane.

When a line contains a point, we also say that the line passes through that point. Points are
denoted by capital letters of the Roman alphabet. Given two distinct points A and B, the unique
line passing through A and B is denoted by AB. Sometimes lines will be denoted by lower case
letters of the Roman alphabet. Several points belonging to the same line are called collinear. If C
belongs to AB we write C ∈ AB. We identify a line with the set of all the points belonging to it.

Example 1.1.1. The Euclidean plane.

Example 1.1.2. The plane consists of three noncollinear points A,B,C, and the lines are the sets
{A,B}, {A,C}, {B,C}.

Problem 1.1.1. Show that if A,B,C are three non-collinear points, then the lines AB, BC, and
AC are pairwise distinct.

Proof. We argue by contradiction (reductio ad absurdum). Assume that AB = BC. We know that
C ∈ BC, and hence C ∈ AB as well. This implies that A,B,C are collinear, a contradiction. So
our initial assumption was false, which implies that AB 6= BC. QED

1.1.2 Properties of ordering

The notion of between is not defined, but it is given through its properties. It applies to three
points A,B,C, with A 6= C, by saying that “B is between A and C”.

O1. If B is between A and C then A,B,C are collinear and B is also between C and A.

O2. If B is between A and C, then A is not between B and C.

5



6 CHAPTER 1. ABSOLUTE GEOMETRY

O3. If A,B,C are collinear and distinct such that A is not between B and C and C is not between
A and B, then B is between A and C.

O4. If B is between A and C and C is between B and D, then B and C are between A and D.

O5. If A and B are distinct points, there is C such that B is between A and C.

O6. If A and B are distinct points, there is C between A and B.

Theorem 1.1.1. Every line contains infinitely many points.

Proof. Let us consider a line. By I2 it contains two points A and B. Using O5 we can find a point
M1 such that B is between A and M1. From O1 and O2 we deduce that M1 6= A and M1 6= B.

Using O5 we can find M2 such that M1 is between B and M2. Then by O4, M1 and B are
between A and M2. Consequently M2 is different from A,B,M1.

Next using O5 we can find M3 such that M2 is between M1 and M3. By O4, M1 and M2 are
between B and M3, and so by the same O4, B,M1,M2 are between A and M3. So M3 is different
from A,B,M1,M2.

Inductively we construct the sequence of points M1,M2,M3, . . . , such that for each k > 1,
B,M1,M2, . . . ,Mk−1 are between A and Mk. These points are distinct, so the line has infintely
many points.

Definition. Given two points A,B, the (closed) segment |AB| consists of A, B and all points
between A and B.

Definition. Given two points A,B, the ray |AB is the set of all points M such that A is not
between M and B.

Definition. Given three noncollinear points A,B,C, the half-plane containing C and bounded by
AB is the set of all points M such that there does not exist N on AB with N between C and M .

Definition. Given three noncollinear points A,B,C, the triangle ∆ABC is the union of the seg-
ments |AB|, |BC|, and |AC|.

We introduce one more ordering axiom.

O7. (Pasch’ axiom) If a line does not pass through any of the noncollinear points A,B,C and
intersects the segment |AB|, then it intersects one and only one of the segments |AC| and
|BC|.

Definition. Given the points A1, A2, . . . , An, the union of the segments |A1A2|, |A2A3|, . . . , |AnA1|
is called a polygon (πoλuγoνoν). If n = 3, the polygon is a triangle, if n = 4 it is a quadrilateral.
The points A1, A2, . . . , An are called vertices, while the segments |A1A2|, |A2A3|, . . . , |AnA1| are
called sides.

If nonconsecutive sides intersect, the polygon is called skew. By default, we assume that poly-
gons are nonskew. If any two consecutive vertices determine a line such that all other vertices are
in the same half-plane determined by that line, then the polygon is called convex.

In a polygon A1A2 . . . An, if Aj and Ak are not consecutive vertices, then the segment |AjAk|
is called a diagonal.

Definition. We call angle the union of two rays with the same origin.

If the rays are |AB and |AC we denote the angle they form by ∠BAC or B̂AC.
Adjacent, supplementary, and opposite angles are defined as in Figure 1.1.
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adjacent                       supplementary                      opposite

Figure 1.1: Types of angles

1.1.3 Congruence

“Congruence” is the notion of equality in Euclidean geometry, in the same way as “isomorphic” is
the notion of equality in group theory. The congruence of segments and angles is again a primary
notion, defined by properties, but intuitively two segments or angles are congruent if one can be
overlaid on top of the other. Congruence is denoted by ≡.

C1. Given a ray with origin O and a segment |AB|, there exists one and only one point M on the
ray such that |OM | ≡ |AB|.

C2. |AB| ≡ |AB| and |AB| ≡ |BA|.
If |AB| ≡ |A′B′| then |A′B′| ≡ |AB|.
If |AB| ≡ |A′B′| and |A′B′| ≡ |A′′B′′| then |AB| ≡ |A′′B′′|.

C3. If B is between A and C and B′ is between A′ and C ′, and if |AB| ≡ |A′B′| and |BC| ≡ |B′C ′|,
the |AC| ≡ |A′C ′|.

C4. Given an angle ∠AOB and a ray |O′A′ and given any of the half-planes bounded by O′A′,
there is a unique ray OB′ contained in this half-plane such that ∠AOB ≡ ∠A′O′B′.

C5. ∠AOB ≡ ∠AOB, ∠AOB ≡ ∠BOA.
If ∠AOB ≡ ∠A′O′B′ then ∠A′O′B′ ≡ ∠AOB.
If ∠AOB ≡ ∠A′O′B′ and ∠A′O′B′ ≡ ∠A′′O′′B′′, then ∠AOB ≡ ∠A′′B′′C ′′.

C6. Given two triangles ∆ABC and ∆A′B′C ′ such that ∠BAC ≡ ∠B′A′C ′, |AB| ≡ |A′B′|, and
|AC| ≡ |A′C ′| then ∠ABC ≡ ∠A′B′C ′.

Note that there is no analogue of C3 for angles. The property is actually true, but it is a
theorem provable from these axioms (Theorem1.2.6).

Definition. Let |AB| and |CD| be two segments and P,Q,R three points such that Q is between
P and R. If |AB| ≡ |PQ| and |CD| ≡ |QR|, we say that |PR| ≡ |AB| + |CD|. We say that
|AB| > |CD| if |AB| ≡ |CD|+ |EF | for some segment |EF |. Also |CD| ≡ |AB| − |EF |.

If |AB| ≡ |A′B′| + |A′B′| + · · · + |A′B′|, we write |AB| = n|A′B′| or |A′B′| = 1

n
|AB|. If

|AB| ≡ n|A′B′| and |A′′B′′| ≡ m|A′B′|, we write |A′′B′′| ≡ m
n
|AB|. This can also be written as

|A′′B′′|

|AB|
=

m

n
.

If M is between A and B, and |AB| ≡ 2|AM |, then M is called the midpoint of |AB|.
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1.2 Congruence of triangles

1.2.1 Theorems of congruence of triangles

Definition. One says that ∆ABC ≡ ∆A′B′C ′ if ∠BAC ≡ ∠B′A′C ′, ∠ABC ≡ ∠A′B′C ′, ∠ACB ≡
∠A′C ′B′ and |AB| ≡ |A′B′|, |BC| ≡ |B′C ′| and |AC| ≡ |A′C ′|.

Theorem 1.2.1. (SAS) If in ∆ABC and ∆A′B′C ′, |AB| ≡ |A′B′|, ∠BAC ≡ ∠B′A′C ′, and
|AC| ≡ |A′C ′|, then ∆ABC ≡ ∆A′B′C ′.

Proof. By C6 we have ∠ABC ≡ ∠A′B′C ′ and ∠ACB ≡ ∠A′C ′B′. We are left to show that
|BC| ≡ |B′C ′|.

We refer to Figure 1.2. On the ray |BC, choose C ′′ such that |BC ′′ ≡ |B′C ′| (which is possible by
C1). We want to show that C ′′ = C. Applying C6 to triangles ∆BAC ′′ and ∆B′A′C ′ (∠ABC ′′ ≡
∠A′B′C ′, |BC ′′| ≡ |B′C ′|, |AB| ≡ |A′B′|), we obtain that ∠BAC ′′ ≡ ∠B′A′C ′. The later is
congruent to ∠BAC by hypothesis. Axiom C4 implies that |AC ′′ = |AC. But C,C ′′ ∈ BC and
since the line AC and BC cannot have more than one point in common, by I1, it follows that
C = C ′′. Therefore |BC| ≡ |B′C ′|, and the theorem is proved.

A

CB

A

B CC

Figure 1.2: Theorem SAS

Theorem 1.2.2. (ASA) If in ∆ABC and ∆A′B′C ′, ∠ABC ≡ ∠A′B′C ′, |BC| ≡ |B′C ′|, and
∠ACB ≡ ∠A′C ′B′, then ∆ABC ≡ ∆A′B′C ′.

Proof. We argue on Figure 1.3. On |BA choose A′′ such that |BA′′| ≡ |B′A′|. Since |BC| ≡ |B′C ′|,
∠A′′BC ≡ ∠A′B′C ′ and |BA′′| ≡ |B′A′|, by applying Theorem SAS to the triangles ∆A′′BC and
∆A′B′C ′ we deduce that ∆A′′BC ≡ ∆A′B′C ′. Hence ∠BCA′′ ≡ ∠B′C ′A′. But by hypothesis,
∠BCA ≡ ∠B′C ′A′. From C4 we obtain |CA′′ = |CA, and since CA and BA can have at most one
point in common, A = A′′. But then we have ∆ABC ≡ ∆A′B′C ′, as desired.

A

CB

A
A

B C

Figure 1.3: Theorem ASA

Theorem 1.2.3. In ∆ABC, |AB| ≡ |AC| if and only if ∠ABC ≡ ∠ACB.
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Proof. ⇒ Let us prove first the direct implication. If |AB| ≡ |AC|, by applying Theorem SAS to
triangles ∆ABC and ∆ACB (|AB| ≡ |AC|, ∠BAC ≡ ∠CAB, |AC| ≡ |AB|), we obtain that these
triangles are congruent. It follows that ∠ABC ≡ ∠ACB.

⇐ Now let us prove the converse. If ∠ABC ≡ ∠ACB, then by applying Theorem ASA to
triangles ∆ABC and ∆ACB (∠ABC ≡ ∠ACB, |BC| ≡ |CB|, ∠ACB ≡ ∠ABC) we deduce that
these triangles are congruent. Consequently |AB| ≡ |AC|. The theorem is proved.

Definition. A triangle with two congruent sides (or equivalently two congruent angles) is called
isosceles. A triangle with all sides congruent (or equivalently all angles congruent) is called equi-
lateral.

Theorem 1.2.4. Given ∠AOB,∠BOC,∠A′O′B′,∠B′O′C ′ such that ∠AOB is the supplement of
∠BOC, ∠A′O′B′ is the supplement of ∠B′O′C ′ and ∠AOB ≡ ∠A′O′B′, then ∠BOC ≡ ∠B′O′C ′.

Said in plain words, “angles with congruent supplements are congruent”.

Proof. Using the axiom C1, we can actually choose the points A,B,A′, B′ such that |OA| ≡ |O′A′|,
|OB| ≡ |O′B′|, and |OC| ≡ |O′C ′|, as in Figure 1.4.

Since |OA| ≡ |O′A′|, ∠AOB ≡ ∠A′O′B′, and |OB| ≡ |O′B′|, by Theorem SAS ∆OAB ≡
∆O′A′B′. Hence |AB| ≡ |A′B′| and ∠OAB ≡ ∠O′A′B′.

