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Chapter 1

Topological Vector Spaces

1.1 What is functional analysis?
Functional analysis is the study of vector spaces endowed with a topology, and of the maps
between such spaces.

Linear algebra in infinite dimensional spaces.

It is a field of mathematics where linear algebra and geometry+topology meet.

Origins and applications:

e The study of spaces of functions (continuous, integrable) and of transformations be-
tween them (differential operators, Fourier transform).

e The study of differential and integral equations (understanding the solution set).

e Quantum mechanics (the Heisenberg formalism).
Our goals:

e Understand the properties of linear spaces endowed with topologies. This can be
applied to answering questions such as for which functions should the integral be
defined, in what space should we look for the solution to a differential equation, etc.

e Understand subspaces and convex sets, finding bases. Fourier series expansions can
be viewed as expansions in an orthonormal basis, and many special functions provide
examples, too. Convex sets are related to optimization problems and knowing the
extremal points of such sets is useful.

e Understand linear functionals. They are common in mathematics, an example is the
integral of a function.
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e Understand linear transformations (operators), find their spectra, learn how to do
functional calculus with them. The spectrum of a linear differentiable operator is used
when solving a differential equation via the method of stationary states. Functional
calculus (actually the exponential) is also useful when solving differential equations
such as the Schrodinger equation.

e Understand algebras of linear operators. They show up in quantum theory.

1.2 The definition of topological vector spaces

The field of scalars will always be either R or C, the default being C.

Definition. A wvector space over C (or R) is a set V' endowed with an addition and a scalar
multiplication with the following properties

e to every pair of vectors z,y € V corresponds a vector x + y € V' such that
r4+y=y+xforall z,y
r+(y+z2)=(x+y)+zforall z,y, 2
there is a unique vector 0 € V' such that  + 0 =0+ x = x for all x
for each x € V there is —x € V such that x + (—z) = 0.

e for every a € C (respectively R) and x € V, there is ax € V such that
lx = x for all x
a(fz) = (af)x for all o, 3,z
alz+y) =ar+ay, (a+ p)r = axr + fz.

A linear map between two vector spaces is a map that preserves addition and scalar
multiplication. An isomorphism between two vector spaces is a bijective homomorphism.

A set C € V is called convex if tC' + (1 — ¢)C' C C for every t € [0, 1].

A set B C V is called balanced if for every scalar a with |a| <1, aB C B.

Definition. If V' and W are vector spaces, a map T : V' — W is called a linear map (or
linear operator) if for every scalars o and 5 and every vectors z,y € V,

T(ax + By) = aTx + BTy.

Definition. A topological space is a set X together with a collection 7 of subsets of X with
the following properties

e ) and X arein T

e The union of arbitrarily many sets from 7 is in 7

e The intersection of finitely many sets from 7 is in 7.
The sets in T are called open.

If X and Y are topological spaces, the X x Y is a topological space in a natural way, by
defining the open sets in X x Y to be arbitrary unions of sets of the form U; x Uy where U,
is open in X and U, is open in Y.
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Definition. A map f : X — Y is called continuous if for every open set U € Y, the set
f~YU) is open in X.

A map is called a homeomorphism if it is invertible and both the map and its inverse are
continuous. A topological space X is called Hausdorff if for every x,y € X, there are open
sets Uy and U, such that € Uy, y € Uy and U; NU, = 0.

A neighborhood of z is an open set containing . A system of neighborhoods of x is a
family of neighborhoods of z such that for every neighborhood of = there is a member of this
family inside it.

A subset C' € X is closed if X\C is open. A subset K € X is called compact if every
covering of K by open sets has a finite subcover. The closure of a set is the smallest closed
set that contains it. If A is a set then A denotes its closure. The interior of a set is the
largest open set contained in it. We denote by int(A) the interior of A.

Definition. A topological vector space over the field K (which is either C or R) is a vector
space X endowed with a topology such that every point is closed and with the property that
both addition and scalar multiplication,

+:XxX > Xand K x X — X,

are continuous.

Given two topological vector spaces X and Y, we are mostly interested in maps between
them that are both linear and continuous. As a caveat, because of the nature of practical
applications sometimes we have to deal with noncontinuous maps. Two topological vector
spaces are identified if there is a linear bijection between them that is continuous and has
continuous inverse.

Example. R™ is an example of a finite dimensional topological vector space, while C([0, 1])
is an example of an infinite dimensional vector space.

A subset E of a topological vector space is called bounded if for every neighborhood U
of 0 there is a number s > 0 such that E C tU for every ¢t > s.

A topological vector space is called locally convex if every point has a system of neigh-
borhoods that are convex.

1.3 Basic properties of topological vector spaces

Let X be a topological vector space.

Proposition 1.3.1. For every a € X, the translation operator z +— = + a is a homeomor-
phism.

As a corollary, the topology on X is completely determined by a system of neighborhoods
at the origin; the topology is translation invariant.

Proposition 1.3.2. Let W be a neighborhood of 0 in X. Then there is a neighborhood U
of 0 which is symmetric (U = —U) such that U + U C W.
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Proof. Because addition is continuous there are open neighborhoods of 0, U; and U,, such
that U1—|—U2 C W. Choose U:UlﬂUQO(—Ul)ﬂ(—Ug) ]

Proposition 1.3.3. Suppose K is a compact and C is a closed subset of X such that
K NC = (. Then there is a neighborhood U of 0 such that

(K+U)N(C+U)=0.

Proof. Applying Proposition 1.3.2 twice we deduce that for every neighborhood W of 0 there
is an open symmetric neighborhood U of 0 such that U+U +U +U C W. Since the topology
is translation invariant, it means that for every neighborhood W of a point x there is an
open symmetric neighborhood of 0, U,, such that vt + U, + U, + U, + U, C W.

Now let x € K and W = X\C. Then x + U, + U, + U, + U, C X\C, and since U, is
symmetric, (z + U, + U,) N (C + U, + U,) = 0.

Since K is compact, there are finitely many points zy, xs, ...,z such that K C (z1 +
U )U (22 +Upy) U---U(xp +Uy,). Set U=U,, NU,, N---NU,,. Then

K4+UC(xt14+Uy)+U0)U(2a+ Uy +U)U--- U (zp + Uy, +U)
C(x1+ Uy +Up) U (e +Upy +Upy) U--- U (g + Uy, + Usy,)

and we are done. O

Corollary 1.3.1. Given a system of neighborhoods of a point, every member of it contains
the closure of some other member.

Proof. Set K equal to a point. n
Corollary 1.3.2. Every topological vector space is Hausdorff.
Proof. Let K and C' be points. n

Proposition 1.3.4. Let X be a topological vector space.
a) If A C X then A=nN(A+U), where U runs through all neighborhoods of 0.
b)If AC X and B C X, then A+ BC A+ B.
c
)

) If Y is a subspace of X, then so is Y.

d) If C is convex, then so are C' and int(C).
e) If B is a balanced subset of X, then so is B, if 0 € int(B), then int(B) is balanced.
f) If E is bounded, then so is E.

Theorem 1.3.1. In a topological vector space X,

a) every neighborhood of 0 contains a balanced neighborhood of 0,

b) every convex neighborhood of 0 contains a balanced convex neighborhood of 0.

Proof. a) Because multiplication is continuous, for every neighborhood W of 0 there are a
number ¢ > 0 and a neighborhood U of 0 such that aU C W for all a such that |a| < 4.
The balanced neighborhood is the union of all aU for |a| < 4.

b) Let W be a convex neighborhood of 0. Let A = NaW, where « ranges over all
scalars of absolute value 1. Let U be a balanced neighborhood of 0 contained in W. Then
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U=aU C aW,soU C A. It follows that int(A) # 0. Because A is the intersection of
convex sets, it is convex, and hence so is int(A). Let us show that A is balanced, which would
imply that int(A) is balanced as well. Every number « such that |a] < 1 can be written as
a=rfwith0<r<land|f|=1. Ifze€ A then Sz € A and so (1 —r)0 + rfz = ax is
also in A by convexity. This proves that A is balanced. O

Proposition 1.3.5. a) Suppose U is a neighborhood of 0. If r, is a sequence of positive
numbers with lim,, ., r, = 00, then

X =U;2 r,U.

b) If 4, is a sequence of positive numbers converging to 0, and if U is bounded, then ¢,U,
n > 0 is a system of neighborhoods at 0.

Proof. a) Let x € X. Since a — ax is continuous, there is n such that 1/r,z € U. Hence
xzenr,U.

b) Let W be a neighborhood of 0. Then there is s such that if ¢ > s then U C tW.
Choose 0, < 1/s. O

Corollary 1.3.3. Every compact set is bounded.

1.4 Hilbert spaces

Let V be a linear space (real or complex). An inner product on V is a function
( , ):VxV-=C

that sastisfies the following properties

o (axy + bxo,y) = a(x1,y) + b(x2,y)
e (x,x) > 0, with equality precisely when x = 0.
Example. The space R" endowed with the inner product
(x,y) =x"y.
Example. The space C" endowed with the inner product
T

(z,w) =2z'W.

Example. The space C([0, 1]) of continuous functions f : [0, 1] — C with the inner product

(f,q) = /0 o
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The norm of an element z is defined by
2] = v/ (2, ),

and the distance between two elements is defined to be ||z — y||. Two elements, = and vy, are
called orthogonal if

<x,y >=0.

The norm completely determines the inner product by the polarization identity which in
the case of vector spaces over R is

1
(w.y) = 7(lz +ylI” = lle =yl
and in the case of vector spaces over C is
1 ‘ . . .
(. y) = 7z +yll* = llz = yl* + élle + iy |* — ill — iyl).
Note that we also have the parallelogram identity
2+l + [lz = ylI* = 2[|z]|* + 2[ly]|*.

Proposition 1.4.1. The norm induced by the inner product has the following properties:
) llaz] = |al |z,

b) (the Cauchy-Schwarz inequality) | (z,v) | < ||z]/||yll,

¢) (the Minkowski inequality aka the triangle inequality) ||z + y|| < ||z|| + ||y]|-

Proof. Part a) follows easily from the definition. For b), choose « of absolute value 1 such
that (ax,y) > 0. Let also ¢ be a real parameter. We have

0 < [lazt —y|* = (aat — y,axt —y)

= [laz|** — ({aw, y) + (y, ax))t + [|y]|*
= |ll** — 2| (z, y> [t + Iyl

As a quadratic function in ¢ this is always nonnegative, so its discriminant is nonpositive.
The discriminant is equal to

A () [P = [l lyl),

and the fact that this is less than or equal to zero is equivalent to the Cauchy-Schwarz
inequality.
For ¢) we use the Cauchy-Schwarz inequality and compute

Iz +yll* = (z +y, 2 +y) = l2]* + (@,9) + (y,2) + [ly]*
< ll2l® + [, y) L+ s 2) |+ Tyl = llel® + 20 e,y |+ llyll®
< lll* + 2llzllly + lyl* = (Il + lyl)*.

Hence the conclusion. O
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Proposition 1.4.2. The vector space V endowed with the inner product has a natural
topological vector space structure in which the open sets are arbitrary unions of balls of the
form

Bz, r) ={ylllz =yl <r}, zeVir>0.

Proof. The continuity of addition follows from the triangle inequality. The continuity of the
scalar multiplication is straightforward. O]

Definition. A Hilbert space is a vector space H endowed with an inner product, which is
complete, in the sense that if z, is a sequence of points in H that satisfies the condition
|xn, — || — 0 for m,n — oo, then there is an element x € H such that ||z, — x| — 0.

We distinguish two types of convergence in a Hilbert space.

Definition. We say that z,, converges strongly to x if ||z, — x| — 0. We say that z,
converges weakly to z if (x,,y) — (z,y) for all y € H.

Using the Cauchy-Schwarz inequality, we see that strong convergence implies weak con-
vergence.

Definition. The dimension of a Hilbert space is the smallest cardinal number of a set of
elements whose finite linear combinations are everywhere dense in the space.

We will only be concerned with Hilbert spaces of either finite or countable dimension.

Definition. An orthonormal basis for a Hilbert space is a set of unit vectors that are pairwise
orthogonal and such that the linear combinations of these elements are dense in the Hilbert
space.

Proposition 1.4.3. Every separable Hilbert space has an orthonormal basis.

Proof. Consider a countable dense set in the Hilbert space and apply the Gram-Schmidt
process to it. N

From now on we will only be concerned with separable Hilbert spaces.

Theorem 1.4.1. If e,,, n > 1 is an orthonormal basis of the Hilbert space H, then:
a) Every element x € H can be written uniquely as

T = E Cn€n,
n

where ¢, =< x,e, >.
b) The inner product of two elements z = ) c,e, andy = ) dye, is given by the Parseval

formula:
(@,y) = cudy,

n

and the norm of x is computed by the Pythagorean theorem:

lzl* =D leal.

n
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Proof. Let us try to approximate x by linear combinations. Write

N N N
|z — Z%%HQ = <x - Z Cn€n, T — ch6n>

n=1 n=1 n=1
N N N
= (z,z) — Z@(x,e@ - ch (en,x) + chcn
n=1 n=1 n=1
N N
= [lzl® =Y [{woea) P+ D | en) —cal?
n=1 n=1

This expression is minimized when ¢, = (x,e,). As a corollary of this computation, we
obtain Bessel’s identity

N N
lz = (aen) enll” = Izl =D |, en)
n=1 k=1
and then Bessel’s inequality
N
> s en) P <
n=1
Note that
N
HZ<$ en) enll? = Z| z,en) |,
n=1

and so Bessel’s inequality shows that > -, (z,e,) e, converges.