Applying Theorem SAS to triangles ∆ABC and ∆A′B′C ′, in which |AC| ≡ |A′C ′|, ∠BAC ≡
∠B′A′C ′, and |AB| ≡ |A′B′|, we deduce that these triangles are congruent, hence |BC| ≡ |B′C ′|
and ∠OBC ≡ ∠O′B′C ′.

By Theorem SAS, ∆O′B′C ′ ≡ ∆OBC (|BC| ≡ |B′C ′|, ∠ACB ≡ ∠A′C ′B′, |AC| ≡ |A′C ′|). It
follows that ∠BOC ≡ ∠B′O′C ′, as desired.

O A

B

C A

B

OC

Figure 1.4: Angles with congruent supplements are congruent.

Theorem 1.2.5. Given the points O,A,A′, B,B′ such that O ∈ |AA′| and O ∈ |BB′|, we then
have ∠AOB ≡ ∠A′O′B′.

In other words “opposite angles are congruent”.

Proof. The two angles have the common supplement ∠AOB′. By Theorem 1.2.4 they are congruent.

Theorem 1.2.6. In the configuration from Figure 1.5, ∠AOB ≡ ∠A′O′B′ and ∠BOC ≡ ∠B′O′C ′.
Then ∠AOC ≡ ∠A′O′C ′.

Proof. Choose A,B,C,A′, B′, C ′ such that |OA| ≡ |O′A′|, |OB| ≡ |O′B′|, A,B,C are collinear,
and A′, B′, C ′ are collinear (see Figure 1.6).



10 CHAPTER 1. ABSOLUTE GEOMETRY

O B
O B

A

C

A

C

Figure 1.5: Sums of congruent angles are congruent.

O
O

A

B

C

A

C

B

Figure 1.6: Proof that some of congruent angles are congruent.

Since |OA| ≡ |O′A′|, ∠AOB ≡ ∠A′O′B′, and |OB| ≡ |O′B′|, by Theorem SAS, ∆OAB ≡
∆O′A′B′. It follows that ∠OBA ≡ ∠O′B′A′. Because ∠OBC and ∠O′B′C ′ have congruent
supplements, by Theorem 1.2.4 they are congruent.

Hence by Theorem ASA, ∆OBC ≡ ∆O′B′C ′, because ∠BOC ≡ ∠B′O′C ′, |OB| ≡ |O′B′|,
∠OBC ≡ ∠O′B′C ′. From this we obtain that |AB| ≡ |A′B′| and |BC| ≡ |B′C ′|. Adding these and
using C3 we obtain |AC| ≡ |A′C ′|.

Returning to the congruent triangles ∆OAB and ∆O′A′B′, we have ∠OAB ≡ ∠O′A′B′. Hence
in triangles ∆AOC and ∆A′O′C ′, |OA| ≡ |O′A′|, ∠OAC ≡ ∠O′A′C ′, |AC| ≡ |A′C ′|, and so
∆AOC ≡ ∆A′O′C ′. From this congruence it follows that ∠AOC ≡ ∠A′O′C ′, and we are done.

Now we can introduce some notation.

If ∠AOB = ∠A′O′B′ + ∠A′O′B′ + · · · + ∠A′O′B′, with n terms on the right, we say that
∠AOB = n∠A′O′B′.

Definition. If ∠AOB ≡ ∠A′O′B′ + ∠B′O′C ′, we say that ∠AOB > ∠A′O′B′. Also ∠A′O′B′ ≡
∠AOB − ∠B′O′C ′.

Definition. An angle congruent to its supplement is called a right angle.

A straight angle is twice a right angle.

Definition. Let AB and BC be two lines intersecting at B. The lines are called orthogonal (or
perpendicular) if ∠ABC is right.

Proposition 1.2.1. There exist right angles.

Proof. Consider an isosceles triangle ∆ABC, and let M be the midpoint of |AB|. Then The-
orem SAS implies that ∆ABM ≡ ∆ACM , so ∠AMB ≡ ∠AMC. This shows that ∠AMC is
right.
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Theorem 1.2.7. (SSS) If in ∆ABC and ∆A′B′C ′, |AB| ≡ |A′B′|, |BC| ≡ |B′C ′|, and |AC| ≡
|A′C ′|, then ∆ABC ≡ ∆A′B′C ′.

Proof. In the half-plane bounded by BC which does not contain A, choose a point A′′ such that
|BA′′| ≡ |B′A′| and ∠CBA′′ ≡ ∠C ′B′A′, as shown in Figure 1.7. We can make this choice by
Axioms C1 and C4. By Theorem SAS, ∆BCA′′ ≡ ∆B′C ′A′, because |BC| ≡ |B′C ′|, ∠CBA′′ ≡
∠C ′B′A′ and |BA′′| ≡ |B′A′|.

A

CB

A

B C

A

Figure 1.7: Theorem SSS

Since A,A′′ do not lie in the same half-plane, the segment AA′′ intersects BC. Let O be this
intersection. We distinguish the following cases: O = B, O = C, O ∈ |BC|, C ∈ |OB|, B ∈ |OC|.
The first two and the last two cases are similar. So we need to consider only three cases, described
in Figure 1.8.

Case 1. O = B.
Then ∆CAA′′ is isosceles (|CA′′| ≡ |C ′A′| ≡ |CA|), hence ∠BAC ≡ ∠BA′′C. Theorem SAS

implies that ∆ABC ≡ ∆A′B′C ′, as desired.
Case 2. O ∈ |BC|. From the isosceles triangle ∆BAA′′ we obtain ∠BAO ≡ ∠BA′′O. From the

isosceles triangle ∆CAA′′ we obtain ∠CAO ≡ ∠CA′′O. Using Theorem 1.2.6, we obtain

∠BAC ≡ ∠BAO + ∠OAC ≡ ∠BA′′O + ∠OA′′C ≡ ∠BA′′C.

Now we have |AB| ≡ |A′′B|, ∠BAC ≡ ∠BA′′C, and |AC| ≡ |A′′C|, so by Theorem SAS, ∆ABC ≡
∆A′′BC. Consequently ∆ABC ≡ ∆A′B′C ′, so this case is solved, as well.

Case 3. B ∈ |OC|. Like before, in the isosceles triangle ∆BAA′′, ∠BAO ≡ ∠BA′′O. In the
isosceles triangle ∆CAA′′, ∠CAO ≡ ∠CA′′O. Hence by Theorem 1.2.6,

∠BAC ≡ ∠CAO − ∠BAO ≡ ∠CA′′O − ∠BA′′O ≡ ∠BA′′C.

Again by Theorem SAS, ∆ABC ≡ ∆A′′BC ≡ ∆A′B′C ′. The theorem is proved.

1.2.2 Problems

1.∗ Prove that a line determines exactly two half planes.

2. Let ∆ABC ≡ ∆A′B′C ′ and let M and M ′ be the midpoints of |BC| respectively |B′C ′|.
Prove that ∠BAM ≡ ∠B′A′M ′.
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A

CB O

A

C
B=O

A

CB O

A A A

Figure 1.8: The 3 cases for the proof of Theorem SSS

3. Consider the triangle ∆ABD. Suppose there is a point C such that ∠ACB ≡ ∠ACD and
∠BAC ≡ ∠DAC ≡ 1

2
∠BAD. Prove that the triangles ∆ABD and ∆CBD are isosceles.

4. Let ∆ABC be an isosceles triangle, with |AB| ≡ |AC|. Prove that the medians |BN | and
|CP | are congruent.

5. In Figure 1.5 assume that ∠AOB ≡ ∠A′O′B′ and ∠AOC ≡ ∠A′O′C ′. Prove that ∠BOC ≡
∠B′O′C ′.

6.∗ Let |AB| be a segment. Prove that there exists M ∈ |AB| such that |AM | ≡ |BM |.

7.∗ Prove that there is a triangle ∆ABC such that if M is the midpoint of |BC| then AM is not
orthogonal to BC.

1.3 Inequalities in a triangle

1.3.1 The results

Theorem 1.3.1. (The exterior angle theorem) In a triangle ∆ABC, the supplement of ∠B is
greater than ∠A.

Proof. We argue on Figure 1.9. Choose E such that B is between C and E, so that the supplement
of ∠B = ∠ABE. Assume by way of contradiction that ∠ABE ≤ ∠A, and choose the point
C ′ ∈ |BC| such that ∠C ′′AB ≡ ∠ABE.

A

B C

D

E C

Figure 1.9: The exterior angle theorem
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Let D ∈ AC ′ such that A is between C ′ and D, and |BC ′| ≡ |AD|. Then ∠DAB ≡ ∠ABC ′,
because they have the same supplement. This combined with |AB| ≡ |AB| and |BC ′| ≡ |AD|
implies that ∆ABC ′ ≡ ∆BAD (by Theorem SAS). Hence

∠ABD ≡ ∠BAC ′ ≡ ∠ABE.

By Axiom C4, |BD coincides with |BE. So the lines AC ′ and BC ′ have two points of intersection,
namely C ′ and D, contradicting Axiom I1. Hence our assumption was false, and the theorem is
proved.

Proposition 1.3.1. If a line forms congruent alternate interior angles with two other lines, then
those lines do not intersect.

Proof. If the two lines intersected, then the two angles would be one interior and one exterior to a
triangle (see Figure 1.10).

Figure 1.10: Parallel lines

But the Exterior Angle Theorem shows that this is impossible.

Definition. Two lines that do not intersect are called parallel.

“Parallel lines exist!”

Theorem 1.3.2. In a triangle the larger side is opposite to the larger angle.

Proof. Rephrasing the statement, in ∆ABC, |AB| < |AC| if and only if ∠C < ∠B.
⇒ If |AB| < |AC|, choose D ∈ |AC| such that |AD| ≡ |AB|, as shown in Figure 1.11. The

triangle ∆ABD is isosceles, hence ∠ABD ≡ ∠ADB. Using the Exterior Angle Theorem, we can
write

∠ABC > ∠ADB > ∠ACB.

Thus ∠C < ∠B.
⇐ If ∠C < ∠B, then |AB| ≡ |AC| contradicts the isosceles triangle theorem, and |AB| > |AC|

contradicts what we just proved. We can only have |AB| < |AC|.

Theorem 1.3.3. (The triangle inequality) In a triangle the sum of two sides is greater than the
third.

Proof. Construct C ′ such that B ∈ |CC ′| and |BC ′| ≡ |AB| (see Figure 1.12). The triangle ∆BAC ′

is isosceles, so

∠BC ′A ≡ ∠BAC ′ < ∠CAC ′.
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B

A

C

D

Figure 1.11: Larger side opposes larger angle.

A

B CC

Figure 1.12: The triangle inequality

By Theorem 1.3.2,

|CC ′| > |AC|.

Because |CC ′| ≡ |AB|+ |BC|, we obtain

|AB|+ |BC| > |AC|.

The other two inequalities are obtained the same way.

Theorem 1.3.4. If in ∆ABC, |AB| ≤ |AC| and D ∈ |BC|, then |AD| < |AC|.

B D C

A

Figure 1.13: The secant is shorter than the longer side.

Proof. We argue on Figure 1.13. By Theorem 1.3.2

∠B ≥ ∠C.

By the exterior angle theorem

∠ADC > ∠ABC.
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Hence

∠ADC > ∠C,

and so by Theorem 1.3.2 |AD| < |AC|, as desired.

1.3.2 Problems

1. Let ABCD be a quadrilateral. Prove that |AB|+ |BC|+ |CD| ≥ |AD|.

2. Let M be a point in the interior of triangle ∆ABC. Prove that |AM | is shorter than the
longest side of the triangle.

3. Show that a triangle can have at most one obtuse angle (you cannot use the fact that the
sum of the angles of a triangle is 180◦ since this is not true in absolute geometry).