Given that the set of vectors of the form 25:1 cnén 1s dense in the Hilbert space, and
that such a sum best approximates z if ¢, =< x, e, >, we conclude that

oS
E Z, Gn €n-
n=1

This proves a).
The identities form b) are true for finite sums, the general case folows by passing to the
limit. [

Remark 1.4.1. Because strong convergence implies weak convergence, if z,, — x in norm,
then (x,,ex) — (z,ex) for all k. So if x, — z in norm then the coefficients of the series of
T, converge to the coefficients of the series of x.

Example. An example of a finite dimensional complex Hilbert space is C™ with the inner
product (z,w) = z'w. The standard orthonormal basis consists of the vectors ey, k =
1,2,...,n where e; has all entries equal to 0 except for the kth entry which is equal to 1.
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Example. An example of a separable infinite dimensional Hilbert space is L?([0, 1]) which
consists of all square integrable functions on [0, 1]. This means that

zo.a)={r:0a -l [ i <o)

The inner product is defined by

1
() = | st
0
An orthonormal basis for this space is
e27rimf7 n e

The expansion of a function f € L*([0,1]) as

o0

f(t) _ Z <f> e27r7me> 627rint

n=—oo

is called the Fourier series expansion of f.

Note also that the polynomials with rational coefficients are dense in L*([0,1]), and hence
the Gram-Schmidt procedure applied to 1,2, 22, ... yields another orthonormal basis. This
basis consists of the Legendre polynomials

1 a
—onpl dan

Ln() (2% = 1)"].

Example. The Hermite polynomials are defined as

CIZQd 2

—T

H,(x) =(=1)"¢ T

They form an orthogonal basis of the space L?(R, e=*"dz). The polynomials 7~1/42-"/2(n!)~1/2H,, ()
form an orthonormal basis of this space.

Example. The Hardy space on the unit disk H?(ID). It consists of the holomorphic functions

on the unit disk for which
(5 [ 1stepan)
su — re
0<rI<)1 2w 0

is finite. This quantity is the norm of H?(ID); it comes from an inner product. An orthonormal

basis consists of the monomials 1, z, 22, 23, . . ..

1/2

Example. The Segal-Bargmann space

HL*(C, pn)
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which consists of the holomorphic functions on C for which

/ £ (2)Pe P Mdady < oo
C

(here z = x +iy). The inner product on this space is

(f.9) = (wh) ! /C F(2)g(@)e H dedy,

An orthonormal basis for this space is

Z’I’Z

N

Here is the standard example of an infinite dimensional separable Hilbert space.

n=0,1,2,....

Example. Let K = C or R. The space [*(K) consisting of all sequences of scalars
r = (x1,29,23,...)

with the property that

o
Z |z, |* < 0.
n=1

We set

<z,y >= imny_n

n=1

Then [?(K) is a Hilbert space (prove it!). The norm of an element is

Theorem 1.4.2. Every two Hilbert spaces (over the same field of scalars) of the same
dimension are isometrically isomorphic.

Proof. Let (ey), and (e),), be orthonormal bases of the first, respectively second space. The

map
E Cnln — E e,
n n

preserves the norm. The uniqueness of writing an element in an orthonormal basis implies
that this map is linear. O

Corollary 1.4.1. Every separable Hilbert space over C is isometrically isomorphic to either
C" for some n or to [*(C). Every separable Hilbert space over R is isometrically isomorphic
to either R" for some n or to [*(R).
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Subspaces of a Hilbert space
Proposition 1.4.4. A finite dimensional subspace is closed.

Proof. Let E C H be an N-dimensional subspace. Using Gram-Schmidt, produce a basis
e1,€2,es3,...0of H such that ey, e, ..., ey is a basis for . Then every element in F is of the
form

N
T = E CkCh;
k=1

and because convergence in norm implies the convergence of coefficients, it follows that the
limit of a sequence of elements in E is also a linear combination of ey, es, ..., ey, hence is in

L. [l

However, if the Hilbert space H is infinite dimensional, then there are subspaces which are
not closed. For example if ey, s, e3, ... is an orthonormal basis, then the linear combinations
of these basis elements define a subspace which is dense, but not closed because it is not the
whole space.

Definition. We say that an element x is orthogonal to a subspace FE if x 1e for every e € E.
The orthogonal complement of a subspace E is

Et={z e H| (r,e)=0forallec E}.
Proposition 1.4.5. E+ is a closed subspace of H.
Proof. If z,y € E+ and o, 3 € C, then for all e € E,

(ax + By, e) = a{x,e) + B (y,e) =0,

which shows that F is a subspace. The fact that it is closed follows from the fact that strong
convergence implies weak convergence. ]

Theorem 1.4.3. (The decomposition theorem) If £ is a closed subspace of the Hilbert space
H, then every z € H can be written uniquely as ¢ = y + z, where y € E and z € E*.

Proof. (proof from the book of Riesz and Nagy) Consider y € E as variable and consider
the distances ||z — y||. Let d be their infimum, and let y,, be a sequence such that

|2 = ynll = d.
Now we use the parallelogram identity to write
1@ = ya) + (@ = g II” + 1z = y0) = (@ = yu)I” = 2l|2 = al|* + 2] — yial|*.
Using it we obtain

lym =yl = 2012 = gnl* + |2 = yl") = 4llz = ==

< 2(llx = yull® + llz — yul*) — 4d”.
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The last expression converges to 0 when m,n — oo. This implies that g, is Cauchy, hence
convergent. Let y € E be its limit. Then ||z — y|| = d.

Set z = x —y. We will show that z is orthogonal to E. For this, let y, be an arbitrary
element of E. Then for every A € C,

lo = yll* = d” < [l —y = Awol* = llz — ylI* = Mz =y, 50) — A{yo, = — y) + AX (o, 0) -
Set A = (z —y,y0) / (Yo, Yo) to obtain

| (= — v, 90) |*

<0.
Hyo“2

(Adapt this proof to prove Cauchy-Schwarz!)

It follows that (z —y,y0) =0, and so z = x —y € E+.

If there are other v/ € E, 2/ € E* such that ¢ = v/ + 2/, then y + 2 = v + 2’ so
y—1y =2 —z¢& ENE*. This impliesy — ¢y = 2/ — 2 = 0, hence y = ¢/, 2 = 2/ proving
uniqueness.

]

This result yields the notation H = E® E+, where E is a closed subspace. In particular,
for every closed subspace FE, there is an orthonormal basis of H that is the union of an
orthonormal basis of F and an orthonormal basis of E*.

Corollary 1.4.2. If E is a subspace of H then (E+)* = E.

Proof. Clearly E-=FE'and E C (E1)*, because if 2, € E, n > 1 and z, — z, and if
y € B+, then 0 = (x,,,y) — (x,y). We have

—1 =4\

H=FEaoE =F o (FE )~
Hence E cannot be a proper subspace of (E+)*. ]

Exercise. Show that every nonempty closed convex subset of H contains a unique element
of minimal norm.

1.5 Banach spaces
Definition. A norm on a vector space X is a function
-1+ X =0, 00)
with the following properties
o |laz|| = |a|||x| for all scalars a and all z € X.
o (the triangle inequality) ||z + y|| < ||z] + ||yl

e ||z|| =0 if and only if x = 0.
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The norm induces a translation invariant metric (distance) d(z,y) = ||z — y||.

A vector space X endowed with a norm is called a normed vector space. Like in the case
of Hilbert spaces, X can be given a topology that turns it into a topological vector space.
The open sets are arbitrary unions of balls of the form

B, ={yeX||lzr—y| <r}, xe€X,re(0,00).

Definition. A Banach space is a normed vector space that is complete, namely in which
every Cauchy sequence of elements converges.

Example. Every Hilbert space is a Banach space. In fact, the necessary structure for a
Banach space to have an underlying Hilbert space structure (prove it!) is that the norm
satisfies

lz + ylI* + llz — ylI* = 2(|=[I* + [[y]]*)-
Example. The space C" with the norm

||(21, 22y .- :Zn)”oo - Sl]ip |Zk|

is a Banach space.

Example. Let p > 1 be a real number. The space C" endowed with the norm
(21, 225 -+ 20)|lp = (|27 + |22P + - + ’Zn’IJ)l/p
is a Banach space.

Example. The space C(]0,1]) of continuous functions on [0, 1] is a Banach space with the
norm

If1] = sup [f(2)].

te(0,1]

Example. Let p > 1 be a real number. The space

I’R) = {f:R = C| / FOPdt < oo},

i1, = ( [ rorear) v

is a Banach space. It is also separable. In general the LP space over any measurable space
is a Banach space.

The space L*(R) of functions that are bounded almost everywhere is also Banach. Here
two functions are identified if they coincide almost everywhere. The norm is defined by

with the norm

| fllo = nf{C > 0] |f(x)| < C for almost every z}.

The space L™ is not separable.
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Example. The Hardy space on the unit disk H?(ID). It consists of the holomorphic functions

on the unit disk for which
2 1/p
s (5 [ freypas)
0<r<1 \ 2T 0

is finite. This quantity is the norm of H?(D). The Hardy space H?(ID) is separable.
Also H*(D), the space of bounded holomorphic functions on the unit disk with the sup
norm is a Banach space.

Example. Let D be a domain in R". Let also k be a positive integer, and 1 < p < oo.
The Sobolev space W*P(D) is the space of all functions f € LP(D) such that for every
multi-index o = (aq, ag, . .., o) With oy | + |ag| + - - - +|an| < k, the weak partial derivative
D f belongs to LP(D).

Here the weak partial derivative of f is a function g that satisfies

fD%dx = (=1) | goda,
D D

for all real valued, compactly supported smooth functions ¢ on D.
The norm on the Sobolev space is defined as

1l = > 11D flp-

lal<k

The Sobolev spaces with 1 < p < 0o are separable. However, for p = 0o, one defines the
norm to be

max || D f|oo,

|a|<k

and in this case the Sobolev space is not separable.

1.6 Fréchet spaces

This section is taken from Rudin’s Functional Analysis book.

1.6.1 Seminorms

Definition. A seminorm on a vector space is a function
-1+ X —[0,00)

satisfying the folowing properties

e ||z]| >0 for all x € X,

o [lz+yll <zl + Iy for all z,y € X,



1.6. FRECHET SPACES 19

o |laz|| = |a|||z] for all scalars a and z € X.

We will also denote seminorms by p to avoid the confusion with norms.

A convex set A in X is called absorbing if for every x € X there is s > 0 such that
sr € A. Every absorbing set contains 0. The Minkowski functional defined by an absorbing
set 1s

pa: X —[0,00), palx)=inf{t>0t"'zec A}

For the intuitive picture (see also part ¢) of the proposition below), think about the example
where the seminorm is actually a norm and A is the unit ball. Then this definition yields
the norm.

Proposition 1.6.1. Suppose p is a seminorm on a vector space X. Then
a) {z|p(x) =0} is a subspace of X,

b) |p(z) — p(y)| < plz —y)
c¢) The set By = {z : |p(x) < 1} is convex, balanced, absorbing, and p = pp, , .

Proof. a) For x,y such that p(z) = p(y) = 0, we have

0 < plaz + By) < |alp(z) + |Blp(y) =0

so p(ax + By) = 0.
b) This is just a rewriting of the triangle inequality.
c¢) The fact that is balanced follows from ||ax| = |o||||z||. For convexity, note that

p(tr + (1 —t)y) <tp(x) + (1 —t)p(y). O

Proposition 1.6.2. Let A be a convex absorbing subset of X.

a) pa(r +y) < pa(e) + pay),
b) pa(tr) = tpa(x), for all t > 0. In particular, if A is balanced then p, is a seminorm,

c)lf B={z|pa<1}and C ={x|uc <1}, then BC AC C and pus = up = pc.
Proof. a) Consider € > 0 and let t = pua(z) + €, s = pa(y) + €. Then z/t and y/s are in A

and so is their convex combination

r+y t
s+t s+t

x sy
t+ s

s—i—t.

It follows that pa(x +vy) < s+t = pa(x) + pa(y) + 2e. Now pass to the limit € — 0.

b) follows from the definition.

For ¢) note that the inclusions B C A C C show that uc < pa < pp. For the converse
inequalities, let x € X and choose t, s such that pc(z) < s <t. Thenz/s € Cso pa(x/s) <1
and pa(x/t) < 1. Hence 2/t € B, so pup(z) <t. Vary t to obtain ug < puc. O

A family of seminorms P on a vector space is called separating if for every = # y, there
is a seminorm p € P such that p(z —y) > 0.
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Proposition 1.6.3. Suppose X has a system of neighborhoods of 0 that are convex and
balanced. Associate so each open set V' in this system of neighborhoods its Minkowski
functional py. Then V = {x € X | puv(z) < 1}, and the family of functionals uy defined for
all such Vs is a separating family of continuous functionals.

Proof. 1f x € V then z/t is still in V' for some ¢ < 1, so py(z) < 1. If x € V', then z/t € V
implies ¢ > 1 because V' is balanced and convex. This proves that V = {x € X | uy(x) < 1}.

By Proposition 1.6.2, uy is a seminorm for all V. Applying Proposition 1.6.1 b) we have
that for every e > 0 if x —y € €V then

v (z) = v ()] < pv(z —y) <e
which proves the continuity of py at x. Finally, uy is separating because X is Hausdorff. [J

Theorem 1.6.1. Suppose P is a separating family of seminorms on a vector space X.
Associate to each p € P and to each positive integer n the set

Bijnp = {z|p(x) <1/n}.

Let V be the set of all finite intersections of such sets. Then V is a system of convex,
balanced, absorbing neighborhoods of 0, which defines a topology on X and turns X into a
topological vector space such that every p € P is continuous and a set A is bounded if and
only if p|A is bounded for all p.