4. Let ∆ABC be a right triangle, with ∠A being the right angle. Prove that |AB| + |AC| <
2|BC|.

5.∗ Let ∆ABC be an equilateral triangle, and M ∈ |BC|, N ∈ |AC| and P ∈ |AB| such that
AM perpendicular to BC, BN perpendicular to AC and CP perpendicular to AB. Show
that M , N and P are the midpoints of the sides, and that |AM , |BN and |CP are the angle
bisectors of the triangle.

6. Let ∆ABC be a triangle, and let M be the midpoint of |BC|. Prove that |AM | ≤ 1

2
(|AB|+

|AC|). Conclude that the sum of the medians of a triangle is less than the sum of the sides.

1.4 Right angles

1.4.1 Properties of right angles

Recall that a right angle is an angle that is congruent to its supplement.

Remark 1.4.1. The supplement and the opposite of a right angle are right angles.

Definition. Two intersecting lines are called orthogonal if the four angles they determine are right.
If AB and CD are the two lines, we write AB⊥CD.

Proposition 1.4.1. Any angle congruent to a right angle is a right angle.

Proof. Suppose that ∠AOB ≡ ∠A′O′B′, and ∠A′O′B′ is right. By Theorem 1.2.4, the supplement
of ∠AOB is congruent to the supplement of ∠A′O′B′. But the later is congruent to ∠A′O′B′,
hence to ∠AOB. So ∠AOB is congruent to its supplement, so it is right.

Theorem 1.4.1. Any two right angles are congruent.

Remark 1.4.2. Euclid lists this as an axiom, but we work with a more modern system of axioms,
in which this statement can be proved.

Proof. Arguing by contradiction, let us assume there exist two right angles ∠ABC and ∠A′B′C ′

such that ∠ABC > ∠A′B′C ′. Let ∠DBA be the supplement of ∠ABC.
Choose A′′ in the half-plane bounded by BC which contains A such that ∠A′′BC ≡ ∠A′B′C ′

(see Figure 1.14). Then

∠A′′BC < ∠ABC,



16 CHAPTER 1. ABSOLUTE GEOMETRY

AA

D CB

Figure 1.14: Right angles are congruent.

and so their supplements should satisfy

∠DBA < ∠DBA′′.

But since ∠ABC and ∠A′′BC are right,

∠A′′BC ≡ ∠DBA′′ > ∠DBA ≡ ∠ABC.

This contradicts ∠A′′BC < ∠ABC. So our initial assumption was false, proving that any two right
angles are congruent.

Definition. An angle that is smaller than a right angle is called acute. An angle that is greater
than a right angle is called obtuse.

Definition. If two angles add up to a right angle, they are called complementary. Each is the
complement of the other.

1.4.2 Theorems of congruence for right triangles

In all five theorems below, the triangles are ∆ABC and ∆A′B′C ′, with the right angles ∠A respec-
tively ∠A′.

Theorem 1.4.2. If |AB| ≡ |A′B′| and |AC| ≡ |A′C ′|, then ∆ABC ≡ ∆A′B′C ′.

Proof. This is an easy application of Theorem SAS.

Theorem 1.4.3. If |AB| ≡ |A′B′| and ∠B ≡ ∠B′, then ∆ABC ≡ ∆A′B′C ′.

Proof. This is an easy application of Theorem ASA.

Theorem 1.4.4. If |AB| ≡ |A′B′| and |BC| ≡ |B′C ′|, then ∆ABC ≡ ∆A′B′C ′.

Proof. We give three proofs to this result, the second and the third suggested by students.
I. We argue on Figure 1.15. Choose C ′′ ∈ |AC such that |AC ′′| ≡ |A′C ′|. Let us assume that

C 6= C ′′. By Theorem SAS, ∆AC ′′B ≡ ∆A′C ′B′. Hence |BC ′′| ≡ |B′C ′| ≡ |BC|. It follows that
∆BC ′′C is isosceles.

But the angles of a right triangle are acute, by the Exterior Angle Theorem applied to the
right angle. Thus one of the two congruent angles of ∆BC ′′C is acute, and the other has acute
supplement, hence is obtuse. This is a contradiction, which proves that our assumption was false.
It follows that A = A′′, and hence ∆ABC ≡ ∆A′B′C ′.

II. There is another way to end this proof. In the begining, we may assume C ′′ ∈ |AC|,
or else switch the triangles. Once we have that ∆BCC ′′ is isosceles, we notice that |BC ′′| <
max(|BC|, |AB|) by Theorem 1.3.4. But the “larger side opposes the larger angle ” shows that
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C

A

C

B A B

C

Figure 1.15: Congruence of right triangles.

in a right triangle the hypothenuse is the longest side. So max(|BC|, |AB|) = |BC|. Hence
|BC ′′| < |BC|, a contradiction. The conclusion follows.

III. Construct the points D and D′ such that A is the midpoint of |BD|, and A′ is the midpoint
of |B′D′|. Then triangles ∆CAB and ∆CAD are congruent, by Theorem SAS, so |BC| ≡ |DC|.
Similarly ∆C ′A′B′ ≡ ∆C ′A′D′, so |B′C ′| ≡ |D′C ′|. Then triangles ∆ABD and ∆A′B′D′ are
congruent by Theorem SSS, because |DC| ≡ |BC| ≡ |B′C ′| ≡ |D′C ′| and |BD| ≡ 2|AB| ≡
2|A′B′| ≡ |B′D′|. We obtain that ∠B ≡ ∠B′, and then Theorem SAS implies ∆ABC ≡ ∆A′B′C ′,
as desired.

Theorem 1.4.5. If |AB| ≡ |A′B′| and ∠C ≡ ∠C ′, then ∆ABC ≡ ∆A′B′C ′.

Proof. We argue again on Figure 1.15. Choose C ′′ ∈ |AC such that |AC ′′| ≡ |A′C ′|. Then
∆ABC ′′ ≡ ∆A′B′C ′, by Theorem SAS. Hence ∠BC ′′A ≡ ∠B′C ′A′ ≡ ∠BCA. This would contra-
dict the Exterior Angle Theorem, unless C ′′ ≡ C. We conclude that ∆ABC ≡ ∆A′B′C ′.

Theorem 1.4.6. If |BC| ≡ |B′C ′| and ∠B ≡ ∠B′, then ∆ABC ≡ ∆A′B′C ′.

Proof. Choose A′′ ∈ |BA such that |BA′′| ≡ |B′A′|, as shown in Figure 1.16. Suppose that
A′′ 6= A. Then Theorem SAS implies that ∆BCA′′ ≡ ∆B′C ′A′, so ∠CA′′A is right. It follows that
in ∆CAA′′, there is an exterior angle and an interior angle not adjacent to it, both of which are
right. This contradicts the Exterior Angle Theorem. Hence A′′ = A and ∆ABC ≡ ∆A′B′C ′.

A

C

B A B

C

A

Figure 1.16: Congruence of right triangles.

We can summarize these results as follows.

Theorem 1.4.7. (The Theorem of Congruence of Right Triangles) If in two right triangles, two
pairs of corresponding elements are congruent, one of which is a pair of sides, then the triangles
are congruent.

Definition. The bisector of an angle ∠AOB consists of those points M with the property that
∠MOA ≡ ∠MOB ≡ 1

2
∠AOB.

Theorem 1.4.8. In a triangle the three angle bisectors intersect at one point.
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Proof. We argue on Figure 1.17. Let I be the point of intersection of the bisectors from ∠A and
∠B. By Exercise 2, there are D ∈ BC, E ∈ AC, and F ∈ AB such that ID⊥BC, IE⊥AC, and
IF⊥AB.

A

B C
D

F
E

I

Figure 1.17: The angle bisectors intersect.

By Theorem 1.4.6, ∆BID ≡ ∆BIF , so |ID| ≡ |IF |. Also by Theorem 1.4.6, ∆AIF ≡ ∆AIE,
and so |IF | ≡ |IE|. Hence |ID| ≡ |IE|.

In triangles ∆CID and ∆CIE, |ID| ≡ |IE|, |IC| ≡ |IC|, so by Theorem 1.4.4 they are
congruent. It follows that ∠ICE ≡ ∠ICD. Hence |CI is the angle bisector of ∠C. We conclude
that the angle bisectors intersect at one point.

1.4.3 Problems

1. Let AB be a line and C a point that does not belong to it. Show that there is a point D ∈ AB
such that CD⊥AB.

2.∗ Let l be a line and let C be a point that does not belong to l. Prove that on l there exists
two distinct points A and B such that |AC| ≡ |BC|.

3. Let ABC be an isosceles triangle with |AB| ≡ |AC|. Let E ∈ AC and F ∈ AB be such that
BE⊥AC and CF⊥AB. Prove that |BE| ≡ |CF |. (Hint: The angle ∠BAC might be acute
or obtuse).

1.5 The axioms of continuity

We conclude the discussion of absolute geometry by adding two axioms that allow us to establish
a one-to-one correspondence between the points of a line and the real numbers that preserves the
ordering.

R1. (Archimedes) If A and B are two points of a ray |OX, then there is a finite set of points
{A1, A2, . . . , Ak} on |OX such that

A ∈ |OA1|, A1 ∈ |OA2|, . . . , Ak−1 ∈ |OAk|,

|OA| ≡ |AA1| ≡ |A1A2| ≡ · · · ≡ |Ak−1Ak|,

and B ∈ |OAk|.

R2. (Cantor-Dedekind) Given a line and two sequences of points A1, A2, A3, . . ., B1, B2, B3, . . . on
this line such that for every j the segment |Aj+1Bj+1| is contained in the segment |AjBj |,
then there exists a point P contained in all of these segments.



Chapter 2

Euclidean Geometry

2.1 Euclid’s fifth postulate

2.1.1 Parallel lines

E1. (Euclid’s fifth postulate) Given a line l and a point A that does not belong to l, there is a
unique line l′ passing through A such that l and l′ are parallel.

Notation: l||l′.

Theorem 2.1.1. Given two lines l1 and l2 that are intersected by a third line l as shown in
Figure 2.1, then l||l′ if and only if ∠α ≡ ∠β, where ∠α and ∠β are a pair of alternate interior
angles.

α

β l

ll 3

1

2
l

Figure 2.1: Characterization of parallel lines

Proof. ⇒We start with l1||l2. Construct a line l3 through the intersection of l2 and l such that l3 and
l1 form congruent alternate interior angles with l. Then l3 and l1 are parallel, by Proposition 1.3.1,
so by Euclid’s fifth postulate, l3 = l2. Hence ∠α ≡ ∠β.

⇐ The converse statement follows from Proposition 1.3.1.

Corollary 2.1.1. Two pairs of parallel lines form congruent angles.

Theorem 2.1.2. The sum of the angles of a triangles is congruent to a straight angle.

Proof. Let ∆ABC be a triangle. On AB choose a point D such that A is between B and D. Take
the only line through A that is parallel to BC, as shown in Figure 2.2. This line divides ∠CAD
into two angles. Let these angles be ∠CAE and ∠EAD. Then by Theorem 2.1.1,

∠CAE ≡ ∠ACB and ∠EAD ≡ ∠ABC.

19
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The conclusion follows, since the angles ∠BAC, ∠CAE and ∠EAD add up to a straight angle.

A

B C

E

D

Figure 2.2: The sum of the angles of a triangle is a staight angle

Definition. A trapezoid is a quadrilateral that has a pair of opposite sides that are parallel.

Definition. A parallelogram is a quadrilateral whose opposite sides are parallel.

Proposition 2.1.1. A quadrilateral is a parallelogram if and only if one of the following properties
holds:

(i) Two opposite sides are parallel and congruent.

(ii) The two pairs of opposite sides are congruent.

(iii) The diagonals intersect at their midpoint.