Proof. Proposition 1.6.1 implies that each set B, is convex and balanced, and hence so are
the sets in V. Consider all translates of sets in V, and let the open sets be arbitrary unions
of such translates. We thus obtain a topology on X. Because the family is separating,
the topology is Hausdorff. We need to check that addition and scalar multiplication are
continuous.

Let U be a neighborhood of 0 and let

Bl/n17p1 N Bl/nQ,pz n---N Bl/nmpk cU.
Set
V= Bl/?nl,pl N B1/2n2,p2 n---N Bl/an,pk-

Then V +V C U, which shows that addition is continuous.

Let also V' be as above. Because V' is convex and balanced, aV C U for all || < 1. This
shows that multiplication is continuous. We see that every seminorm is continous at 0 and
so by Proposition 1.6.1 it is continuous everywhere.

Let A be bounded. Then for each B, ,, there is ¢ > 0 such that A C tB,,. Hence
p < t/n on A showing that p is bounded on A. Conversely, if p; < t; on A, j =1,2,...,n,
then A C ¢;B,,,, and so

A Cmax(t;) NIy By,

Since every open neighborhood of zero contains such an open subset, A is bounded. O
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1.6.2 Fréchet spaces

Let us consider a vector space X together with a countable family of seminorms || - ||,
k=1,2,3,.... We define a topology on X such that a set set is open if it is an arbitrary
union of sets of the form

Bipn =1{y € X |||z —y|lr <rforall k <n}.

If the family is separating then X is a topological vector space.
The topology on X is Hausdorff if and only if for every z,y € X there is k£ such that
|z — y|lx > 0, namely if the family of seminorms is separating.

Definition. A Fréchet space is a topological vector space with the properties that

e it is Hausdorff
e the topology is induced by a countable family of seminorms
e the topology is complete, meaning that every Cauchy sequence converges.

The topology is induced by the metric d : X x X — [0, 00),
i 1 lz=ylle
261+ |lz = ylle
This metric is translation invariant.

Recall that a metric is a function d : X x X — [0, 00) such that

e d(z,y) =0if and only if x =y,

o d(z,y) = d(y, ),
o d(z,y) +d(y, 2) = d(, 2).
Example. Every Banach space is a Fréchet space.

Example. The space of smooth functions C'*°([0,1]) becomes a Fréchet space with the
seminorms

1£llx = sup [f©(z)].

z€[0,1]

Example. The space of continuous functions C'(R) is a Fréchet space with the seminorms

Iflle = sup |f(z)].

=<k

Example. Let D be an open subset of the complex plane. There is a sequence of compact
sets K1 C Ky C K3 C --- C D whose union is D. Let H(D) be the space of holomorphic
functions on D endowed with the seminorms

1flls = sup{[f(2)[ |z € K}

Then H(D) endowed with these seminorms is a Fréchet space.
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Theorem 1.6.2. A topological vector space X has a norm that induces the topology if and
only if there is a convex bounded neighborhood of the origin.

Proof. 1f a norm exists, then the open unit ball centered at the origin is convex and bounded.

For the converse, assume V' is such a neighborhood. By Theorem 1.3.1, V' contains a
convex balanced neighborhood U, which is also bounded. By Proposition 1.3.5, the sets rU,
r > 0, form a family of neighborhoods of 0. Moreover, because U is bounded, for every z
there is 7 > 0 such that « & rU. Let || - || be the Minkowski functional of this neighborhood.
Then x ¢ rU implies ||z|| > r, so ||z|| = 0 if and only if x = 0. Thus | - || is a norm and the
topology is induced by this norm. O



Chapter 2

Linear Functionals

In this chapter we will look at linear functionals
¢: X — C(or R),

where X is a vector space.

2.1 The Hamburger moment problem and the Riesz
representation theorem on spaces of continuous func-
tions

This section is based on a series of lectures given by Hari Bercovici in 1990 in Perugia.

The Hamburger Moment Problem: Given a sequence s,, n > 0, when does there exist
a positive function f such that

Sn = /OO " f(t)dt

—00

for all n > 07

These integrals are called “moments”, a name motivated by mechanics where the second
moment is the actual moment of inertia. Such integrals are quite useful when studying
probability distributions.

We ask the more general problem, if there is a measure o on R such that t" € L'(do) for

all n and
Sp = / t"do(t).

It is easy to see that not all such sequences are moments. For arbitrary complex numbers
ag, Ay ..., Gy Set

p(t) = Z a;t!.
=0

23
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Then

This shows that for all n, the matrix

S0 S1 . Sn
S1 So2 ... Sn+1

S, = T (2.1.1)
Sn o Sn+1 c. Son

is positive semidefinite. So this is a necessary condition.
We will show that this is also a sufficient condition.

Theorem 2.1.1. (M. Riesz) Let X be a linear space over R and C' C X a cone, meaning
that if z,y € C"'and t > 0 then x +y € C and tx € C'. Assume moreover that the cone is
proper, meaning that C'N (—C') = {0} and define the order x < y if and only if y — 2 € C.
Let Y C X be a subspace and let ¢y : Y — R be a linear functional such that ¢q(y) > 0 for
all y € Y N C. Supose that for every x € X there is u € Y N C such that u —x € C. Then
there is a linear functional ¢ : X — R such that ¢|Y = ¢y and ¢(x) > 0 for all z € C.

Proof. First, let us assume X =Y + Rx with x € Y. Let us first consider the set

A={¢(y)|lyeY,x—yeC}

We claim that A is bounded from above. Indeed, we can write v = u — ¢ with u € Y N C,
c € C. Write also © —y = ¢(y). Then v — ¢ —y = ¢(y), so u —y € C. This implies that
u >y, so ¢o(u) > ¢o(y). We conclude that A is bounded from above. Define ¢(z) = sup A,
then extend linearly to X so that ¢|Y = ¢y.

We have to show that if z = +tx +y € C, then ¢(z) > 0. This is equivalent to showing
that ¢(z/t) > 0 for t > 0, so we only have to check the cases where z = y + x.

In the first case,

Pz +y) = d(x — (-y)) = ¢(x) — go(—y) >0

because ¢y(—y) € A.

In the second case, choose y; € Y such that z; = x —y; € C and ¢o(y1) > ¢(x) — € (here
we use the definition of the supremum). Then y —y; = 2z + 21 > 0, s0 ¢o(y) — ¢o(y1) > 0.
Then

d(2) = ¢o(y) — d(x) = ¢do(y) — doly1) — €.

Now make € — 0 to obtain ¢(z) > 0.
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For the general case of a space X, use transfinite induction. In other words, we apply
Zorn’s Lemma. Consider the set M of functionals ¢ : 7 — R such that Y C Z C X, ¢
positive, and ¢|Y = ¢y. Order it by

¢ > ¢ if and only if Z C Z' and ¢'|Z = ¢.

If (¢a)aca is totally ordered, then Z = U,Z, is a subspace, and ¢ = ¢, on Z, for all a is
a functional that is larger that all ¢,. Hence the conditions of Zorn’s Lemma are satisfied.
If ¢ : Z — R is a maximal functional, then Z = X, for if x € X but not in Z, then we can
extend ¢ to Z + Rz as seen above. O

Theorem 2.1.2. (F. Riesz) Let ¢ : C(]0,1]) — R be a positive linear functional. Then
there is a unique positive measure o on [0, 1] such that

/ f(t)do(t (2.1.2)

Proof. We use the theorem of M. Riesz. Let B([0,1]) be the space of bounded functions on
[0,1]. Set X = B([0,1]) and Y = C([0,1]). The conditions of Theorem 2.1.1 are satisfied,
because every bounded function is the difference between a continuous bounded function
and a positive function. Hence there is a positive linear functional ¢ : X — R such that
»|C([0,1]) = ¢. Define the monotone increasing function F' : [0, 1] — R such that

F(t) = ¥ (xo4)-

Let 0 = dF. To prove (2.1.2) consider an approximation of f by step functions

ax() + Y GiXwwi] < F < axgoy + Y (0 + X

Because 1) is positive, it preserves inequalities, hence

a¢<X{O}) + Z ai¢<X(xi,xi+1]> S QS(f) S G@D(X{O}) + Z aiw(X(xi,xHﬂ) + €¢(1)

This can be rewritten as

+ Z CL, xz—f—l (:E,)) < gb( < aF + Z CLZ xz-ﬁ-l ( z)) + 6¢<1)'

The conclusion follows. O

For those with more experience in measure theory, here is the general statement of this
result.

Theorem 2.1.3. Let X be a compact space, in which the Borel sets are the o-algebra
generated by open sets. Let ¢ : C'(X) — R be a positive linear functional. Then there is a
unique regular (positive) measure o on R such that

= /dea_ (2.1.3)
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Proof. The same proof works, mutatis mutandis. The measure is defined as

o(A) = ¥(xa),
where Y 4 is the characteristic function of the Borel set A. m
Now we are in position to prove the Hamburger moment problem.

Theorem 2.1.4. (Hamburger) Let s,, n > 0, be a sequence such that for all n, the matrix
(2.1.1) is positive semidefinite. Then there is a regular positive finite measure o on R such
that for all n > 0, t" € L'(0) and

sn:/ t"do(t).

Proof. Denote by R|z] the real valued polynomial functions on R and by C.(R) the contin-
uous functions with compact support. Consider

X =Rz] + C.(R), Y =R[z],
and

C={feX|f(t)>0forall t}.

For a polynomial u(t) = SN a,t", let

N
¢o(u) = Zansn.
n=0

Let us show that ¢ is positive on C. We have u > 0 if and only if u = p? + ¢>. If p and q
are the vectors with coordinates the coefficients of p and ¢, then

do(u) = ¢o(p®) + do(¢°) = p" Svp + 4" Svg > 0.

The conditions of Theorem 2.1.1 are verified. Then there is a linear positive functional
¢ : X — R such that ¢|Y = ¢,. By Theorem 2.1.2, on every interval [—m,m], m > 1
there is a measure o, such that if f is continuous with the support in [—m, m], then ¢(f) =
™ f(t)do,,(t). Uniqueness implies that for my > ma, oy, |[—=ma, ms] = 0,,,. Hence we can
define o on R such that o|[—m, m] = 0,,. Then for all f € C.(R),

o(f) = / " F(@)do(t).

The fact that o is a finite measure is proved as follows. Given an interval [—m,m], let f
be compactly supported, such that
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Then

U([_mam]) = (b(X[—m,m]) < (b(f) < ¢0(1) = 50-

Hence o is finite.
Let us now show that

o(p) = / " p(t)do(t)

o0

If p is an even degree polynomial with positive dominant coefficient, then it can be approxi-
mated from below by compactly supported continuous functions, and so using the positivity
of ¢ we conclude that for every such function f

o(p) > 6(f) / " F®)do(t).

By passing to the limit we find that

o(p) > /_ N p(t)do(t).

Let ¢ be a polynomial of even degree with dominant coefficient positive, whose degree is less
than the degree of p. Then for every a > 0,

(e}

o(p — ag) > / (v — ag)(t)do ().

—0o0

Said differently

Varying p and ¢ we conclude that this is true for every g with even degree and with positive
dominant coefficient. Since every polynomial can be written as the difference between two
even degree polynomials with positive dominant coefficients, the property is true for all
polynomials. O

2.2 The Riesz Representation Theorem for Hilbert spaces

Theorem 2.2.1. (The Riesz Representation Theorem) Let H be a Hilbert space and let
¢ : H — C be a continuous linear functional. Then there is z € H such that

o(z) = (x,z), forall z € H.
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Proof. Let us assume that ¢ is not identically equal to zero, for otherwise we can choose
z=0.

Because ¢ is continuous, Ker¢y = ¢1(0) is closed. Let Y = Ker¢t. Then Y is one
dimensional, because if y;, yo were linearly independent in Y, then ¢(p(y2)y1 — ¢(y1)y2) = 0,
but ¢(y2)y1 — ¢(y1)ye is a nonzero vector orthogonal to the kernel of ¢.

Next, let y be a nonzero vector in Y, so that ¢(y) # 0. Replace y by v = y/o(y). Let
z=y'/|ly[* Then

$(z) = 1/[ly/II* = {2, 2).

Every vector x € H can be written uniquely as = u + az with v € Ker¢ and « a scalar.
Then

¢(x) = p(u+ az) = ag(z) = a(z,2)
=(u+azz)=(z,2).

O

Example. If ¢ : L?*(R) — C is a continuous linear functional, then there is an L? function

g such that
- [ swswa

Example. Consider the Hardy space H*(ID), and the linear functionals ¢,(f) = f(z), z € D.
Then for all 2, ¢, is continuous, and so there is a function K,(w) € H?(ID) such that

f(z) = ([}, K.) .

for all f € L*(R).

The function (z,w) — K,(w) is called the reproducting kernel of the Hardy space.

Example. Consider the Segal-Bargmann space HL?(C, ;). The linear functionals ¢, (f) =
f(2), z € C are continuous. So we can find K,(w) € HL*(C, up) so that

/ f dun

Again, (z,w) — K, (w) is called the reproducing kernel of the Segal-Bargmann space.
Remark 2.2.1. Using the Cauchy-Schwarz inequality, we see that

|o(x)] < llzllfl]]-

In fact it can be seen that the continuity of ¢ is equivalent to the existence of an inequality
of the form |¢(x)| < C||x|| that holds for all z, where C' is a fixed positive constant.
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2.3 The Hahn-Banach Theorems

Theorem 2.3.1. (Hahn-Banach) Let X be a real vector space and let p : X — R be a
functional satisfying

p(z+y) <plx)+ply), pltz)=tp(z)

if z,y € X, t > 0. Also, let Y be a subspace and let ¢y : Y — R be a linear functional
such that ¢o(y) < p(y) for all y € Y. Then there is a linear functional ¢ : X — R such that
Y = ¢p and ¢(x) < p(z) for all x € X.

Remark 2.3.1. The functional p can be a seminorm, or more generally, a Minkowski func-
tional.

Proof. First choose 1 € X such that x; € Y and consider the space
Vi ={y+tx|yeY,t € R}
Because

do(y) + do(y') = ¢oly +v') <ply +v') <ply — 1) +plzr +)

we have

do(y) — ply — 1) < p(y' + 1) — do(¥)

for all y,3' € Y. Then there is a € R such that

do(y) —ply — 1) < a < p(y' +21) — ¢o(y)

for all y,3 € Y. Then for all y € Y,

do(y) —a < p(y — 1) and ¢o(y) + a < p(y + 71).

Define ¢; : Y7 — R, by

b1(y + tar) = goly) + ta.

Then ¢, is linear and coincides with ¢ on Y. Also,

O1(y + txy) = [to1(y/[t] £ 1) = [t] (do(y/|t]) £ @)
< |tlp(y/[t] £ 1) = p(y + tz1).

To finish the proof, apply Zorn’s lemma to the set of functionals ¢ : Z — R, with
Y € Z C X and ¢|Y = ¢o, ¢(x) < p(x), ordered by ¢ < ¢ if the domain Z of ¢ is a
subspace of the domain of Z’ of ¢/ and ¢'|Z = ¢. H

Theorem 2.3.2. (Hahn-Banach) Suppose Y is a subspace of the vector space X, p is a
seminorm on X, and ¢y is a linear functional on Y such that |¢g(y)| < p(y) for all y € Y.
Then there is a linear functional ¢ on X that extends ¢, such that |p(z)| < p(x) for all
reX.
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Proof. This is an easy consequence of the previous result. If we work with real vector spaces,
then because ¢ is linear, by changing x to —z if necessary, we get |¢(z)| < p(x) for all z.

If X is a complex vector space, note that a linear functional can be decomposed as
¢ = Re¢ + ilm¢. Then Red(iz) = —Ime(x), so ¢(x) = Rep(x) + iRep(iz). So the real part
determines the functional.

Apply the theorem to Regy to obtain Re¢, and from it recover ¢. Note that for every
x € X, there is o € C, |a| = 1 such that a¢(x) = |¢(z)|. Then

¢(x)| = [¢p(ax)| = ¢p(ax) = Reg(ax) < plax) = p(x).
The theorem is proved. O

Definition. Let X be a vector space, A, A" C X, ¢ : X — R. We say that a nontrivial
functional ¢ separates A from A" if ¢p(z) < ¢(2’) for all z € A and 2" € A'.

Definition. Let B be a convex set, xo € B. We say that xg is internal to B if B — xy =
{b—x¢|b € B} is absorbing.

Theorem 2.3.3. (Hahn-Banach) Let X be a vector space, A, A’ convex subsets of X, AN
A’ = () and A has an internal point. Then A and A’ can be separated by a nontrivial linear
functional.

Proof. Fix a € A, a’ € A’ such that a is internal to A. Consider the set
B={x—a'—a+d|ze A A}

It is not hard to check that B is convex, it is also absorbing. Consider the Minkowski
functional pp. Because A and A’ are disjoint, ' — a ¢ B. Hence ug(a’ —a) > 1.

Set Y = R(d’ — a) and define ¢g(A(a’ — a)) = A. Then ¢o(y) < pp(y) for all y € Y. By
the first Hahn-Banach theorem, there is ¢ : X — R such that ¢(z) < pp(z) for all x € X,
and also ¢(a’ —a) = ¢p(a’ —a) = 1.

If x € B, then pup(x) <1,s0 ¢(x) < 1. Hence if z € A, 2’ € A’| then

dlx —2' —a+d) <1
In other words
dlx—2)+éd(a —a) <1, forallz e A,2' € A
Since ¢(a’ — a) = 1, it follows that ¢(z —2’) <0, s0 ¢(z) < ¢(2') forallz € A, 2" € A'. O

Theorem 2.3.4. (Hahn-Banach) Suppose A and B are disjoint, nonempty, convex sets in
a locally convex topological vector space X over the real numbers.
a) If A is open then there is a continuous linear functional ¢ on X and € R such that

¢(x) < inf ¢(y) for all x € A.

yeB

b) If A is compact and B is closed then there is a continuous linear functional ¢ such that

sup ¢(z) < inf ¢(y).
z€A yeB
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Proof. We consider only the real case. Because A is open, every point of A is internal.
So there is a linear functional ¢ and a real number « such that A C {z|¢(z) < a} and
B C {x|¢(x) > a}. Let zy be a point in A. Then for every x € A, p(x—x0) = ¢(x)—¢(xg) <
a — ¢(xg). So there is an open neighborhood A — x4 of 0 such that ¢(y) < fif y € A — x,
where 5 = a — ¢(xp). Choosing V' C A — ¢ a balanced neighborhood of 0, we conclude that
|p(y)| < 8 for all y € V. But this is the condition that ¢ is continuous.

We claim that because A is open ¢(z) < «a for all x € A. If not, let « be such that
¢(r) = a. Consider a neighborhood V' C of z such that V — z is a balanced convex
neighborhood of 0. Then for every y € V there is z € V such that x is the midpoint of
the segment yz. We have ¢(z) = $¢(y) + 3¢(2), and because ¢(y) and @(z) are both less
than or equal to «, ¢(y) = ¢(z) = ¢(x) = a. Hence ¢ is constant in a neighborhood of x.
Consequently ¢ is constant in a neighborhood of 0, and because the neighborhoods of 0 are
absorbing, it is constant everywhere. This is impossible. Hence a) is true.

For b) we use Proposition 1.3.3 to conclude that there is an open set U such that (A +
U)N (B +U) = 0. By shrinking, we can make U balanced and convex. Then A + U and
B + U are open and convex. Now use part a) to construct a continuous linear functional
that separates A+ U from B + U. Let xp € U\{0} such that ¢(zo) =y > 0. Then

< inf —~> inf ,
Sup o(x) +v < s o(x), inf o(y) — v > dut o(y)

The conclusion follows. O
Here is a practical application of the Hahn-Banach Theorem.

Theorem 2.3.5. (Farkas Lemma) Let A be an m x n matrix with real entries and let b € R"
be a vector. Then exactly one of the following two situations holds

(i) There exists x > 0 such that Az = b.

(i) There exists y such that ATy > 0 and b < 0.

For a vector v, v > 0 means that all its entries are nonnegative.
Proof. Both outcomes cannot happen simultaneously because such x,y would then satisfy
0< (ATl =y" Az =y"b <.

Let C = {Ax |z > 0} € R™. If b € C, then (i) holds. Otherwise, C' is closed; consider
the compact set K = {b}. Then C' N K = (), so we can apply the second part of the fourth
version of the Hahn-Banach theorem to conclude that there is a linear functional ¢ : R™ — R
and a real number « such that ¢(b) < o and ¢(a) > « for all @ € C. But R™ is a Hilbert
space, so we can apply the Riesz representation theorem to conclude that there is y such
that ¢(x) = y’x for all z € R™. Thus

y'b < o and yT Az > o for all z > 0.

But now since the zero vector is in C, « is necessarily nonpositive, in particular y7b < 0. On
the other hand, if (y7 A)x > « for all z > 0, then all entries of y A have to be nonnegative,
for if the kth entry is negative, we can take x to have all entries equal to 0 but the kth, and
let this entry go to infinity (which would then make y” Az go to negative infinity). Hence
yT' A >0, and so also ATy > 0. Done. O
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2.4 A few results about convex sets

For a subset A of a vector space X, we denote by Ext(A) the extremal points of A, namely the
points x € A which cannot be written as = ty+ (1 —t)z with y, z € A\{x}, t € (0,1). This
definition can be extended from points to sets by saying that a subset B of A is extremal if
for x,y € Aand t € (0,1) such that tz+ (1 —t)y € B, it automatically follows that z,y € B.
Note that a point z is extremal if an only if {x} is an extremal set.

Also, for a subset A of the vector space X, we denote by co(A) the convex hull of A,
namely the convex set consisting of all points of the form tx + (1 — t)y where z,y € A and
te0,1].

Theorem 2.4.1. (Krein-Milman) Suppose X is a locally convex topological vector space,
and let K be a subset of X that is compact and convex. Then

K = co(Ext(K)).
Proof. Let us define the family of sets
F={K'C K|K': closed, convex, nonempty, and extremal in K}.
If G is a subfamily that is totally ordered by inclusion, then because K is compact,
Ko = NgregK' # 0.

It is not hard to see that K is also extremal. Hence we are in the conditions of Zorn’s
Lemma. We deduce that F has minimal elements.

Let K,, be a minimal element; we claim it is a singleton. Arguing by contradiction,
let us assume that K,, has two distinct points. By the Hahn-Banach Theorem there is a
continuous linear functional ¢ : X — R such that ¢(z) # ¢(y). Let

o = max o(x).

Define
Ky ={y € Ko|é(y) = a}.

Then K, is a nonempty extremal subset of K, and consequently an extremal subset of K.
It is also compact and convex, which contradicts the minimality of K,,. Hence K,, contains
only one point. This proves

Ext(K) % 0.

Let K, = co(Ext(K)). Note that K, is compact. Assume K, # K. Then there is x € K\ K.
By the Hahn-Banach theorem, there is a continuous linear functional ¢ : X — R such that

maxyer, P(y) < ¢(x). Set
Ky ={z € K|¢(z) = max(y)}.

It is not hard to see that K, is extremal in K. Hence K, € F. Applying again Zorn’s
Lemma, we conclude that there is a minimal extremal set in K that is included in K5. This
minimal set is a singleton. So there is y € Ky N Ext(K). But K, is disjoint from Ext(K),
which is a contradiction. The conclusion follows. O]
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Theorem 2.4.2. (Milman) Let X be a locally convex topological vector space and let K be
a compact set such that co(K) is also compact. Then every extreme point of co(K) lies in
K.

Proof. Assume that some extreme point zy € co(K) is not in K. Then there is a convex
balanced neighborhood V' of 0 in X such that

($0 + V) NK = @,
which is equivalent to

Choose 71, T, ..., z, € K such that K C Uj_,(x; + V). Each of the sets

Kij=co(KN(x;+V)), 1<j<n
is compact and convex. Note in particular that, because V' is convex,
KjCZEj+V:ZEj+V.

Also K ¢ Ky U---UK,. We claim that co(K; U Ky U ---U K,,) is compact as well.
To prove this, let o = {(t1,t2,...,t,) € [0,1]"| >, ¢; = 1}, and consider the function
firoxKixKy...x K, = X,

f(tl, e 7tn7k17 . ,kn) = Zt]k]
J

Let C be the image of f. Note that C' C co(K; U Ky ---U K,,). Clearly C' is compact, being
the image of a compact set, and is also convex. It contains each K, and hence it coincides
So

co(K) Cco(K3U---UK,).

The opposite inclusion also holds, because K; C co(K) for every j. Hence

co(K) =co(KyU---UK,).
In particular,
o =tiyr +tay2a + -+ taYn,

where y; € Kj and t; > 0, Y t; = 1. But x¢ is extremal in co(K), so zo coincides with one
of the y;. Thus for some 7,

xoeKijj+VCK+V,

a contradiction. The conclusion follows. OJ



34 CHAPTER 2. LINEAR FUNCTIONALS

We will show an application of these results. Given a convex subset K of a vector space
X, and a vector space Y, amap T : K — Y is called affine if for every x,y € K and t € [0, 1],

T(te+ (1 —1t)y) =tT(x) + (1 —t)T(y).

The result is about groups of affine transformations from X into itself. If X has a topological
vector space structure, a group G of affine transformations of K is called equicontinuous if for
every neighborhood V' of 0 in X, there is a neighborhood U of 0 such that T'(z) —T(y) € V
for every x,y € K such that x —y € U and for every T € G.

Theorem 2.4.3. (Kakutani’s Fixed Point Theorem) Suppose that K is a nonempty compact
convex subset of a locally convex topological vector space X and that G is an equicontinuous
group of affine transformations taking K into itself. Then there is 2o € K such that T'(xy) =
zo forall T € G.

Proof. Let
F ={K' C K| K': nonempty, compact, convex ,T(K') C K' for all T € G}.

Note that K € F, so this family is nonempty. Order F by inclusion and note that if G is a
subfamily that is totally ordered, then because K is compact,

KO - mKlegK/ # @

Clearly T'(Ky) C Ko, so the conditions of Zorn’s lemma are satisfied. It follows that F has
minimal elements. Let Ky be such a minimal element. We claim that it is a singleton.

Assume, to the contrary, that K, contains z,y with  # y. Let V' be a neighborhood of
0 such that x —y € V| and let U be the neighborhood of 0 associated to V' by the definition
of equicontinuity. Then for every T € G, T'(z) — T(y) € U, for else, because T~! € G,

r—y=T"'(T(x)) =T (T(y)) € V.
Set z = 1(z +y). Then z € Kj. Let
G(z) ={T(2)|T € G}.

Then G(z) is G-invariant, hence so is its closure K; = G(z). Consequently, co(K) is a
G-invariant, compact convex subset of K. The minimality of Ky implies

K() = CO(K1>.

By the Krein-Milman Theorem (Theorem 2.4.1), K has extremal points. Applying Milman’s
Theorem (Theorem 2.4.2), we deduce that every extremal point of Kj lies in K;. Let zq be
an extremal point.

Consider the set

S={(TzTz,Ty)|T € G} C Ky x Ky x Ky.