Definition. A parallelogram whose angles are right is called a rectangle. A parallelogram whose
sides are congruent is called rhombus. A quadrilateral that is both a rectangle and and a rhombus
is called a square.

2.1.2 Problems

1. Show that if l||l′ and l′||l′′, then l||l′′.

2. Prove Proposition 2.1.1.

3. Show that if a parallelogram has one right angle, then all of its angles are right.

4. What is the sum of the angles of a polygon with n sides?

2.2 Similarity

2.2.1 The Theorems of Thales

Before we state Thales’ Theorems, we introduce the following notation. We say that |AB|/|CD| =
x, where x is a positive real number, if |AB| ≡ x|CD|. It is easy to see how this works if x is
rational; the axioms of continuity imply that for any choice of a segment |CD| and any positive
real number x, there is a segment |AB| such that |AB| ≡ x|CD|.

Theorem 2.2.1. (Thales) Let l and l′ be two distinct lines in the plane, and A,A′, A′′ ∈ l,
B,B′, B′′ ∈ l′ such that AB||A′B′, B′ ∈ |BB′′|, and |AA′| ≡ |A′A′′|. Then A′B′||A′′B′′ if and only
if B′ is the midpoint of the segment |BB′′|.
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Proof. ⇒ Construct M ∈ |A′B′| and M ′ ∈ |A′′B′′| such that BM ||AA′ and B′M ′||A′A′′ (see
Figure 2.3). Applying repeatedly Theorem 2.1.1 we deduce that

∠BMB′ ≡ ∠AA′B′ ≡ ∠AA′′B′′ ≡ ∠B′M ′B′′,

and

∠MBB′ ≡ ∠M ′B′B′′.

Also, by Proposition 2.1.1,

|BM | ≡ |AA′| ≡ |A′A′′| ≡ |B′M ′|.

Hence by Theorem ASA, ∆B′BM ≡ ∆B′′B′M ′. It follows that |BB′| ≡ |B′B′′|, so B′ is the
midpoint of |BB′′|.

A

A

A B

B

B

M

M

Figure 2.3: Proof of Thales’ Theorem, the particular case

⇐ Choose B1 ∈ l′ such that BB1||A
′B′. Then by what we just proved, |B′B1| ≡ |BB′|. It

follows that B1 is on the ray |B′B′′, and |B′B1| ≡ |B′B′′|. This can only happen if B1 = B′′, and
we are done.

Theorem 2.2.2. (Thales) Let l, l′ be two distinct lines in the plane, A,A′, A′′ ∈ l and B,B′, B′′ ∈ l′

such that A′ ∈ |AA′′|, B′ ∈ |BB′′| and A′B′||AB. Then A′′B′′||A′B′ if and only if

|AA′|

|A′A′′|
=

|BB′|

|B′B′′|
.

Proof. Case 1. |AA′|/|A′A′′| = 1/n, n a positive integer. We argue on Figure 2.4.
⇒ Choose A1, A2, . . . , An−1 ∈ |A′A′′| such that

|A′A1| ≡ |A1A2| ≡ · · · ≡ |An−1A
′′| ≡ |AA′|.

Choose also B1, B2, . . . , Bn−1 ∈ |B′B′′| such that

A1B1||A2B2|| · · · ||An−1Bn−1||A
′B′

Applying the previous theorem successively, we obtain

|B′B1| ≡ |BB′|, |B1B2| ≡ |B′B1|, . . . |Bn−1B
′′| ≡ |Bn−2Bn−1|.

It follows that |B′B′′| ≡ n|BB′|, as desired.
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A

A

A

A

A

B

B

B

B

B

B

11

22

n−An− 11

Figure 2.4: Proof of Thales’ Theorem

⇐ We use the same figure but this time we choose the Bi’s such that

|B′B1| ≡ |B1B2| ≡ · · · ≡ |Bn−1B
′′| ≡ |BB′|.

Applying again successively the previous theorem we deduce that

A1B1||A
′B′, A2B2||A1B1, . . . , A

′′B′′||An−1Bn−1.

We obtain that A′′B′′||A′B′, which proves this case.
Case 2. |AA′|/|A′A′′| = m/n, m,n positive integers, m > 1. We argue on Figure 2.5.

A

A

B

B

A1 B1

A B

Figure 2.5: Proof of Thales’ Theorem

⇒ Choose A1B1 such that

|A′A1|

|AA1|
=

1

m− 1
and A1B1||A

′B′.

By Case 1 of this theorem,

|B1B
′|

|B1B|
=

1

m− 1
and

|B1B
′|

|B′B′′|
=

1

n
.

An algebraic computation shows that

|BB′|

|B′B′′|
=

m

n
=

|AA′|

|A′A′′|
,
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as desired.
⇐ Choose now B1 such that

|A′A1|

|AA1|
=

|B1B
′|

|BB1|
=

1

m− 1
.

Then on the one hand, by Case 1 applied ”bottom to top”, A1B1||A
′B′. On the other hand

|A1A
′|

|A′A′′|
=

|B1B
′|

|B′B′′|
=

1

n
.

Applying again Case 1, we deduce that A′′B′′||A′B′.
Case 3. If |AA′|/|A′A′′| = x, with x a real number, approximate x by rational numbers, then pass
to the limit. In the process we use the axioms of continuity. Note that if AnBn||AB for all n, and
An → A∗, Bn → B∗, then A∗B∗||AB.

Corollary 2.2.1. Let ∠AOA′ be an angle, M ∈ |OA and M ′ ∈ |OA′. Then

AA′||MM ′ ⇔
|OM |

|OA|
=

|OM ′|

|OA′|
.

Proof. In Thales’ theorem, choose A = B.

2.2.2 Similar triangles

Definition. We say that ∆ABC is similar to ∆A′B′C ′, and write ∆ABC ∼ ∆A′B′C ′, if

∠A ≡ ∠A′, ∠B ≡ ∠B′, ∠C ≡ ∠C ′,

and

|AB|

|A′B′|
=

|BC|

|B′C ′|
=

|AC|

|A′C ′|
.

Theorem 2.2.3. If in ∆ABC and ∆A′B′C ′ we have ∠A ≡ ∠A′, ∠B ≡ ∠B′ and ∠C ≡ ∠C ′, then
∆ABC ∼ ∆A′B′C ′.

Proof. Let B′′ ∈ |AB and C ′′ ∈ |AC such that |AB′′| ≡ |A′B′| and |AC ′′| ≡ |A′C ′| (Figure 2.6).
Then by Theorem SAS, ∆AB′′C ′′ ≡ ∆A′B′C ′. Hence ∠AB′′C ′′ ≡ ∠A′B′C ′ ≡ ∠ABC. By Theo-
rem 2.1.1, B′′C ′′||BC. Applying Thales’ Theorem, we deduce that

|AB′′|

|B′′B|
=

|AC ′′|

|C ′′C|
.

A little algebra gives

|A′B′|

|AB|
=

|A′C ′|

|AC|
. (2.2.1)

Repeating the argument at vertex B, we deduce that

|A′B′|

|AB|
=

|B′C ′|

|BC|
. (2.2.2)

Combining (2.2.1) and (2.2.2), we obtain

|AB|

|A′B′|
=

|AC|

|A′C ′|
=

|BC|

|B′C ′|
,

which together with the congruence of angles shows that ∆ABC ∼ ∆A′B′C ′.
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A

A

BB C

C

C

B

Figure 2.6: Similarity of triangles

Note that because of Theorem 2.1.2, in order for the triangles to be similar it suffices to check
that two pairs of angles are respectively congruent.

Theorem 2.2.4. If in ∆ABC and ∆A′B′C ′

∠A ≡ ∠A′ and
|AB|

|A′B′|
=

|AC|

|A′C ′|
,

then ∆ABC ∼ ∆A′B′C ′.

Proof. Let B′′ ∈ |AB and C ′′ ∈ |AC such that |AB′′| ≡ |A′B′| and |AC ′′| ≡ |A′C ′| (Figure 2.6).
Then by Theorem SAS, ∆AB′′C ′′ ≡ ∆A′B′C ′. We have

|AB′′|

|AB|
=

|A′B′|

|AB|
=

|A′C ′|

|AC|
=

|AC ′′|

|AC|
,

so by Thales’ theorem B′′C ′′||BC. This implies that

∠A′B′C ′ ≡ ∠AB′′C ′′ ≡ ∠ABC

∠A′C ′B′ ≡ ∠AC ′′B′′ ≡ ∠ACB.

Because the triangles ∆ABC and ∆A′B′C ′ have the angles respectively congruent, by Theo-
rem 2.2.3, they are similar.

Theorem 2.2.5. If in ∆ABC and ∆A′B′C ′,

|AB|

|A′B′|
=

|AC|

|A′C ′|
=

|BC|

|B′C ′|
,

then ∆ABC ∼ ∆A′B′C ′.

Proof. Choose B′′ ∈ |AB and C ′′ ∈ |AC such that |AB′′| ≡ |A′B′| and |AC ′′| ≡ |A′C ′| (Figure 2.6).
Then

|AB′′|

|AB|
=

|AC ′′|

|AC|
,

so by Theorem 2.2.4, ∆ABC ∼ ∆AB′′C ′′. Then

|B′′C ′′|

|BC|
=

|AB′′|

|AB|
=

|B′C ′|

|BC|
,

which implies |B′′C ′′| ≡ |B′C ′|. We can apply Theorem SSS to conclude that ∆AB′′C ′′ ≡ ∆A′B′C ′.
As the first of these two triangles is similar to ∆ABC, so is the second.
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2.2.3 Problems

1. Let ∆ABC be a triangle and let M,N,P be the midpoints of |BC|, |AC|, respectively |AB|.
Let also M ′, N ′, P ′ be the midpoints of |NP |, |MP |, |MN |. Prove that the triangles ∆ABC
and ∆M ′N ′P ′ are similar.

2. Let ∆ABC be an equilateral triangle. On the rays |AB, |BC, and |CA choose the points
M,N,P respectively, such that |AM | ≡ |BN | ≡ |CP . Prove that ∆MNP is equilateral.

3. Let ∆ABC be an equilateral triangle and letM ∈ AC andN ∈ BC be such that |AM |/|MC| =
1/2 and |BN |/|NC| = 1/3. Let P be the intersection of AN and BM . Find |BP |/|PM |.

4. Let ∆ABC be a triangle and let |AD| and |BE| be its altitudes from A and B. Prove that
∆CEB ∼ ∆CDA and that ∆CED ∼ ∆CBA.

2.3 The four important points in a triangle

2.3.1 The incenter

Recall that Theorem 1.17 shows that the three angle bisectors of a triangle intersect at one point.

Definition. The point of intersection of the three angle bisectors of a triangle is called the incenter
of the triangle.

The incenter is denoted by I.

2.3.2 The centroid

Definition. In a triangle, the segments that join the vertices with the midpoints of the opposite
sides are called medians.

Theorem 2.3.1. In a triangle the three medians intersect at a point, called the centroid of the
triangle. The centroid divides each median in the ration 2 : 1.

Proof. (The physical proof) Place three equal masses at the vertices A,B,C of the triangle. Com-
bine the masses at B and C to a mass twice as large placed at the midpoint M of BC. Since M is
the center of mass of the system formed by B and C, the old and the new system of masses have
the same center of mass. The second system has its center of mass on |AM |, dividing |AM | in the
ration 2 : 1.

Now combine the masses at A and C, respectively A and B, to conclude that the center of mass
of the system lies on the medians from B and C as well, and divides these medians in the ration
2 : 1.

Proof. (The mathematical proof) Let M be the midpoint of |BC| and G ∈ |AM | such that
|AG|/|GM | = 2. Construct A′ ∈ |GM such that |MG| ≡ |MA′| (Figure 2.8). The diagonals
of BGCA′ intersect at their midpoint, so by Lemma 2.1.1, BGCA′ is a parallelogram. It follows
that BG||A′C and CG||A′B.