Since z¢g € K1 = g(z), and K, x K, is compact, there is a point (z1,y1) € Ky X Ky such
that (zg,z1,y1) € S. Indeed, if this were not true, then every (z1,y;) € Ko x Ky would have
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a neighborhood W(,, ,,) for which there would exist a neighborhood V{,, ,,) of xg such that
Vizry) X Wiay gy NS = 0. Then Ky x Kj is covered by finitely many of the W(,, ,,) and the
intersection of the corresponding V,, 4,)’s is a neighborhood of p that does not intersect K.

Because 27z = Tx + Ty for all T, we get 22y = x1 + y1, hence xg = x1 = y;, because z
is an extremal point. But Tx — Ty ¢ V for all T € G, hence x1 —y; € V, and so z1 # y;.
This is a contradiction, which proves our initial assumption was false, and the conclusion
follows. [

2.5 The dual of a topological vector space

2.5.1 The weak*-topology

Let X be a topological vector space.
Definition. The space X* of continuous linear functionals on X is called the dual of X.

X* is a vector space. We endow it with the weak®* topology, in which a system of
neighborhoods of the origin is given by

V(z1, @, ..., xn,€6) ={p € X™||p(x))| <€, j=1,2,...,n},
where xq,xs,..., 7, range in X and € > 0.

Proposition 2.5.1. The space X* endowed with the weak* topology is a locally convex
topological vector space.

The Hahn-Banach Theorem implies automatically that the weak*-continuous linear func-
tionals on X* separate the points of this space. Each point x € X defines a weak*-continuous
linear functional z* on X* defined by

In fact we have the following result.

Theorem 2.5.1. Every weak*-continuous linear functional on X* is of the form z* for some
r € X. Hence (X*)* = X. !

Proof. Assume that ¢* is a weak*-continuous linear functional on X*. Then |¢p*(¢)| < 1
for all ¢ in some set V' (x1,xa,...,2,,€). This means that there is a constant C' such that
9% (¢)] < C'max; |z}()] for all ¢ € X*.

Let N be the set on which 27 =0, j = 1,2,...,n. Then ¢* is zero on N, so we can
factor X* by N so that we are in the finite dimensional situation. We can identify X*/N
with Span(zy, g, ..., 2,)" In X*/N, ¢* = . a;z}, and so this must be the case in X as
well. Hence

Pt = (Z O‘jxj)*v

and we are done. O

Tt is important that on X* we have the weak* topology, if we put a different topology on it, (X*)* might
not equal X.
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We should point out that the weak* toplogy is the coarsest topology in which all func-
tionals of the form z* are continuous. Indeed, if we require that x* is continuous, then the
sets V(z,€) are open for every e. Certainly intersections of such sets must also be open,
thus the sets of the form V(xy, s, ..., x,,€) are open. And once we consider the topology
generated by these sets, the functionals of the form z* are continuous.

There is another way to look at this topology. We can view functionals on X* simply
as functions, and functions as elements in the catesian product R*". If we endow the latter
with the product topology, then the weak* topology is the induced topology.

Let us recall some facts about the product topology. If A,, a € I, is a family of sets,
then the cartesian product A = [], A, together with the projection maps 7, : A = A, is
caracterized by the following property: for every set X and family of functions f, : X — A,
there exists a unique function f : X — A such that 7, o f = f,.

If we require A, to be topological spaces, then A itself has a unique topology that
makes every 7, continuous, and moreover, for every topological space X and continous maps
foa : X — A,, there exists a unique continuous function f : X — A such that 7, o f = f,.
This topology on A = [], A, is called the product topology. It is the coarsest topology
for which all the maps 7, are continuous. The fact that it is defined by this categorical
construction makes it the most natural topology.

The product topology is generated by sets of the form U, x [ 2o Ap, where U, is an open
set in A,. Its open sets are arbitrary unions of sets of the form Uy, X -+ x Uy, X [] Bta, Ag.
An important result in topology is Tychonoff’s Theorem, which states that a product of
compact sets is compact. We will use this theorem below.

Theorem 2.5.2. (Banach-Alaoglu) Let X be a topological vector space, V' a neighborhood
of 0, and

K={¢eX"||¢(z)| <1, forallz € V}.
Then K is compact in the weak® topology.
Proof. For every x € V define

K,={AeC||N <1}

The set

1%

zeV

is compact in the product topology, by Tychonoft’s Theorem. Define

oK = [[Eeo ®(¢) = (6(2))aev-

zeV

We will show
(1) ®(K) is closed.

(2) ®: K — ®(K) is a homeomorphism.



2.5. THE DUAL OF A TOPOLOGICAL VECTOR SPACE 37

For (1) assume that (a;)sev is in ®(K). Define ¢(x) = fay, for ¢ such that tx € V,
Approximating (a,)zey with linear functionals ¢, € ®(K), n =1,2,...,n. we have

On(ax + By) = agn(z) + Bon(y).

For n large enough, ¢,,(ax + Sy) approximates well ¢(x), while ¢, (x) and ¢, (y) approximate
¢(z) and ¢(y). By passing to the limit n — oo we obtain that ¢ is linear.

Also for z € V, |¢,(z)] < 1, and again by passing to the limit, |¢(z)| < 1. This implies
the continuity of ¢, as well as the fact that it lies in ®(K). This proves (1).

For (2), note that ® is one-to-one, hence it is an inclusion. Moreover, as explained above,
the weak* topology was chosen so that it coincides with the topology induced by the product
topology. Hence the conclusion. O]

2.5.2 The dual of a normed vector space

If X is a normed vector space, then X* is also a normed space with the norm

¢l = sup{lo(2)| [ |z]] <1}

Proposition 2.5.2. The dual of a normed space is a Banach space.

Proof. The only difficult part is to show that X* is complete. Let ¢,, n > 1, be a Cauchy
sequence in X*. Then ¢,(x) is Cauchy for every z, hence convergent. So we can define
¢(x) = lim, o0 (). It is not hard to check that ¢ is linear. On the other hand, because
¢n, is Cauchy, ||¢, || is Cauchy as well, by the triangle inequality (|||on| = [|dmll| < ||@n —Oml|)-
For a given z, if we choose n large enough then

|6(2) = ¢n ()] < l]],

SO

[6(2)] < (l¢nll + Dl]l-

Because ||¢,||, n > 1, is a bounded sequence (being Cauchy), it follows that ¢ is a bounded
linear functional, and we are done. [

So X* has two topologies the one induced by the norm, and the weak* topology. It is
not hard to check that the second is coarser than the first. The two topologies coincide only
in the finite dimensional case. Here is an example of the dual of a Banach space.

Theorem 2.5.3. Let p € [1,00). Then (L?([0,1]))* = L4([0, 1]), where ¢ satisfies

1 1
-+ -=1
p g

A function g € L9([0, 1]) defines a functional by

bg(f) = /0 f(z)g(x)dx.
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Proof. Note that every g € Li([0,1]) defines a continuous linear functional by the above
formula because of Holder’s inequality:

1Fgll < W f1lllglls-

Moreover, it is not hard to see that if g; and ¢go define the same functional then ¢, = ¢»
almost everywhere. This follows from the fact that if

/O (@)1 () — ga(@))dz = 0

for all f then g; — go = 0 almost everywhere.
Let us show that every continuous linear functional ¢ is of this form. The map

fe A d(xa)

is a measure on the Lebesgue measurable sets in [0, 1]. Note that p, is absolutely continuous
with respect to the Lebesgue measure, since if the Lebesgue measure of A is zero, then x4
is the zero vector in LP([0,1]), and so p4(A4) = ¢(xa) = 0.

Using the Radon-Nikodym Theorem, we deduce that there is a function g € L'([0,1])
such that

o(xa) = / yal£)g(@)dz. (25.1)

Case 1. p=1. We have

/Ag(x)dx

where m(A) is the Lebesgue measure of A. So |g| < ||¢]| almost everywhere, showing that
g € L*=([0,1]).

Case 2. p > 1. Looking at (2.5.1) and approximating the functions in L?([0,1]) by step
functions, and using the continuity of both the left-hand side on LP(]0, 1]) and of the right-
hand side on L*([0, 1]) C LP([0, 1]), we deduce that

= [o(xa)l < lllllixally = ll@llm(A),

1
o) = [ gty for al £ € 22(0.1)
We want to show that if fol f(z)g(x)dz is finite for all f € LP(]0, 1]), then g € L%([0,1]). By

multiplying f by |g|/g, we can make g be positive, so let us consider just this case.
Let h be a step function that approximates g¢ from below, h > 0. Consider

¢(hl/p):/0 g(w)hl/p(a:)dazzfo hl/q(:c)hl/p(x)dx:/o h(z)dzx.

By the continuity of ¢, this inequality forces

1
/O h(x)dz < (|6l 1R7], (25.2)
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We also have

Mwmqummri
[ v <ol [ niwrar) "
([ narae) * <ol

Passing to the limit with h — ¢?, we obtain ||g||, < ||¢||, as desired. O

so from (2.5.2) we get

Dividing through we get

Here is this result in full generality.

Theorem 2.5.4. Let (X, ) be a measure space, and let p € [1,00) and ¢ such that 1/p +
1/q =1. Then (LP(X))* = LY(X), where g € LY(X) defines the functional

o(f) = /ngdu-

Moreover [ = {|g]l,-
Theorem 2.5.5. (C(][0, 1]))* is the set of finite complex valued measures on [0, 1].

Proof. Each finite measure p defines a continuous linear functional by

¢m=Afmw

Let us prove conversely, that every linear functional is of this form. For every complex
continuous linear functional ¢, we have ¢ = Re¢ + ilm¢ where the real and the imaginary
part are themselves continuous. So we reduce the problem to real functionals. We show that
each such functional is the difference between two positive functionals, and then apply the
Riesz Representation Theorem.

For f >0, set

¢"(f) =sup{o(g) |g € C([0,1]),0 < g < f}.

Because ¢ is continuous, hence bounded, ¢* takes finite values. Since ¢ = 0 < f, and
#(0) = 0, we have that ¢ is positive.

It is clear that ¢t (cf) = co™(f), for ¢ >0, f > 0.

Also, for fi, fo > 0, ¢T(f1 + f2) = ¢ (f1) + ¢1(f2) because we can use for f; + fo the
function g; + go with 0 < ¢g; < f; and 0 < g < fo. On the other hand, if f = f; + f2, and



40 CHAPTER 2. LINEAR FUNCTIONALS

g < f, set g1 = max(g — f2,0) and go = min(g, f2). Then g; + g2 = g, and 0 < g; < fj,
j =1,2. Hence

#(g) = ¢(g1) + d(g2) < " (f1) + &7 (fo).

Consequently o7 (f) = ot (f1 + f2) < oT(f1) + &1 (f2). Therefore we must have equality.
For arbitrary f, write f = f; — fo, where fi, fo > 0, and define ¢*(f) = o1 (f1) — o™ (f2).

It is not hard to see that ¢™ is well defined, linear, and positive. Also ¢ — ¢ is a linear
positive functional. We have

=07 — (o7 —9),

and the claim is proved. We can therefore write every continuous complex linear functional
as

¢ = ¢1 — P2+ i(P3 — Pa),

where ¢;, j = 1,2,3,4 are positive. Each of these is given by a positive measure p;, by the
Riesz representation Theorem, so ¢ is given by the complex measure

po=p1 — pip +i(pz — pa).
O

Remark 2.5.1. Using the general form of the Riesz Representation Theorem, we see that
[0, 1] can be replaced by any compact space.

Theorem 2.5.6. (Banach-Alaoglu) Let X be a normed vector space. Then the closed unit
ball in X* is weak*-compact.

Here are some applications.

Proposition 2.5.3. Place a number from the interval [0, 1] at each node of the lattice Z?
such that the number at each node is the average of the four numbers at the closest nodes.
Then all numbers are equal.

Proof. Consider the Banach space L°°(Z?). Let K be the set of elements in L*>°(Z?) satisfying
the condition from the statement. Then K is a weak*-closed subset of the unit ball; by
applying the Banach-Alaoglu theorem we deduce that it is weak*-compact. It is also convex.
By the Krein-Milman Theorem, K = co(Ext(K)). Let f : Z* — [0, 1] be an extremal point in
K. Let L, U be the operators that shift up and left. Then Uf,U~'f Lf, L='f are functions
with the same property, and

f_EWf+U*f+Lf+L*ﬁ.

Because f is extremal, f = Uf = U™ 'f = Lf = L~'f, meaning that f is constant. In
fact f = 0 or f = 1. The convex hull of the two extremal constant functions is the set of
all constant functions with values in [0, 1], this set is closed, so K consists only of constant
functions. Done. O]
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Theorem 2.5.7. The space L'(R) is not the dual of any normed space.

Proof. Tf L'(R) were the dual of a normed space, then the Banach-Alaoglu Theorem implies
that the closed unit ball in L'(R) is weak*-compact. By the Krein-Milman Theorem it has
extreme points. But this is not true, since every function in the closed unit ball of L! can
be written as the convex combination of two functions in the unit ball. O

Remark 2.5.2. Here we should compare with the case of LP spaces. Just focus on positive
functions. The convex combination of two norm 1 such functions in L' has also norm 1. But
this is not true for L? spaces.

Consider C([0,1]), the Banach space of complex valued continuous functions on [0, 1],
with the norm |[f]| = sup,cg,y [£(2)].

Theorem 2.5.8. (Stone-Weierstrass) Let A C C([0, 1]) be a subalgebra with the following
properties

(1) if f € A then f € A,
(2) the function identically equal to 1 is in A,
(3) A separates the points of [0, 1].

Then A is dense in C([0, 1]).

Proof. (de Brange) We argue by contradiction, and assume that A is not dense, that is
A # C([0,1]). By replacing A with A, we can assume that A is closed. Let

K ={¢cC(0,1)"[llol <1,¢A = 0}.

By the Banach-Alaoglu Theorem, it is compact in the weak* topology. K is also convex, so by
the Krein-Milman Theorem it has extremal points. Moreover, the Hahn-Banach Theorem
implies that K # {0} (because there is a functional that separates A from a point that
does not belong to it), so then Krein-Milman implies that moreover there exist at least
two extremal points. This means that there is an extremal functional ¢ € K that is not
identically equal to zero.

Because C([0, 1])* is the space of finite complex measures (Theorem 2.5.5), ¢ is given by
a measure y. We claim that every function in A is constant on the support of p. If this is so
then because the functions in A separate points, the support of p consists of just one point,
SO p = by, for xy € [0,1] and ¢ € C. Because pu|A = 0, and 1 € A, we get that ¢ = 0, a
contradiction. Hence the conclusion.

Let us prove the claim. Suppose there is f € A not constant on the support of . We
have f = fi +ify, 50 fi = (f + f)/2 and fo = (f — f)/2i, and because f € A, fi, f» € A as
well. One of these is nonconstant, so we may assume that f is real valued. Replacing f by
(f + A)/B we may assume 0 < f < 1. Define the measures u; and uy by

dpy = fdp, dps = (1 — f)dp.

Then p = p1 + po. Note that uq, uo are both zero on A.
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1 1
We have ||| = [ fdlpl, lluall = f; (1= f)dlul. And also [l = [ dlul = [l + [ls].

Then
o Ll ()l (L),
[l \ N ea el \ Ml ezl
Note that
ol el
[ [l™ 7 [ e

Because p is an extreme point, either p; or uy is zero. So f must be identically equal to 1,
a contradiction. The claim is proved, and so is the theorem. O

Remark 2.5.3. Using the general form of the Riesz Representation Theorem, we see that
[0, 1] can be replaced by any compact space.



Chapter 3

Bounded Linear Operators

3.1 Continuous linear operators

3.1.1 The case of general topological vector spaces
We now start looking at continuous linear operators between topological vector spaces:
T:X =Y.

Proposition 3.1.1. Let T': X — Y be a linear operator between topological vector spaces
that is continuous at 0. Then T is continuous everywhere, moreover, for every open neighbor-
hood V' of 0 there is an open neighborhood U of 0 such that if  —y € U then Te —Ty € V.
Definition. A linear operator is called bounded if it maps bounded sets to bounded sets.
Proposition 3.1.2. A continuous linear operator is bounded.
Proof. Let T : X — Y be a continuous linear operator. Consider a bounded set £ C X. Let
also V be a neighborhood of 0 in Y. Because T is continous, there is a neighborhood U of 0 in
X such that T(U) C V. Choose A € C\{0} such that A\E C U. Then T(AE) = \T'(E) C V.
It follows that T'(E) is bounded. O
Definition. Let T': X — Y be a linear operator. The kernel of T is

ker(T) ={z € X |Tz = 0}.
The range or image of T is

im(7) = {y € Y| there is z € X with Tz = y}.

Both ker(7') and im(7") are vector spaces. If T is a continuous linear operator between
topological vector spaces, then ker(7') is closed. This is not necessarily true about im(7").

43
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3.2 The three fundamental theorems

3.2.1 Baire category

A subset of a topological space is called nowhere dense if its closure has empty interior.
Another way to say this is that its complement contains a dense open set.

Definition. A topological space is said to be of the first category if it is a countable union
of nowhere dense subsets. Otherwise it is said to be of the second category.

Theorem 3.2.1. (Baire Category Theorem) A complete metric space is of the second cat-
egory.

Proof. Assume by contradiction that X is a complete metric space of the first category.
Write X = U2, X,,, with X,, = X\V,, where V,, is a dense open set. Define inductively the
set of balls B, such that B, C V, and B, C B,_i, and the radius of B, is less than half
of the radius of B,,_1. The centers of the balls form a Cauchy sequence that converges to a
point x € X. This point = belongs to all B,, and hence it is in the complement of every X,.
But this is impossible because X is the union of all X,,. O

Corollary 3.2.1. If X is of second category and X = U2°,X,,, then there is n such that X,
contains an open subset.

3.2.2 Bounded linear operators on Banach spaces
From now on we will focus just on continuous linear operators between Banach spaces.

Theorem 3.2.2. Let T': X — Y be a linear operator. Then 7" is continuous if and only if
it is bounded.

Proof. We have seen that if T" is continuous then 7' is bounded. Let us show the converse.
Assume that T is bounded by is not continuous. Then there is a neighborhood V C Y
of 0 such that 77'(V) is not a neighborhood of 0. This means that there is a sequence
r, € X\T~Y(V) such that x, — 0. So there is a sequence x,, — 0 such that Tz,, € V, n > 1.
We know that T is bounded, so {T'z, }, is bounded. But now we can write z,, = a,y,, where
a, — 0 and y, — 0. Then {Ty, }, is still bounded, which implies that Tz, = «, Ty, — 0.
This is a contradiction. Hence 7' is bounded.

Here is another way to prove this. Let V be a neighborhood of 0 in Y. We want to show
that 7-'(V) is a neighborhood of 0 in X. Consider the unit ball X; C X. Then T'(X;) is
bounded, so there is ¢ > 0 such that T(X;) C tV. But then X; C T7'(¢tV) =¢T1(V), so
71X, c T7YV). Thus T (V) is a neighborhood of 0, as desired. O

Definition. Let 7" be a bounded linear operator (which is the same as a continuous operator).
The norm of T is

17| = sup{[|T[| | [l <1}.

Proposition 3.2.1. The set of continuous linear operators 7' : X — Y endowed with the
operator norm is a Banach space.
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Proof. Indeed, if T,, is Cauchy, then T,z is also Cauchy, because
[Taz — Tnz|| < T — Tallll2|l-
This latter sequence is convergent, and we define Tx = lim,,_,, T,,z. Note that

T (ax + By) — aTx — BTy||

< | T(ax + By) — aTx — Ty — [T,(ax + By) — aThx — SToy] + T(ax + By) — aT,x — STy
= [|(T" = T0)(az + By) — T — Tp)z = B(T — T,y

< (T = To)(az + By)|| + lal[(T" = To)z|| + [BII(T — T)yl,

and the right-hand side goes to 0 when n goes to infinity. This implies that 7" is linear.
For a fixed x # 0, we can choose n such that [|T"— T,,(x)|| < ||z|| (as we can make this as
small as possible).

|Tz|| = (T = To)z + Tox|| < (T = To)z| + [Tzl < ||zl + | Talll2]l < (1701 + D],
so 1" is bounded. OJ

Proposition 3.2.2. f T: X — Y and S : Y — Z are bounded linear operators between
Banach spaces, then [|ST|| < ||.S]|||T|]-

Proof. We have
15T < [|SITl| < [[STHT]]]]
hence the conclusion. O
Here is an example of a bounded linear operator from P.D. Lax, Functional Analysis:

Example. The Laplace transform

L:I3([0,00)) = L3([0,00)). (Lf)(s) = / " F)e s

is a bounded linear operator.
We prove that it is bounded and compute its norm. We have

00 2 00
I(Lf)(s>|2—( / f(t)e‘“dt) —( / <f<t>e—st/2t1/4><e—2st/2t—1/4>dt)
> 2 —sty1/2 00 —sty—1/2
s/o F()Pe't dt/o e=st=1/2qy,

where for the last step we have applied the Cauchy-Schwarz inequality. By changing variables
we can compute the second integral as

/ e_Stt_l/th:s_l/Q/ e_“u_l/Qdu:s_l/Q/ e~ v dr
0 0 0

= 231/2/ e dy = sV /T
0

2
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We conclude that
NP <5 VR [ 1foPe e
0

Integrating with respect to s we obtain

ILFI? = / (L)(s)ds < v / / ()22 2 dudss

:\/E/ / |F()|Pe 52~ 2 dsdt = \/_/ |t1/2/ e sts™ 2 dsdt
0

- / ()22 2dt = a(Vrl fIP),

where for the last step we have used the integral computed above. Hence ||Lf| < /7| f||-
Thus || LI| < v/7.

In the above computation, the Cauchy-Schwarz inequality is the only place where an
inequality occurred. We can get close to the equality case by choosing f = 1/ v/t on an
interval [a,b] with a small and b large and zero outside of this interval (which ensures that
fis in L*([0,00)). Thus we can make | Lf|| > (/7 — €)|/f|l, for all €, which then implies
|L|| > /7 — € for all . We conclude that || L|| = /7.

Theorem 3.2.3. (Banach-Steinhaus) Let X be a Banach space, let Y be a normed space,
and let F be a family of continuous operators from X to Y. Suppose that for all x € X,
supper || Tz]| < co. Then supper ||T| < 0.

Proof. Let
X, ={re X||Tz|]| <nforal T e F}.

These sets are convex and balanced. They are also closed, so by the Baire Category Theorem
there is n such that the interior of X,, is nonempty. Because X, is convex and balanced, its
interior contains the origin. Hence there is a ball By, centered at origin such that ||Tz| <n
for all T € F and z with ||z]| < r. We have ||T|| < n/r for all T € F, and the theorem is
proved. O

Here is an application that I have learned from Hari Bercovici. We have

00
§ nlnl

The left-hand side takes the value 1/2 when = 1, so it is natural to impose that the
right-hand side converges to 1/2. A way to do this is to consider the sequence s, =
Sor_ (=1)*12F=1 and then notice that

1
E(sl+32—|—---+sn) (3.2.1)

converges to the same limit as s,, when the latter converges (Cesaro), but moreover for x = 1
(3.2.1) converges to 1/2.
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Definition. A summation method associates to each convergent sequence s,, n > 1 another
convergent sequence o,, n > 1 such that

(2) 0p =D po aisy for n =1,2, ..., where o, is an array of complex numbers that does
not depend on s, and defines the summation method.

An example of a summation method, introduced by Cesaro, is oy = 1/n, n = 1,2,.. .,
1 <k <n, and a,, = 0 otherwise.

Theorem 3.2.4. (Toeplitz) The array a,g, n,k > 1, defines a summation method if and
only if it satisfies the following three conditions

(1) lim, oo e =0, for all k =1,2,..
(2) imyyeo D gy Qg = 1;

(3) sup,, 352y ank| < oo

Proof. Let us prove that the three conditions are necessary. If s, = 6, for some k, then
On = Qui. The fact that s, — 0 implies lim,, o, v, = 0, hence (1).

If s, =1,n > 1, then 0, = Y -, ai,. Because s, — 1, it follows that lim,, e >, Qg =
1, hence (2).

For (3) we apply the Banach-Steinhaus Theorem. Denote by Cj the Banach space of
convergent sequences with the sup norm (i.e. continuous functions on N U {co} with the
sup norm, where N U {oo} is given the topology such that the map f(z) = 1/x from it to
R is a homeomorphism onto the image). Let ay, k > 1, be a sequence such that >~ | ayzy
converges for every convergent sequence xy, k > 1. We claim that Y ;- |ay| < co.

Indeed, if this is not the case, then choose r; > 0 such that that r, — 0and > |y | = oo.

The sequence x, = riay/|ag| converges to 0, but >, ayzy = > |ag|ry = oo, which is
impossible. This proves our claim.
Additionally,

sup
(z1)k€CO0, || (zr) k<1

(o)
S eue] =3 ol
k k=1

The fact that the left-hand side does not exceed the right-hand side follows from the triangle
inequality. On the other hand, if z; = @;/|ay| for 1 < k < N and zero otherwise makes
S ogar = Yo, ||, Taking N — oo we obtain that the right-hand side is less than or
equal to the left-hand side. Hence the two are equal.

Define

¢n : CO — (C, ¢n((3k)k> - Zanksk'
k=1

Then the above argument shows that ¢, € (Cy)* and

o0

k=1
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The sequence ¢,,((sx)x), n > 1 is bounded for every convergent sequence (si)x (because we
are in the presence of a summation method, and convergent sequences are bounded). Hence
by the Banach-Steinhaus Theorem, ||¢,|, » > 1, is bounded, which is (3).

Now let us check that the conditions are sufficient. Let M = sup,, > -, |an,|. Consider
a sequence s, converging to s. We want to show that o,, converges to s as well. We compute

o0 o0 o0

E Ok Sk — E eS| + E Opp — 1|8
k=1 k=1 k=1

o

E ank — 1] 5]

k=1

lon — 5| <

8

< Z ||| sk — s| +
k=1

Mz

Z&nk—l

k=1

Iankl\sk—SHM sup i —s| + |5

£
Il

1
We obtain lim,, . |0, —s| = 0, since each of the three terms converges to zero as n — co. [

Theorem 3.2.5. (Open Mapping Theorem) Let T': X — Y be a surjective bounded linear
operator between Banach spaces. Then T" maps open sets to open sets.

Proof. 1Tt is enough to show that the set
A=A{Tz||z| <1}
is a neighborhood of 0 in Y. We have
Y =U)2 nA.

Because Y is of the second category (by the Baire Category Theorem), it follows that there
is n such that nA has nonempty interior. Consequently A has nonempty interior.