Let N be the intersection of BG and AC, and P the intersection of CG and AB. By Thales’
Theorem

|AN |

|NC|
=

|AG|

|GA′|
=

|AP |

|PB|
.
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Figure 2.7: The medians of a triangle intersect at one point (physical proof)

B

A

CM

G

A

Figure 2.8: The medians of a triangle intersect at one point

It follows that N and P are the midpoints of the sides. So the three medians intersect at one
point. Of course, as |AG|/|GM | = 2, the same must be true about |BG|/|GN | and |CG|/|GP |, by
just repeating the construction using the vertices B, respectively C instead of A. The theorem is
proved.

The centroid is denoted by G.

2.3.3 The orthocenter

Definition. In a triangle ∆ABC, the altitude from A is the segment |AD| with D ∈ |BC| that is
perpendicular to |BC|.

Note that the altitude from A is unique. A triangle has three altitudes, one for each vertex.

Theorem 2.3.2. In a triangle, the three altitudes intersect at one point, called the orthocenter of
the triangle.

Proof. Let us consider first the case where ∆ABC is acute. We argue on Figure 2.9. Let |AD|,
|BE|, |CF | be the three altitudes. Because ∠C ≡ ∠C and ∠ADC ≡ ∠BEC, being right angles, it
follows from Theorem 2.2.3 that ∆ADC ∼ ∆BEC. Hence

|CE|

|CD|
=

|BC|

|AC|
.

Using Theorem 2.2.4, we deduce that ∆CED ∼ ∆CBA. It follows that ∠EDC ≡ ∠BAC.
A similar argument shows that ∆BDF ∼ ∆BAC, so ∠BDF ≡ ∠BAC. It follows that

∠EDC ≡ ∠BDF so ∠FDA ≡ ∠ADE, because they have congruent complements. We thus
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A

D

E

CB

F

H

Figure 2.9: The altitudes of a triangle intersect at one point

found that |DA is the angle bisector of ∠FDE. Similarly |EB and |FC are angle bisectors in
∆DEF . We conclude that |AD|, |BE| and |CF | intersect at the incenter of ∆DEF . The theorem
is proved.

Now assume that ∠BAC is obtuse. Let H be the intersection of BE and CF . Then BA and
CA are altitudes in the acute triangle ∆HBC, so AH is also an altitude. This implies that AH is
perpendicular to BC, and so AH = AD. Consequently AD passes through H and we are done.

The orthocenter is denoted by H.

Definition. The points D, E, F are called the feet of the altitudes. Triangle ∆DEF is called the
orthic triangle of ∆ABC.

2.3.4 The circumcenter

Definition. Given two points in the plane, the perpendicular bisector of the segment |AB| is the
locus of the points P in the plane such that |AP | ≡ |BP |

A B

Figure 2.10: Perpendicular bisector of a segment

Proposition 2.3.1. The perpendicular bisector of a segment is the line perpendicular to the
segment passing through its midpoint.

Proof. Let |AB| be the segment, and M its midpoint. If P is a point on the perpendicular bisector,
then ∆PAB is isosceles (|PA| ≡ |PB|), so ∠PAB ≡ ∠PBA. Given that also |AM | ≡ |BM |,
we have that ∆PMA ≡ ∆PMB, by Theorem SAS. Thus ∠PMA ≡ ∠PMB, so both are right,
showing that M is on the line perpendicular to AB passing through M .

Conversely, if P belongs to the line through M that is perpendicular to AB, the in the right
triangles ∆MPA and ∆MPB, |PM | ≡ |PM |, and |AM | ≡ |BM |, so the triangles are congruent.
It follows that |PA| ≡ |PB|, so P belongs to the perpendicular bisector.
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Theorem 2.3.3. In a triangle, the perpendicular bisectors of the sides intersect at one point, called
the circumcenter of the triangle.

Proof. Let the triangle be ∆ABC, and let M , N , P be the midpoints of |BC|, |AC|, and |AB|, re-
spectively. Consider the perpendicular bisectors of |AB| and |AC|. Because they are perpendicular
to lines that are not parallel, they are not parallel themselves, so they intersect at a point O (see
Figure 2.11). Then |OA| ≡ |OB|, and |OA| ≡ |OC|, which implies |OB| ≡ |OC|. It follows that O
is on the perpendicular bisector of |BC| as well, so the three perpendicular bisectors intersect at
one point.

A

B C
O

Figure 2.11: The perpendicular bisectors of the sides of a triangle intersect.

It is standard to denote the circumcenter by O.

2.3.5 The Euler line

Theorem 2.3.4. (L. Euler) In a triangle the circumcenter, centroid, and orthocenter are collinear.
Moreover, the centroid lies between the circumcenter and the orthocenter, and divides the segment
formed by the circumcenter and the orthocenter in the ratio 1 : 2.

Proof. Let M and N be the midpoints of |BC| respectively |AC|. Then by Thales’ Theorem
MN ||AB. Consequently, ∆CMN and ∆CBA have congruent angles, so they are similar. It
follows that |MN |/|AB| = |CM |/|CB| = 1/2.

A

B C

O
H

M

N

Figure 2.12: Proof of Euler’s Theorem

On the other hand OM ||AH because both are perpendicular to BC, and ON ||BH because
both are perpendicular to AC (see Figure 2.12). This combined with MN ||AB implies that tri-
angles ∆HBA and ∆ONM have parallel sides, hence they have congruent angles. It follows that
∆OMN ∼ ∆HAB. We thus have

|OM |

|AH|
=

|ON |

|BH|
=

|MN |

|AB|
=

1

2
. (2.3.1)
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A

B CM

H
O

G

Figure 2.13: Proof of Euler’s Theorem

Next, let G′ be the intersection of the median |AM | with |OH| (Figure 2.13). Because OM ||AH,
we have that ∠HAG′ ≡ ∠OMG′, ∠AHG′ ≡ ∠MOG′. Also ∠AG′H ≡ ∠OG′M , being opposite
angles. Hence ∆G′AH ∼ ∆G′MO. We obtain

|G′H|

|G′O|
=

|AG′|

|G′M |
=

|OM |

|AH|
=

1

2
.

Comparing this to (2.3.1), we deduce that G = G′, the centroid, and

|OG|

|GH|
=

1

2
.

The theorem is proved.

2.3.6 Problems

1. Show that in an equilateral triangle, the incenter, centroid, orthocenter, and circumcenter
coincide.

2. Where does the circumcenter of a right triangle lie?

3. Show that in an isosceles triangle the Euler line passes through one of the vertices. Show
conversely, that if in a triangle the Euler line passes through one of the vertices, then the
triangle is isosceles.

2.4 Quadrilaterals

2.4.1 The centroid of a quadrilateral

The following results apply to all quadrilaterals, including the skew ones.

Lemma 2.4.1. The midpoints of the four sides of a quadrilateral form a parallelogram.

Proof. Let the quadrilateral be ABCD, and let M,N,P,Q be the midpoints of |AB|, |BC|, |CD|
and |DA| respectively. Because

|AQ|

|AD|
=

|AM |

|AB|
=

1

2
,

by Thales’ Theorem QM ||BD. Similarly PN ||BD. Therefore QM ||PN .
A similar argument shows that QP ||PN . The lemma is proved.
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Theorem 2.4.1. The two segments joining the midpoints of the opposite sides of a quadrilateral
have the same midpoint.

Proof. (The physical proof) Let the quadrilateral be ABCD. Place at each vertex a weight of one
pound. Then the system consisting of A and B has the center of mass at the midpoint of |AB| and
a combined weight of 2 pounds, and the system consisting of C and D has the center of mass at
the midpoint of |CD| and a total weight of 2 pounds. The center of mass of the system ABCD is
the midpoint of the segment that joins the midpoints of |AB| and |CD|. A similar argument shows
that the center of mass of this system is the segment that joins the midpoints of |AD| and |BC|,
and it is also the midpoint of the segment that joints the midpoints of |AC| and |BD|.

Proof. (The mathematical proof) Let the quadrilateral be ABCD, and let M,N,P,Q be the mid-
points of |AB|, |BC|, |CD|, |DA|, respectively. By Lemma 2.4.1, MNPQ is a parallelogram. By
Proposition 2.1.1, the diagonals |MP | and |NQ| intersect at their midpoint.

Definition. The common midpoint of the two segments that join the midpoints of opposite sides
in a quadrilateral is called the centroid of the quadrilateral.

2.4.2 Problems

1. Show that the segment joining the midpoints of the diagonals of a quadrilateral passes through
the centroid and is divided by it into two equal parts.

2. Let ABCD be a quadrilateral. Show that the segments joining A with the centroid of ∆BCD,
B with the centroid of ∆CDA, C with the centroid of ∆DAB, and D with the centroid of
∆ABC intersect at one point.

2.5 Measurements

2.5.1 Measuring segments and angles

Euclidean geometry can be scaled, so there is no a priori unit of length for segments. To measure
segments we start by fixing a segment |OX| and declare it to have length 1.

We define the length of a segment |AB| to be

‖AB‖ =
|AB|

|OX|
.

Note that congruent segments have equal lenghts, and that length is additive, meaning that
the length of the sum of two segments is the sum of the lengths of the segments. The axioms of
continuity imply that any positive real number can be the length of a segment.

We want to measure angles so that congruent angles have equal measures and the measure of
the sum of two angles is equal to the sum of the measures of the angles.

There are two standard ways of measuring angles. One was introduced by the Babylonians, in
which a straight angle was declared to have 180◦. Then a right angle has 90◦, and the angles of an
equilateral triangle have all 60◦.

There is a modern way of measuring angles, in which the straight angle is declared to have π
radians (where π is the length of a semicircle of radius 1- we will talk later about this). Then the
right angle has π/2 radians, and the angles of an equilateral triangle have π/3 radians.
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2.5.2 Areas

To be able to talk about areas we need a unit of length. Thus we start by declaring a certain
segment |OX| to be of length 1.

Definition. The interior of a triangle consists of all points P with the property that there are two
points M and N on the sides of the triangle such that P is between M and N .

Definition. A polygonal surface is the union of several triangles and their interiors.

We define a function

Σ 7→ A(Σ),

called area, which associates to each finite union of polygonal surfaces a number, such that the
following four properties are satisfied:

A1. The area of the square whose sides have length 1 is equal to 1.

A2. A(Σ) > 0 for all unions of poligonal surfaces Σ.

A3. Congruent triangles have equal areas.

A4. If Σ1 and Σ2 are disjoint, or if they share only a finite union of segments (on the boundary),
then

A(Σ1 ∪ Σ2) = A(Σ1) +A(Σ2).

As a corollary of A2 and A4, if Σ ⊂ Σ′, then A(Σ) ≤ A(Σ′).

Theorem 2.5.1. The area of a rectangle ABCD is equal to ‖AB‖ · ‖BC‖.

Proof. Case 1. The side-lengths of the rectangle are integer numbers.
Let the sides have lengths m respectively n. Divide the rectangle into unit squares, then count

the squares. There are mn squares, and by condition A4, their total area is mn.
Case 2. The side-lengths of the rectangle are rational numbers.

Let the side-lengths bem1/n andm2/n, withm1,m2, n integers (use the common denominator!).
Divide the unit square into n2 congruent squares. By A4, the area of each square is 1/n2. Next,
divide the rectangle into m1 ×m2 squares, each of size 1

n
× 1

n
. Using A4 again, we conclude that

the total area is

m1m2 ·
1

n2
=

m1

n
·
m2

n
,

as desired.
Case 3. The side-lengths are arbitrary numbers.

Note that A4 implies that the area is an increasing function, namely that if Σ1 ⊂ Σ2, then
A(Σ1) < A(Σ2) (because Σ2 is the union of Σ1 and the ”piece” inbetween). We can approximate
the rectangle from above and below by rectangles with rational side-lengths, and pass to the limit
to obtain the conclusion.

Theorem 2.5.2. The area of a triangle is equal to half the product of the lengths of a side and of
the altitude from the opposite angle.
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Proof. We argue on Figure 2.14. The idea is to double the triangle to a rectangle. For that, let
∆ABC be the triangle and consider the altitude |AD|. Let E and F be such that FB and EC
are both perpendicular to BC, and EF is parallel to BC. Then ∠FAB ≡ ∠DBA, and because
|AB| ≡ |AB|, by Theorem 1.4.6 ∆AFB ≡ ∆BDA. For a similar reason ∆AEC ≡ ∆CDA. Using
A3 and A4, we conclude that

A(∆ABC) =
1

2
[A(∆ABD) +A(∆AFB) +A(∆ADC) +A(∆AEC)] =

1

2
A(BCEF )

=
1

2
‖AD‖ · ‖BC‖.

B D

A

C

EF

Figure 2.14: The area of a triangle

Corollary 2.5.1. The area of a right triangle is equal to the half the product of the lengths of the
sides adjacent to the right angle.

Theorem 2.5.3. Let ABCD be a trapezoid, AD||BC. Let M be a point on BC such that AM is
perpendicular to BC. Then

A(ABCD) =
‖AM‖

2
(||AD||+ ||BC||).

Proof. Divide the trapezoid into the triangles ∆ACD and ∆ABC as shown in Figure 2.15, then
apply Theorem 2.5.2 to these triangles.

B C

DA

M

Figure 2.15: The area of a trapezoid

Corollary 2.5.2. The area of a parallelogram is equal to the product of the length of the base and
the height.

2.5.3 The Pythagorean Theorem

Theorem 2.5.4. Let ∆ABC be a right triangle, with ∠A right. Then

‖AB‖2 + ‖AC‖2 = ‖BC‖2.
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2.5.4 Problems

1. What is the area of a regular poligon of side-length 1?

2. Prove the Pythagorean theorem.

3. Prove that the area of a parallelogram with side-lengths 2 and 3 does not exceed 6.

2.6 The circle

Definition. The circle of center O and radius |AB| is the locus of pointsM such that |OM | ≡ |AB|.

The radius is usually specified by a segment, or by a length. In the latter case it is denoted by
one letter.

Given two circles of centers O1 and O2 and radii R1 and R2, their relative position can be:

1. one interior to the other, if ‖O1O2‖ < |R1 −R2|;

2. interior tangent, if ‖O1O2‖ = |R1 −R2|;

3. intersecting, if |R1 −R2| < ‖O1O2‖ < R1 +R2;

4. exterior tangent, if ‖O1O2‖ = R1 +R2;

5. exterior to each other, if ‖O1O2| > R1 +R2.

These five situations are shown in Figure 2.16.

Figure 2.16: The relative position of two circles

The segment determined by two points on the circle is called chord. If the center of the circle
belongs to the chord, the chord is called diameter. A line that intersects a circle at exactly one
point is called tangent.

2.6.1 Measuring angles using arcs

Definition. Given a circle of center O and two points A and B on this circle, the arc
⌢

AB is the
set of points on the circle that lie inside the angle ∠AOB together with A and B.

Definition. We define the measure of the arc
⌢

AB by the equality m(
⌢

AB) = m(∠AOB).

Theorem 2.6.1. Let A,B,C be points on a cricle. Then

m(∠BAC) =
1

2
m(

⌢

BC),

where
⌢

BC is the arc of the circle that lies inside the angle.
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O

A

B

Figure 2.17: Measuring angles by arcs

Proof. Case 1. O ∈ |AC| (Figure 2.18). The triangle ∆OAB is isosceles, so ∠OAB ≡ ∠OBA. By
the Exterior Angle Theorem, ∠BOC ≡ ∠OAB + ∠OBA. It follows that

m(∠BAC) =
1

2
m(∠BOC) =

1

2
m(

⌢

BC).

OA

B

C

Figure 2.18: Inscribed angles, case 1

Case 2. O is in the interior of the angle ∠BAC (Figure 2.19). Let M be on the circle such that
O ∈ |AM |. Then

m(∠BAC) = m(∠BAM) +m(∠MAC) =
1

2
m(

⌢

BM) +
1

2
m(

⌢

MC)

=
1

2
m(

⌢

BC).

OA

B

C

M

Figure 2.19: Inscribed angles, case 2

Case 3. O is outside the angle BAC (Figure 2.20). Let M be on the circle such that O ∈ |AM |.
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Assume without loss of generality that C is in the interior of the angle ∠BAM . Then

m(∠BAC) = m(∠BAM)−m(∠CAM) =
1

2
m(

⌢

BM)−
1

2
m(

⌢

CM)

=
1

2
m(

⌢

BC).

The theorem is proved.

OA

B

M
C

Figure 2.20: Inscribed angles, case 3

Theorem 2.6.2. Assume that the chords |AB| and |CD| of a circle intersect at M . Then

m(∠BMD) =
1

2
m(

⌢

BD) +
1

2
m(

⌢

AC),

where the two arcs lie inside the angle and its opposite.

Proof. We argue on Figure 2.21. By the euclidean version of the Exterior Angle Theorem, ∠BMD ≡
∠MAD + ∠MDA. It follows that

m(∠BMD) = m(∠MAD) +m(∠MDA) =
1

2
m(

⌢

AC) +
1

2
m(

⌢

BD).

We are done.

A

C

M

B

D

Figure 2.21:

Theorem 2.6.3. Assume that the lines of support of the chords AB and CD of a circle intersect
outside the circle at M such that A is between M and B and C is between M and D. Then

m(∠AMC) =
1

2
m(

⌢

BD)−
1

2
m(

⌢

AC),

where the arcs are defined as to lie inside the angle.
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Proof. We argue on Figure 2.22. Again we apply the Exterior Angle Theorem to conclude that
∠BCD =≡ ∠MBC + ∠BMC. We have

m(∠AMC) = m(∠BCD)−m(∠MBC) =
1

2
m(

⌢

BD)−
1

2
m(

⌢

AC),

as desired.

B

C

A

E

D

Figure 2.22:

Proposition 2.6.1. Let ∠BAC be an angle such that |AC| is a chord in a circle and AB is tangent
to the circle. Then

m(∠BAC) =
1

2
m(

⌢

AC),

where the arc is taken as to lie inside the angle.

Proof. Consider the case where |AB| is a chord, then rotate the chord until it becomes tangent.

Corollary 2.6.1. The tangent is perpendicular to the radius at the point of contact.

2.6.2 The circumcircle and the incircle of a triangle

Theorem 2.6.4. Given a triangle ∆ABC, there is a unique circle containing the vertices A,B,C.

Proof. Let us recall the proof of Theorem 2.3.3. There, we showed that the three perpendicular
bisectors of the sides |AB|, |BC|, and |CA| intersect at a point O which lie at equal distance from
the vertices. Hence O is the center of a circle passing through A, B, C.

If there were a second circle containing A, B, C, then using the characterization of the perpen-
dicular bisector of a segment given by Proposition 2.3.1, we deduce that the center of that circle is
also at the intersection of the perpendicular bisectors of the sides, hence it equals O. And so the
circle is the same, which proves uniqueness.

Definition. The unique circle passing through the vertices of a triangle is called the circumcircle.

Theorem 2.6.5. Given a triangle ∆ABC, there is a unique circle tangent to the segments |AB|,
|BC|, |AC|.

Proof. In Theorem 1.17 we showed that the angle bisectors of a triangle intersect at one point by
showing that this point, denoted by I, is at equal distance from the sides. Let D, E, F be the
projections of I onto BC, AC, and AB. Because because in triangle ∆IBC, ∠IBC and ∠ICB are
acute, D is between B and C. Similarly we deduce that the other projections are on the sides.
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Because |ID| ≡ |IE| ≡ |IF |, I is the circumcenter of ∆DEF . And because IE is perpendicular
to BC, BC is tangent to the circle. For the same reason AC and AB are tangent, which shows
that the circumcircle of ∆DEF has the desired property.

Uniqueness follows from the fact that if another circle is tangent to the sides, and I ′ is its center,
then I ′ is equally distanced from the sides, and hence it lies on the angle bisector of each angle of
∆ABC. It follows that I ′ = I, and consequently the circle is unique.

Definition. The unique circle tangent to the three sides of the triangle is called the incircle.

Remark 2.6.1. If we require the circle to be only tangent to the lines AB, AC, and BC, there are
four such circles, the other three are called the excircles.

2.6.3 Cyclic quadrilaterals

Theorem 2.6.6. A quadrilateral is cyclic if and only if two opposite angles add up to a straight
angle.

Proof. Let the quadrilateral be ABCD (see Figure 2.23). Assume that it is cyclic. Then

m(∠DAC) +m(∠DCB) =
1

2
m(

⌢

DCB) +
1

2
m(

⌢

DAB) =
1

2
2π = π.

Hence ∠DAC and ∠DCB add up to a straight angle.

A

B

D
C

Figure 2.23:

Conversely, assume that m(∠DAB) +m(∠DCB) = π. Arguing by contradiction, assume that
ABCD is not cyclic.

Choose C ′ ∈ BC such that A,B,C ′, D lie on a circle. We only discuss the case where C ′ ∈
|BC|, the other two cases (B ∈ |CC ′| and C ∈ |BC ′|) being analogous (see Figure 2.24). Then
∠DCB ≡ ∠DC ′B, since both have ∠DAB as their supplement. But this contradicts the Exterior
Angle Theorem in ∆DCC ′. Hence the conclusion.

Theorem 2.6.7. A quadrilateral is cyclic if and only if the angle formed by one side with a diagonal
is congruent to the angle formed by the opposite side with the other diagonal.

Proof. If ABCD is cyclic then, as can be seen in Figure 2.25,

m(∠BAC) =
1

2
m(

⌢

BC) = m(∠BDC).
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A

B

D
C C

Figure 2.24:

Conversely, if ∠BAC ≡ ∠BDC but ABCD is not ciclic, let A′ be the second intersection of
AB with the circumcircle of ∆BCD. We discuss only the case where A′ ∈ |AB| (Figure 2.26), the
other cases being similar. We have

∠BAC ≡ ∠BDC ≡ ∠BA′C

which contradicts the exterior angle theorem for ∆DAA′. Thus our assumption was false, showing
that ABCD is cyclic.

A

B

D
C

Figure 2.25:

Corollary 2.6.2. A quadrilateral with two opposite right angles is cyclic.

Corollary 2.6.3. The rectangle is the only cyclic parallelogram.

Corollary 2.6.4. The isosceles trapezoid is the only cyclic trapezoid.

Theorem 2.6.8. (Simson’s line) Let ∆ABC be a triangle and let P be a point on the circumcircle
of ∆ABC. Then the projections of P onto the lines AB, AC, and BC are collinear.

Proof. Without loss of generality, let us assume that P is on the arc
⌢

AC. Let L,M,N be the
projections onto BC, AC, respectively AB. Let us also assume that L is between B and C, M
between A and C, and A between B and N , as in Figure 2.27, the proofs for the other possible
configurations being similar.
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B

D
C

A
A

Figure 2.26:

The quadrilateral AMPN is cyclic. Hence

∠PNM ≡ ∠PAM = ∠PAC.

The quadrilateral PNBL is cyclic, so

∠PNL ≡ ∠PBL = ∠PBC.

The quadrilateral ABCP is cyclic, hence

∠PAC ≡ ∠PBC.

It follows that

∠PNM ≡ ∠PNL,

so |NM = |NL, which means that the points L,M,N are collinear.