But A is convex and balanced, because it is the image through a linear map of a convex
and balanced set. Hence so it A, and consequently A contains a neighborhood of 0. Let
€ > 0 be such that

{yllyll <e} € A={Tx|[f <1}.
We want to show that

{yllyll < e} c{Ta ||zl <2}

Fixy €Y, |ly]| < eand fix 0 < 6 < 1. Choose z; in the unit ball of X such that ||y—Tz;|| < J.
There is 15 € X, |22 < §/e with ||y — Tzy — Txs| < 62, ..., there is x,, with ||z,| < 6" !/e
and ||y — Taxy — Txg — -+ —Tx,|| < 0" Because X is Banach, there is a point # € X such
that =) | ,. Choosing ¢ small enough, we can ensure that ||z|| < 2. We have

ly — Tz|| = lim ||y — Ty — Tay — - — T, || = 0,
n—oo

so y = Tx. The theorem is proved. O]
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Corollary 3.2.2. Let T : X — Y be a bounded linear operator between Banach spaces that
is onto. Then there is a constant C' > 0 such that for every y € Y, there is x € X such that
Tz =y and [[z]| < Clly]|

Proof. The image of the unit ball of X is open in Y. Let ¢ > 0 such that ||y|| < ¢ implies
y =Tz with ||z|| < 1. Then C' = 1/§ does the job. O

Theorem 3.2.6. (Inverse Mapping Theorem) Let 7" : X — Y be an invertible bounded
linear operator between Banach spaces. Then 7! is also a bounded linear operator.

Proof. Because T maps open sets to open sets, the preimage of an open set through 7! is
open, showing that 77! is continuous. O

Definition. Let f : A — B be a function. The graph of f is the set
{(z, f(x)) |z € A} C Ax B.

We denote the graph of f by Gy.

Theorem 3.2.7. (Closed Graph Theorem) Let X and Y be Banach spaces and let T': X —
Y be a linear operator such that the graph of T is closed in X x Y with the product topology.
Then T is continuous.

Proof. The product space X x Y is a Banach space. The graph Gr is a linear subspace. By
hypothesis it is closed, so it is a Banach subspace. Define

m:Gr—= X, m(zx,Tz)=x
and
o Gr =Y, mo(x,Tx)="Tx.

Both these operators are linear and continuous. The operator m; is invertible and bijective.
By the Inverse Mapping Theorem (Theorem 3.2.6) its inverse is also continuous. We have
T = myom; ', and hence T is continuous. [

Here is an application found online in a note by Jesis Gil de Lamadrid:

Example. Let T : L*([0, 1]) — L?([0, 1]) be a bounded linear operator so that if f € C([0,1])
then T'f € C([0,1]). Then the restriction of T" to C([0, 1]) is a bounded operator.

Indeed, we have ||f||2 < || f]|c, s0 the topology induced on C(]0,1]) by the sup norm is
finer than the one induced by the L? norm. Because T is continuous, its graph is closed in
the product topology induced by the L? norm on each factor, and consequently it is closed
in the product topology induced by the sup norm on each factor. Hence T' is bounded on
C([0,1]) with the sup norm.

Definition. A linear operator P : X — X is called a projection if P? = P.

Proposition 3.2.3. Let X be a Banach space and let P : X — X be a projection. Then P
is continuous if and only if both the kernel and the image of P are closed.
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Proof. Assume that the kernel and the image are closed. Because + = Px + (z — Px), and
P(xz — Px) = Pxr — P%z = 0 every element in X is the sum of an element in ker P and an
element in imP. Moverover, if x € ker PNimP, then x = Py, for some y, so P>y = Px = 0.
But P%y = Py = x, so z = 0. It follows that

X = kerP @ imP.

Let us show that the graph of P is closed. Consider a sequence (z,, Pz,), n > 1, that
converges to (x,y); we want to show that y = Px. Because imP is closed, y € imP. The
sequence x,, — Pz, converges to x —y. Because x,, — Px,, € kerP, there is z € ker P such that
Zp— Pz, — 2. Sox—y = z. It follows that x —y € ker P. We thus have P(z —y) = Pz = 0.
But Py =y, so P(x—y) = Px—y. It follows that Px = y. From the Closed Graph Theorem
it follows that P is continuous.

Conversely, if P is continuous, then kerP = P~1(0) is closed. Also, imP = ker(1 — P),
and 1 — P is also continuous. Hence imP is closed. O

Corollary 3.2.3. If P is a continuous projection then X = kerP & imP is a decomposition
of X as a direct sum of two closed subspaces.

Example. Let A be a closed subset of [0, 1], and let C4(]0,1]) be the set of continuous
functions that are zero on A. Then there is a closed subspace Y of C([0, 1]) such that

C([0,1]) = Ca((0, 1)) @Y.

Indeed, there is a bounded linear operator 7' : C'(A) — C(|0,1]) such that Tg|A = ¢
(the complement of A is a disjoint union of open intervals, and on such an interval (a,b)
we can define T'g(ta + (1 — t)b) = tg(a) + (1 — t)g(b)). If R : C([0,1]) — C(A) is the
restriction operator, then P =T o R is a projection. It is also continuous because T" and R
are continuous. Hence

C([0,1]) = kerP @ imP = Cx4([0,1]) © imP.
Set Y =tmP.

The operator T defined in this example is called a simultaneous extension. It has been
proved that such operators exist in more general situations (e.g. for compact spaces). The
existence of such an operator is a stronger version of the Tietze Extension Theorem.

3.3 The adjoint of an operator between Banach spaces

Definition. Let 7' : X — Y be a bounded linear operator between Banach spaces. The
adjoint of T, denoted by T, is the operator 7™ : Y* — X* given by T* = ¢ o T.

Theorem 3.3.1. The operator 7% is linear and bounded, and || 77| = ||T|.
Proof. We have
(ag1 + Bg) o T =agroT + S0 T

which shows that 7™ is linear.
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Lemma 3.3.1. If X is a Banach space and x € X, then

l2]l = sup{[o(x)[ | € X7, [|o]] < 1}

Proof. We have |p(x)| < ||¢||[|z]|, so the left-hand side is greater than or equal to the right-
hand side. For the converse inequality, define ¢g : Rx — C, ¢o(tx) = t||z||. Then ||¢o| = 1.
By the Hahn-Banach Theorem, there is a continuous linear functional ¢ : X — C such that

@[l = 1, and ¢(x0) = [|zoll =

Returning to the theorem and using the lemma, we have

IT[| = sup{[|T|| [ ]| <1} = sup{[|o(Tz) [ |lz| <1, [lo]| < 1}
= sup{|[(T"¢) ()| [ =]l < L. [[¢]l < 1} = sup{[|T"¢|| | [|¢]| < 1} = [|T7].

[]

Example. Let X =C™ )Y =C" and let T : X — Y be a linear operator. If A is the matrix
of T in the standard basis, then the matrix of 7™ is the transpose of A.

Proposition 3.3.1. Let T': X — Y be a bounded linear operator between Banach spaces
and let T* be its adjoint. Then ¢ € ker(T™) if and only if ¢[im(7") = 0 and x € ker(T) if and
only if ¢(x) = 0 for all ¢ € im(T™).

Proof. We have
¢ € ker(T*) & T*¢ = 0 < (T*¢)(z) = ¢(Tx) = 0, Va < ¢[im(T) = 0.
and
z € ker(T) & Tz =0 & ¢(Tx) = (T*¢)(z) = 0, Vo < ¢(z) = 0, Vo € im(T™).
0

Corollary 3.3.1. ker(7™) is weak™ closed, im(7') is dense if and only if 7% is injective, and
T is injective if and only if im(7™) is weak* dense.

Theorem 3.3.2. Let T : X — Y be a bounded linear operator between Banach spaces.
The following conditions are equivalent:

(a) im(7") is closed in Y

(b) im(7™) is weak* closed in X*;

(¢) im(7T™) is norm closed in X*.

Proof. Suppose (a) holds. Then by Proposition 3.3.1, ¢(z) = 0 for all ¢ € im(7™*) if and only
if x € ker(T"). We claim that the functionals that are zero on ker(7") are the weak* closure
of im(7™). Indeed, this set is weak* closed and contains im(7™). To prove the converse
inclusion, recall that the dual of X* with the weak* topology is X. Assume that there is
¢o that is zero on ker(7T") but ¢ is not in the weak*-closure of im(7™*). Then by the Hahn-
Banach Theorem, there is € X such that ¢y(z) # 0 and ¢(x) = 0 for all ¢ € im(T™).
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But ¢(Tx) = 0 for all ¢ € Y* means that Tx = 0, so x € ker(T). Then ¢o(z) = 0, a
contradiction. This proves our claim.

We are left to show that any functional that is zero on ker(7') is in the image of T*. Let
¢ be such a functional. Define a linear functional ¢ on im(7") by

U(Tx) = ¢(x).
It is not hard to see that 1 is well defined. Apply the Open Mapping Theorem to
T:X —im(T)

to conclude that there is C' > 0 such that for every y € im(7") there is © € X such that
Tz =y and ||z|| < C|ly||. Hence

(W) = [(T2)| = o) < [lollllz]l < Clllllyll-

Hence v is continuous. Extend 1 to the entire space using Hahn-Banach. Because

¢(x) = P(Tx) = (T"P)(2),

it follows that ¢ = T*¢. Hence ¢ € im(7T™*), as desired. We thus proved that (a) implies (b).

(b)=(c) is straightforward.

Now let us suppose that (c¢) holds. Let Z be the closure of im(7") in Y. Define S : X — Z,
Sx =Tx. As a corollary to Proposition 3.3.1, S* : Z* — X* is one-to-one.

If ¢ € Z*, the Hahn-Banach Theorem provides an extension ¢ € Y™ of ¢. For every
r € X, we have

(T"¢)(x) = Y(Tx) = ¢(Sx) = (57¢)(x).

Hence S*¢ = T*. It follows that S* and 7™ have identical images, in particular the image
of S* is closed. Apply the Inverse Mapping Theorem to S* : Z* — im(S*) to conclude that
it is invertible. The conclusion follows from the following result.

Lemma 3.3.2. Suppose S : X — Z is a bounded linear operator such that S* : Z* — X*
is invertible. Then S is onto.

Proof. Because S* is invertible, there is C' > 0 such that ||¢|| < C||S*¢|| for all ¢ € Z*.

Let Bx and By be the unit balls in X and Z. We will show that B; C C'S(Bx), namely
that 0B, C S(Bx), where § = 1/C.

Choose zy € S(Bx). Because S(Bx) is convex, closed, and balanced, an application of
the Hahn-Banach Theorem shows that we can separate it from zg, so there is ¢ € Z* such

that ||p(2)|| <1 for z € S(Bx) but |¢(z)| > 1. If © € By, then

1S*0(x)] = [¢(Sx)| < 1.
Hence [|S*¢|| < 1. We have

6 < d[o(z0)] < dllllllzoll < ll20l[llS™¢ll < [20l-
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We deduce that if ||z]] < ¢ then necessarily z € S(Bx).

Now let us show that moreover z € S(Bx). Rescaling S we may assume 6 = 1. Then
By C T(Byx), and hence for every z € Z and every € > 0 there is # € X such that ||z|| < ||y||
and ||y — Tz|| < e. Choose 2z € Bz. Let ¢, = 37(1 — ||z1]|). Define the sequences x, and
z, inductively as follows. Assume z, is already picked, and let x,, be such that ||z, || < ||zl
and ||z, — Tx,|| < €,. Set zp11 = 2, — Ty,

If v => x,, then Te = > Tz, = > (Yo — Yns+1) = 2z1. Hence z; € T(Byx). This proves
our claim. The conclusion follows. ]

Using the lemma we conclude that im(S) = im(.S), and so the image of S is closed. But
im(.S) = im(7"), and so the theorem is proved. O

As a corollary, we obtain the following result.

Theorem 3.3.3. Let T': X — Y be a bounded linear operator between Banach spaces.
Then im(7") =Y if and only if 7% is one-to-one and im(7™) is norm closed.

3.4 The adjoint of an operator on a Hilbert space

Let H be a Hilbert space over C and let T': H — H be a bounded linear operator. There is
a different construction of 7™ based on the Riesz representation theorem. Recall that there is
an antilinear isometry between H* and H which associates to each functional ¢ the element
z € H such that ¢(x) = (z,2).

The linear operator ¢ — T*¢ induces a linear operator z — T*z. Moreover, the two
operators have the same norm. We will use the notation 7% for the second. A direct way to
define this operator is by the equality

(Tz,y) = (x,T"y). (3.4.1)

Because the adjoint is defined using the inner product, we will use the following lemma
several times. This lemma is only true for Hilbert spaces over C!

Lemma 3.4.1. Two linear operators S and 7" on a Hilbert space H are equal if and only if
(Sz,x) = (Tx,x) for all x € H.

Proof. Recall the polarization formula for the inner product:
1 . . . .
(,y) = 7z +yl* = llz =yl +illz +dy|* = illx — ayll").
We can adapt it to write

1 : : : : : :
(Te,y) = 7 (T(z +y),z +y) = (T(x —y)w —y) +i(T(x +iy), v +iy) —i(T(x —iy),x —iy)).
So if (Tx,z) = (Sz,z) for all x € H, then
(Tx,y) = (Sz,y) for all z,y € H.

This condition implies Tx = Sx for all x € H, i.e. T = S. O
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By Theorem 3.3.1 ||T*|| = ||T’||. Note that (3.4.1) implies that
(T*)" =T.
Also, it is easy to check that

(T+8) =T+ 5"
(aT)* = aT*
(ST)* = T*S".

Example. If H = C", and T : H — H is linear, then the matrix of T is the transpose
conjugate of the matrix of 7.

Proposition 3.4.1. If T': H — H is a bounded linear operator on a Hilbert space, then
17T = ||7]*.
Proof. We have
|1T|* = (T2, Tx) = (T"Tw, ) < | T Tal|||l=]| < |77 |||,
where for the inequality we used Cauchy-Schwarz. So ||T]|?> < ||T*T||. On the other hand,
17T < T[T = ||T)1*.
Hence the equality. O
As a corollary of Proposition 3.3.1, we obtain the following result.
Proposition 3.4.2. Let T': H — H be a bounded linear operator on a Hilbert space. Then
ker(T*) = im(7T)* and ker(T) = im(T*)*.