A
N

P

M

LB C

Figure 2.27: Simson’s line
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A

A

A

AP

P
B

B

B

B

Figure 2.28: Power of a point

2.6.4 Power of a point with respect to a circle

Theorem 2.6.9. If P is a point in the plane of a circle, and AB and A′B′ are two lines passing
through P such that A,B,A′, B′ are on the circle, then

‖PA‖ · ‖PB‖ = ‖PA′‖ · ‖PB′‖.

Proof. If P is on the circle, then the product is zero in both cases.

If P is outside the circle, suppose that A is between P and B and that A′ is between P ′ and B
(Figure 2.29). Then ABB′A′ is cyclic, hence ∠A′AB and ∠BB′A′ add up to a straight angle. It
follows that ∠PAA′ ≡ ∠PB′B. This combined with the fact that ∠APA′ = ∠BPB′ implies that
∆PAA′ ∼ ∆PB′B. Thus

|PA′|

|PB|
=

|PB′|

|PA|
.

Multiplying out the denominators we obtain the equality from the statement.

A

A

A

AP

P
B

B

B

B

Figure 2.29: Proof of power of a point property

The case where P is inside the circle is similar (look carefully at Figure 2.29.

Definition. Given a point P and a circle, let AB be a line through P , with A and B on the circle.
The power of P with respect to the circle is equal to ‖PA‖ · ‖PB‖ if P is outside of the circle, to
0 if P is on the circle, and to −‖PA‖ · ‖PB‖ if P is inside the circle.

Proposition 2.6.2. Given a point P and a circle of center O and radius R, the power of P with
respect to the circle is equal to ‖PO‖2 −R2.
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Proof. The property is true if P is on the circle. Let A and B be the intersections of line PO with
the circle. If P is outside of the circle, then

‖PA‖ · ‖PB‖ = (‖PO‖+R)(‖PO‖ −R) = ‖PO‖2 −R2.

If P is inside the circle, then

−‖PA‖ · ‖PB‖ = −(R+ ‖PO‖)(R− ‖PO‖) = −(R2 − ‖PO‖2) = ‖PO‖2 −R2.

Theorem 2.6.10. The locus of points that have equal powers with respect to two circles is a line.

Proof. Assume the circles have centers and radii O1, O2 respectively R1, R2. Let P be a point on
the locus, and consider Q on O1O2 such that PQ is orthogonal to O1O2 (see Figure 2.30).

P

O OQ
1 2

Figure 2.30: The radical axis

By the Pythagorean theorem,

‖PO1‖
2 = ‖PQ‖2 + ‖QO1‖

2 and ‖PO2‖
2 = ‖PQ‖2 + ‖QO2‖

2.

Subtracting we obtain

‖QO1‖
2 − ‖QO2‖

2 = ‖PO1‖
2 − ‖PO2‖

2,

and the latter is equal to R2
1 − R2

2, by Proposition 2.6.2. This completely determines the position
of Q on the line O1O2, and consequently P must belong to a line that passes through this point Q
and is perpendicular to O1O2. Conversely, if P belongs to this line, then the same application of
the Pythagorean theorem implies that P has equal powers with respect to the two circles.

Definition. The set of points that have equal powers with respect to two circles is called the radical
axis of the two circles.

Theorem 2.6.11. Given three circles with noncollinear centers, there is a unique point in the
plane, called radical center, that has equal powers with respect the three circles.

Proof. Let the circles by C1, C2, C3. Let P be the intersection of the radical axis of C1 and C2 with
the radical axis of C1 and C3. Then P has equal power with respect to C1 and C2, and equal power
with respect to C1 and C3. Consequently, it has equal power with respect to all three circles.

Corollary 2.6.5. Given three circles C1, C2, C3, whose centers are noncollinear, the radical axes of
the pairs {C1, C2}, {C1, C3}, {C2, C3}, intersect at the radical center of the three circles.
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2.6.5 Problems

1. Given two circles that are exterior tangent at M , consider a line AB that passes through M
such that A is on the first circle and B is on the second circle. Prove that the measure of one
of the arcs determined by A and M is equal to the measure of one of the arcs determined by
B and M .

2. Let ∆ABC be a triangle, and let |AA′|, |BB′|, |CC ′| be diameters in the circumcircle. Prove
that ∆ABC ≡ ∆A′B′C ′.

3. Let ABCD be a quadrilateral with the property that AC and BD are orthogonal. Let
M,N,P,Q be the midpoints of the sides |AB|, |BC|, |CD|, and |DA| respectively. Prove
that MNPQ is cyclic.

4. Let ∆ABC be an acute triangle, and let D ∈ |BC| and E ∈ |AC| be the feet of the altitudes.
Prove that ∠ABE ≡ ∠ADE.

5. In the triangle ∆ABC, ∠A = 60◦ and the angle bisectors |BB′ and |CC ′ intersect at I. Prove
that |IB′| ≡ |IC ′|.

6. Let ∠AOB be a right angle, M and N points on the rays |OA respectively |OB and let
MNPQ be a square such that MN separates points O and P . Find the locus of the center
of the square when M and N vary.

7.∗ (Euler’s circle) Show that in a triangle the feet of the altitudes, the midpoints of the sides,
and the midpoints of the segments connecting the orthocenter to the vertices are on a circle.

8. Assume that the circles C1, C2, C3 have noncollinear centers and assume that C1 and C2 intersect
at A and B, C1 and C3 intersect at C and D, and C2 and C3 intersect at E and F . Prove that
AB, CD, and EF intersect at one point.

9. Let P be a point inside a circle such that there exist three chords through P of equal length.
Prove that P is the center of the circle.

10.∗ (Ţiţeica’s Five Lei Coin Problem) Let C1, C2, and C3 be three circles of equal radii that pass
through a common point P and intersect pairwise at A, B, C. Prove that the circumcircle of
∆ABC has the same radius as C1, C2, and C3.
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Geometric Transformations

3.1 Isometries

3.1.1 Translations

A vector is an oriented segment. More precisely, a vector is an equivalence class of oriented segments,
all parallel, congruent, and pointing in the same direction. A vector is denoted by a lower case
letter with an arrow on top of it, or by two upper case letters, the endpoints, with an arrow on top.

Definition. Given a vector ~v, the translation of a point A by ~v is a point A′ such that ~AA′ = ~v.

Theorem 3.1.1. 1. The translation of a segment is a segment parallel and congruent to it.
2. The translation of an angle is an angle congruent to it.
3. The translation of a triangle, is a triangle congruent to it.

Proof. For the proof of 1, let |AB| be a segment, and let A′ and B′ be the translates of A and B.
Then |AA′| and |BB′| are parallel and congruent, so ABB′A′ is a parallelogram. It follows that
|AB| and |A′B′| are parallel and congruent.

That the translation of a triangle is a triangle congruent to it follows from 1 and Theorem SSS.
Finally, we get 2 by including the angle in a triangle.

The addition of vectors is defined using the parallelogram rule. This turns the set of vectors
into a group, with the identity element being the zero vector, and the negative of a vector being
the vector of same length pointing in the oposite direction.

The set of translations endowed with composition is a group which is isomorphic to the group
of vectors.

Example 3.1.1. Two cities lie on the opposite sides of a river, at some distance from the river.
The river has non-negligible width. Construct a road and a bridge that minimize the distance
traveled between the cities. (Note: The bridge should be perpendicular to the river.)

Proof. Let the river be defined by two parallel lines l and l′, with city A on the shore l and the city
B on the shore l′. Let ~v be a vector orthogonal to l and l′, of length equal to the distance between
l and l′ and pointing from l to l′. Let A′ be the image of A through the translation. Consider the
line A′B and let M ′ be the intersection of l′ and A′B. Of course, M ′ is the image through the
translation of a point M on l. We claim that the bridge should be |MM ′|.

Indeed, for another location of the bridge, say |NN ′|, the total distance

|AN |+ |NN ′|+ |N ′B| ≡ |A′N ′|+ |MN |+ |N ′B| < |AB|+ |MN | = |AM |+ |MM ′|+ |M ′B|,

where the inequality is follows from the triangle inequality. The problem is solved.

43
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3.1.2 Reflections

Definition. Given a line l in the plane, the reflection of a point A over the line l is a point A′ such
that AA′⊥l, A and A′ are in different half-planes determined by l and the distances from A and A′

to l are equal.

Theorem 3.1.2. 1. The reflection of a segment over a line is a segment congruent to it. 2. The
reflection of an angle over a line is an angle congruent to it. 3. The reflection of a triangle over a
line is a triangle congruent to it.

Proof. 1. Let l be the line over which we reflect. Consider a segment |AB| and let A′ and B′

be the reflections of A and B over l. Let AA′ intersect l at M and BB′ intersect l at N . Then
|AM | ≡ |A′M | and |MN | ≡ |MN |, so the right triangle ∆AMN and ∆A′MN are congruent. It
follows that |AN | ≡ |A′N | and ∠ANM ≡ ∠A′NM . Hence ∠ANB ≡ ∠A′NB′, and Theorem SAS
implies ∆ABN ≡ ∆A′B′N . It follows that |AB| ≡ |A′B′|.

By the same argument, for every P ∈ |AB|, with P ′ its image under the reflection, |PA| ≡ |PA′|
and |PB| ≡ |P ′B′|, and hence |A′B′| ≡ |A′P ′|+ |P ′B′|. This implies that P ′ ∈ |AB|. It is not hard
to see that every point on |A′B′| is the image of a point on |AB|. This proves the first part.

3. This follows from 1, by using Theorem SSS.

2. By 1, the reflection of an angle is an angle, namely the two rays that determine the angle
are mapped to two rays. To show that the reflected angle is congruent to the original one, place
the original angle in a triangle, then reflect the triangle and use 3.

Proposition 3.1.1. If σ is the reflection with respect to a line l, then σ2 is the identity map.
Consequently, the two-element set formed by a reflection and the identity map is a group.

Remark 3.1.1. This is a geometric realization of the group Z2.

3.1.3 Rotations

Definition. The rotation about O by angle α maps a point A to a point A′ such that m(∠AOA′) =
α and |OA| ≡ |OA′|.

We agree to measure α in degrees. One distinguishes between positive (counter-clockwise)
rotations, and negative (clockwise) rotations.

Theorem 3.1.3. 1. The rotation of a segment is a segment congruent to the original one.
2. The rotation of an angle is an angle congruent to the original one.
3. The rotation of a triangle is a triangle congruent to the original one.

Proof. Exercise.

Proposition 3.1.2. 1. The inverse of the counter-clockwise rotation about O by α is the counter-
clockwise rotation by 360◦ − α about the same point.
2. The composition of the rotation of angle α1 about O and the rotation of angle α2 about O is
the rotation of angle α1 + α2 about O.

Using addition of angles, and composition of rotations we can define rotations for every real
value of α.

Corollary 3.1.1. The set of all rotations about a point is a group.
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Theorem 3.1.4. (D. Pompeiu) Given an equilateral triangle ∆ABC and a point P that does not
lie on the circumcircle of ∆ABC, one can construct a triangle of side-lengths ‖PA‖, ‖PB‖, ‖PC‖.

Proof. Rotate ∆ABC about C by 60◦. Then |AP ′| ≡ |B′P ′| ≡ |BP |. Also |CP | ≡ |CP ′|, which
means that ∆CPP ′ is an isosceles triangle with one angle of 60◦. It follows that ∆CPP ′ is
equilateral (prove it!). Then in ∆APP ′, |AP |, |AP ′| ≡ |BP |, and |PP ′| ≡ |CP |, so this triangle
has the desired property.

A

B C

A

P

P

Figure 3.1: Proof of Pompeiu’s Theorem

Example 3.1.2. Given a closed polygonal line, show that it contains 3 points which form an
equilateral triangle.

Solution: To prove this fact, rotate the polygonal line by 60◦ around a point A on a side. Let
B be a point where the new line intersects the old. Point C which is the preimage of B together
with A and B form an equilateral triangle.

3.1.4 Isometries

Definition. A transformation of the plane which preserves lengths is called isometry.

Rotations, reflections, and translations are isometries.

Remark: An isometry is a one-to-one transformation of the plane. The next result will also
prove that it is onto.

Theorem 3.1.5. Every isometry of the plane is of the form r ◦ t or s ◦ r ◦ t, where s is a reflection,
r is a rotation, and t is a translation.

Proof. Let f be the isometry. Consider a segment |AB|, and let A′ = f(A) and B′ = f(B). If M
is on |AB|, and M ′ = f(M), then |A′M ′|+ |M ′B′| ≡ |AM |+ |MB| ≡ |AB| ≡ |A′B′|, so M ′ is on
|A′B′|, and moreover, any M ′ on |A′B′| can be obtained as the image of a point M . This shows
that f(|AB|) = |A′B′|. In fact by slightly modifying the argument we deduce that f(AB) = A′B′.
Let r and t be a rotation and a translation such that r ◦ t(|AB|) = |A′B′|. Then rt restricted to
AB is equal to f .

Consider a point P which does not belong to AB. Then because |AP | ≡ |A′P ′| and |BP | ≡
|B′P ′|, there are only two locations that P ′ = f(P ) can have, namely either P ′ = r ◦ t(P ), or
P ′ = s ◦ r ◦ t(P ), where s is the reflection over AB.

Now let us show that an isometry is completely determined by the image of 3 non-collinear
points. Let A,B, P be the three noncollinear points mapped to A′, B′, P ′. We saw above that the
restriction of the isometry is completely determined when restricted to AB,AP, and BP . Let Q
be a point that does not lie on any of these lines. Then Q is mapped to one of two points lying on
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one side or the other of AB. If Q is not separated by AB from P , then |PQ| does not intersect
A′B′, so |P ′Q′| does not intersect AB (or else the isometry wouldn’t be one-to-one). This shows
that there is a unique choice for the location of Q′. Similarly, if |PQ| intersects AB, then |P ′Q′|
intersects A′B′, so again the location of Q′ is unique. This proves our claim.

We conclude that the isometry can only be either r ◦ t or s◦r ◦ t, and the theorem is proved.

3.1.5 Problems

1. What is the composition of two reflections over parallel lines?

2. What is the composition of two reflections over non-parallel lines?

3. Show that every isometry is a composition of reflections.

4. Given a polygon, and a point P in its interior, show that there are two points A and B on
the polygon such that P is the midpoint of |AB|.

5. Two towns are on the same side of the river, at some distance from the river. The want to
build a common water pump that would supply both with water. In what location should
the pump be build in order to minimize the total length of the two pipes that connect it to
the cities?

3.2 Homothety and Inversion

3.2.1 Homothety

Let O be a point in the plane and r a real number.

Definition. The homothety of center O and ratio r sends a point P to a point P ′ such that
~OP ′ = r ~OP .

Theorem 3.2.1. Homothety maps a maps a segment to a segment parallel to it whose length is
|r| times the length of the original segment.

Corollary 3.2.1. Homothety maps an angle to an angle congruent to it. Homothety maps a
triangle to a triangle similar to it, with similarity ration |r|.

3.2.2 Inversion

Definition. Given a circle of center O and radius r > 0, the inverse of a point P 6= O with respect
to this circle is a point P ′ on the ray |OP such that

‖OP‖ · ‖OP ′‖ = r2.

By abuse of language, we map O to the ”point at infinity”. With this convention, the square
of the inversion is the identity map.

Theorem 3.2.2. Inversion maps circles through O into lines not passing through O, and lines not
passing through O into circles through O. Inversion maps lines through O into themselves, and
circles that do not pass through O into circles that do not pass through O.

Theorem 3.2.3. Inversion distorts distances according to the following formula

‖A′B′‖ =
r2

‖OA‖ · ‖OB‖
‖AB‖.
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Non-Euclidean Geometry

4.1 The negation of Euclid’s fifth postulate

Postulate: There is a line l, and a point A that does not belong to l, such that through A pass
two lines that do not intersect l.

Theorem 4.1.1. For the line l and the point A from the above postulate, there exist infinitely
many lines passing through A that do not intersect l.

Proof. Let l1 and l2 be the lines through A that do not intersect l. There is a ray of l2 that is
separated from l by l1. Pick P on this ray and Q on l. Let R be the intersection of |PQ| with l1.
Choose one of the infinitely many points of the segment |PR|, call this point M .

A

l

l

l

Q

M
R

P

Figure 4.1: Proof that there are infinitely many parallels

Assume that AM intersects l at some point S. Then l1 intersects side |MQ| of ∆MQS, but does
not intersect side |QS|, and it cannot intersect |MS| since it already intersected MA at A. This
contradicts the Axiom of Pasch, proving that AM does not intersect l. Since each point M ∈ |PR|
determines a different line, there are infinitely many lines that pass through A and don’t intersect
l.

4.2 Euclid’s fifth postulate and the sum of the angles of a triangle

Theorem 4.2.1. The sum of the angles of a triangle is less than or equal to a straight angle.

Proof. We will need two results.

Lemma 4.2.1. The sum of two interior angles of a triangle is less than a flat angle.

47
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Proof. Let ∆ABC be a triangle. By the Exterior Angle Theorem

∠A < supplement of ∠C.

Adding ∠C to both sides we obtain that ∠A+ ∠C is strictly less than a straight angle.

Lemma 4.2.2. For any triangle, there exists a triangle with the same sum of angles and with one
of the angles as small as we want.

Proof. In ∆ABC, let M be the midpoint of |AC|. Either ∠ABM or ∠MBC is less than or
congruent to ∠B/2. Say ∠MBC ≤ ∠B/2. Let C ′ be such that M is the midpoint of |BC ′|
(Figure 4.2). Consider the triangle ∆ABC ′. By Theorem SAS, ∆MAC ′ ≡ ∆MBC. We have

∠BAC ′ + ∠AC ′B + ∠ABC ′ =≡ ∠BAC + ∠CAC ′ + ∠AC ′B + ∠ABC ′

≡ ∠BAC + ∠ACB + ∠ABC ′ + ∠C ′BC ≡ ∠BAC + ∠ACB + ∠CBA.

Triangle ∆ABC ′ has the same sum of angles as ∆ABC and ∠C ′ ≤ ∠B/2. Repeating the construc-
tion n times we find a triangle with the same sum of angles as ∆ABC and with one angle less than
or congruent to ∠B/2n.

A

B C

C

M

Figure 4.2: Sum of angles of a triangle

Let us return to the proof of the theorem. Assume that for some triangle ∆ABC,

∠A+ ∠B + ∠C ≡ straight angle + ∠α, ∠α > 0.

Costruct a triangle ∆A′B′C ′ with the same sum of angles and with ∠C ′ < ∠α/2. Then, by the
first lemma, ∠A′ +∠B′ is less than a straight angle. Adding ∠C ′ we obtain ∠A′ +∠B′ +∠C ′ less
than a straight angle plus ∠α/2. This contradicts the fact that ∠A′+∠B′+∠C ′ equal to a straight
angle plus ∠α. Hence the conclusion.

Theorem 4.2.2. If the sum of the angles of a certain triangle is strictly less than a straight angle,
then the same is true for any triangle.

Proof. Let M be a point on |BC|. If the sum of the angles of ∆ABC is less than a straight angle,
(recall Theorem 4.2.1) then the same must be true for one of the triangles ∆ABM and ∆AMC,
otherwise by adding we would obtain equality for ∆ABC. Dividing further we can obtain an
arbitrarily small triangle with the sum of angles less than a straight angle.

Consider now some triangle ∆A′B′C ′ in the plane. Place inside a small triangle with the sum
of the angles less than a straight angle. Divide ∆A′B′C ′ into triangles one of which is the one with
sum of angles less than a straight angle. By adding the angles of the triangles in the decomposition
and removing the straight angles that are formed we deduce that the sum of the angles of ∆A′B′C ′

is less than a straight angle. The theorem is proved.



4.2. EUCLID’S FIFTH POSTULATE AND THE SUM OF THE ANGLES OF A TRIANGLE49

Corollary 4.2.1. Either in every triangle the sum of the angles is a straight angle, or in every
triangle the sum of the angles is strictly less than a straight angle.

Proposition 4.2.1. If the fifth postulate holds for one point and one line, then there exists a
triangle with the sum of the angles equal to a straight angle.

Proof. Let A and l be the point and line for which the postulate holds. Choose B and C on l. Pick
l′ such that the alternate angles formed by AC with l and l′ are congruent. The Exterior Angle
Theorem implies that l and l′ do not intersect.

A

B C

Figure 4.3: Fifth postulate and the sum of angles of a triangle

Pick a line l′′ so that the alternate angles formed by AB with l and l′′ are congruent. Again l and
l′′ do not intersect. Uniqueness implies l′ = l′′. Examining the Figure 4.3 we see that ∠A+∠B+∠C
is congruent to a straight angle.

Theorem 4.2.3. If the sum of the angles of every triangle is congruent to a straight angle, then
Euclid’s fifth postulate holds.

Proof. Let l be a line and A a point, A 6∈ l. Let AB be the perpendicular to l, B ∈ l. The line
l′ perpendicular to AB at A does not intersect l. We will show that any other line through A
intersects l. We argue on Figure 4.4.

Let l′′ be a line passing throught A and ∠α the acute angle this line makes with |AB|. Consider
the point B1, B2, . . . , Bn, . . . on l that lie on the same side of AB as ∠α, and such that

|BB1| ≡ |AB|, |B1B2| ≡ |AB1|, . . . , |Bn−1Bn| ≡ |ABn−1|.

In ∆ABB1,

m(∠A) = m(∠B1) =
π

4
.

Using the fact that the sum of the angles of a triangle is π, we further compute, in ∆AB1B2,

m(∠A) = m(∠B2) =
π

8
, . . .

in ∆ABn−1Bn,

m(∠A) = m(∠Bn) =
π

2n+1
.

For sufficiently large n,

m(∠BABn) =
π

4
+

π

8
+ · · ·+

π

2n+1
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Figure 4.4: Euclid’s fifth postulate and the sum of the angle of triangles

will be very close to π/2, hence greater than ∠α. Then l′′ will run inside ∠BABn, so it will have
to cross |BBn|. Hence l′′ intersects l.

Theorem 4.2.4. If Euclid’s fifth postulate fails for a point and a line, then it fails for every other
point and every other line not containing the point.

Proof. If fifth postulate holds for a point and a line, then the sum of the angles of some triangle
is a straight angle. But then the sum of the angles of any other triangle is congruent to a straight
angle. In that case the fifth postulate must hold for every point and every line.

Corollary 4.2.2. Either Euclid’s fifth postulate holds, or for every line l and every point A, A 6∈ l,
there are infinitely many lines passing through A which do not intersect l.

4.3 The area of a triangle in non-euclidean geometry

Since in non-euclidean geometry the area of a triangle is strictly less than π, we can associate to
each triangle ∆ABC the positive number

ǫ(∆ABC) = π −m(∠A)−m(∠B)−m(∠C).

Proposition 4.3.1. If the triangular surface T is the union of the triangular surfaces T1 and T2,
then

ǫ(T ) = ǫ(T1) + ǫ(T2).

Because of this we can make the following definition.

Definition. The area of a triangle ∆ABC is equal to ǫ(∆ABC).

As a corollary, we have that the area of a polygon with n sides is (n − 2)π minus the sum of
the angles of the polygon. This satisfies the four properties that the area should satisfy.