Proof. This can be proved directly as follows: T*y = 0 if and only if (x, T*y) = 0 for all z.

This is further equivalent to (T'z,y) = 0 for all z, meaning that y € im(7)*. O

Definition. A bounded linear operator T on a Hilbert space is said to be
o normal it TT* =T*T
o self-adjoint if T =T~
o ynitary it TT* =TT =1
e an isometry if T*T =1

It is standard to denote unitaries by U and isometries by V. An alternative way to say
that V' is an isometry is to say that ||[Vz|| = ||z||. It is also important to note that isometries
preserve the inner product, meaning that

(Vz,Vy) = (z,y).

U is unitary if it is an invertible isometry. Isometries and in particular unitaries have norm
1. Note also that self-adjoint operators are normal.
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Example. If we consider the real vector space L*([0,00)) of square integrable real valued
functions on [0, 00) with values in C, then the Laplace transform

L I3([0.00)) — LA(0.00)),  (Lf)(s) = / " Ftye .

is self-adjoint. Indeed,

wra) = [ wneasias= [ ([T roea) s

= /OOO £(t) </Ooo @e‘“ds) dt = (f, Lg)

By Proposition 3.4.1, L? = L*L has norm equal to the square of the norm of the Laplace
transform. Thus

1] = .

We compute

(L2f)(u) = /0 T (L) (s)e s ds — /0 h /O T R etdteds

= /0 ) f(t) /0 " et gy /0 N tffldt.

The later is called the Hilbert-Hankel operator, and we have shown that it is a bounded
(self-adjoint) operator with norm equal to .

Example. Let /2 be the Hilbert space of complex valued square integrable sequences. The
operator S : (% — (%, S(xy,z9,73,...) = (0,21, T3,...) is an isometry that is not onto. It is
called a shift.

Theorem 3.4.1. (H. Wold) Every isometry of a Hilbert space into itself can be decomposed
as an orthogonal sum of operators that are unitary equivalent to the shift and a unitary
operator.

Proof. Let H be the Hilbert space and let V' be the isometry. Consider the inclusions
HDOV(H)DV*H)DV*H)D- - DN, V"(H).

Let Hg =N, V*(H) and H, = H © Hg. Then V|Hjp is onto so it is unitary.

Let us examine V|H,. Define H, = V¥(H) © VF"1(H), k > 1. Then V : Hy — Hyy, is
an isometric isomorphism. Decompose H; = @;Ce;. Then V| &, CV"™(e;), is a shift for every
i, so we obtain the decomposition of V|H, as an orthogonal sum of shifts. O

Proposition 3.4.3. T is normal if and only if
|Tz|| = ||T*z||, for all z € H.

Consequently ker(T") = ker(7%).
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Proof. Note that the equality from the statement yields
(T*Tx,2) = (Tx,Tz) = |Tz|]* = |T*|* = (T2, T*x) = (TT*z, ).

By Lemma 3.4.1 T*T = T'T*, meaning that 7" is normal.
Conversely

|Tz|* = (Tx, Tx) = (T*Tx,x) = (TT*z,x) = (T*z, T*z) = || T*2|]?,
and the proposition is proved. O
Proposition 3.4.4. If T' is normal then the following properties hold:

e im(7) is dense if and only if 7" is one-to-one.

e T is invertible if and only if there is § > 0 such that ||Tz|| > d||x|| for all .

Proof. The first property is a consequence of Proposition 3.4.3 and Proposition 3.4.2.

Assume that T' is invertible. Then by the Inverse Mapping Theorem the inverse of T' is
continuous, so we can choose 6 = ||T7!]|.

For the converse, the existence of such a ¢ implies that ker(7") = {0}. Moreover, im(7T’) is
closed, because if (T'x,,), is Cauchy, then so is (x,),, and if the limit of the latter is =, then
Tz = limTx,. Finally, by the first property im(7") is dense. So T is one-to-one and onto,
hence invertible. O

Proposition 3.4.5. An operator A is self-adjoint if and only if (Ax, z) is real for all x € H.

Proof. 1f Ais self-adjoint, then (Ax, x) = (z, Az). But by the properties of the inner product,
(x, Ax) = (Az,x). Hence the quantity must be real. Conversely, if the quantity is real then

(x, A%x) = (Azx,x) = (z, Ax) .
So A = A* by Lemma 3.4.1. O]

Of course the concept of a self-adjoint operator can be defined for Hilbert spaces over C,
but neither this proposition, nor Lemma 3.4.1 hold in that case.

It is important to point out that if 7" is an arbitrary operator, then 7T is not only
self-adjoint, but (T*T'z,z) is nonnegative for all . We will see later that the converse of
this is also true: if (Axz,z) > 0 for all z, there is an operator 7" such that A = T*T.

A projection P is called orthogonal if im(P) = ker(P)*.

Proposition 3.4.6. A projection P is orthogonal if and only if P is self-adjoint.

Proof. Assume that P is orthogonal. Then every z € H is of the form x = y + 2z with
y € ker(P) and z € im(P). Then

(Pz,z) = (z,y + z) = ||z|]”
and
(z, Px) = (y + z,2) = ||z||*.

Hence P = P*.
For the converse, note that P = P* implies P normal, so ker(P) = im(P*)* = im(P)*.
But P is a projection, so im(P) is closed. The conclusion follows. ]
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As a corollary, a property that characterizes orthogonal projections is (Pz,z) = || Px|>.

Proposition 3.4.7. Let N be a normal operator. Then there are self-adjoint operators A;
and A, that commute such that N = A; + i A,.

Proof. Ay = (N + N*)/2, Ay = (N — N*)/2i. O

For a bounded linear operator A on a Banach space we can define

A AT A3
eXp(A):I—l-F—i-i—'—y‘F
This operator can be defined by
A A? A3
exp(A)r = x + et et T +-
and because
Am+1 Am+1 An
e
IAIIm HAH"”1 II"

el +-- -+ THSUH

Tl 1)!

we see that the truncations of the series form a Cauchy sequence in the Banach space, which
converges. Clearly the limit is a linear operator. Moreover, setting m = 0 in the above
inequality we obtain ||exp(A)z| < ellAll||z||, showing that the limit is a bounded operator.
Thus exp(A) is a well defined bounded operator on a Banach space.

Note that in the same manner for every bounded operator A and every holomorphic
function f on the whlie plane we can define f(A). Later we will extend this definition to
functions that are not defined on the whole plane, and in the case of normal and self-adjoint
operators, to L functions.

Proposition 3.4.8. Let A be a self-adjoint operator. Then exp(7A) is unitary.
Proof. First, note that

1A A% A3
eXp(ZA)—I—{—l——E— 3'

Taking the adjoint term-by-term we see that
exp(iA)* = exp(—iA),
and because 1A and —iA commute,
exp(iA) exp(—iA) = exp(—iA) exp(iA) = exp(i(A — A)) = 1.

It follows that exp(iA) is unitary. O
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Corollary 3.4.1. If T is a bounded operator, then expli(7" + T7)] and exp(T — T*) are
unitary.

Proof. We have (T'+T*)* =T +T*, and [(T —T%)/i]* = (T —T%)/i. O

Theorem 3.4.2. (Fuglede-Putnam-Rosenblum) Assume that M, N, T" are bounded linear
operators on a Hilbert space such that M and N are normal and

MT =TN.
Then
M*T =TN".
Proof. From the statement we obtain by induction that M™T" =T N™" for all n, so
exp(M)T = T exp(N).

It follows that

T = exp(—M)T exp(N).
Multiply to the right by exp(M*) and to the left by exp(—N*) to obtain

exp(M™)T exp(—N"*) = exp(M™) exp(—M )T exp(N) exp(—N"),
and because MM* = M*M and NN* = N*N, we obtain
exp(M™)T exp(—N*) = exp(M* — M)T exp(N — N™).

Set Uy = exp(M*— M), Uy = exp(N — N*). In view of the above corollary, these are unitary,
in particular ||Uy|| = ||Uz|| = 1. We then obtain

| exp(M*)T exp(—=N")|| < [lexp(M" = M)[[| T[] exp(N = N*)|| = || T[]
Now replace M and N by AM and AN and repeat the same argument to conclude that
Il exp(AM™)T exp(—=AN™)|| < ||T]| for all A € C.
Define the operator valued function
fA) = exp(AM™)T exp(—AN™).
Then for every pair of vectors z,y € H, the function
foy :C=C, foy(N) = (f(Nz,y)

is holomorphic. Using the Cauchy-Schwarz inequality, we conclude that

[feu W< P2yl < [y F < 1Tyl
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namely that f,, is bounded. By Liouville’s theorem f, , is constant. It follows that f itself
is constant, so f(A) = f(0) =T for all A. Hence
exp(AM™)T exp(AN™) = f(A) =T.
Write this as
exp(AM™)T = T exp(AN™).
This gives for every z,y € H, the equality of two power series
(exp(AM )Tz, y) = (T exp(AN")z,y) ,
which must be equal term-by-term. Considering the A-term we obtain that for all z,,
(M*Tx,y) = (T'N*z,y) .
Hence M*T =T N*, as desired. O

Corollary 3.4.2. If N is normal and T" commutes with /N, then T" commutes with N* and
N commutes with T™.

Show that the hypothesis of the theorem does not necessarily imply MT* = T*N.

3.5 The heat equation

This section is taken from P.D. Lax, Functional Analysis.
Let us consider the solutions u(x,t) to the heat equation

Ut = Ugg,
that are defined for all  and ¢t > 0 and which tend to zero sufficiently rapidly as |z| — oc.

Lemma 3.5.1. Let u(x,t) be a solution as above. Then for 7" > 0,
() flul Tlloo < fJul- 0)loos (2) [Jul, T < Nlul, 0l (3) lul, T)ll2 < [lul-; 0)]f2-

Proof. (1) Let k > 0. Define v(z,t) = ue~*. Then v satisfies the equation
v+ kU = Uy

Since u was assume to tend to zero rapidly as |z| — oo, the same is true for v. So in the strip
R x [0,T], |v(z,t)| has a max, say at (xo,ty). We claim ¢y = 0. Arguing by contradiction,
assume that to € (0,7]. If v(z,ty) > 0, then (z,1) is a maximum for v, so vi(xg,tg) > 0
and v(+,%p) has a maximum at xg, S0 vz, (zo,%r) < 0. This is impossible. If v is negative
at the max, then the max of |v| is a min for v, and we get another contradiction. Now let
k — 0 to obtain the conclusion.

(2) Consider the space of solutions w(x,t) to the backward heat equation wy = —w,,
defined for 0 <t < T and that tend rapidly to zero at infinity. Multiply this equation by u,
the heat equation by w then add to obtain

(VW) = Wy — UWy.
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Integrate (by parts) this with respect to x and use the condition at oo to write

d
0= /(uw)tdm = %/uwdm,

so [wwdzr = (u,w) is independent of time. We have

/ u(z, 0)w(z, 0)dz = / w(z, TYw(z, T)da.

In particular, if we let u(-,7) = S(T)u(-,0) and w(-,0) = S(T)w(-,T), then we have
(u, S"(Tw) = (S(T)u,w). It is not hard to check that

luly = sup |(u,w)].

[[wl|oc=1

By part (1), ||S(T)w(-,T)|ls < ||w(:,T)||s0, and using the equality (u, S'(T)w) = (S(T)u, w)
we obtain the desired conclusion.

(3) Multiply the heat equation by 2u and integrate with respect to z. Integrate by parts
the right-hand side. Then

% widr = —/uidm.

This shows that [ u?(z,t)dz is a decreasing function of ¢. The lemma is proved. O]

For every initial condition u(x,0) we can solve the equation explicitly:

1
u(z,t) = — /u(y,())e_(x—yp/“tdy,

2V/rt

If we check that this gives, indeed, a solution for every initial condition in LP, p = 1,2, oo,
then the operator S(t) : LP — LP, p = 1,2,00, Su(x,0) = u(z,t) has the property that
|S(t)] < 1. We notice that the solution is an integral operator K of the form

fes / K (2, 9)f (y)dy.

And we have the following theorem:

Theorem 3.5.1. (1) If sup, [ |K(z,y)|dy < co then K : L — L* is bounded.
(2) If sup,, [ |K(z,y)|dz < oo then K : L* — L' is bounded.
(3) If both quantities defined above are bounded then K : L? — L? is bounded.

Proof. For (1) we have

I(Kf)()]l S/!K(Qf,y)!dnyHoo-
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For (2) we have

6@ < [[ 1Kl = [ [5G ie) 176)ld
<sup [ 1Kzl

For (3) we start with the observation that the Cauchy-Schwarz inequality implies [|g|ls =
maX||h||2:1 <g, h) We have

& f.h) = [ [ KGo)sw)ha)dyds.

Using the fact that if a,b,c¢ > 0 then ab < ca?/2 + b*/2c, we see that for every ¢ > 0 the
right-hand side of the above is less than or equal to

J[ Gl (510 + gl drdy

Integrate in the first term first with respect to x then with respect to y, and the other way
around in the second to obtain that this is further less than or equal to

c 1
ssup [ 1) ldl 13+ 5 sup [ 1Ko y)dylbl}
y C z
Next take || f||2 = ||h]l2 = 1, and vary c in this expression. Note that its min is
sup [ 1K (o)) *(sup [ | (o p)lds)
y v

So this is an upper bound for the norm of K. The theorem is proved. O

It is easy to see that the solution to the heat equation satisfies all three hypotheses of
the theorem, because we are integrating a Gaussian.
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Chapter 4

Banach Algebra Techniques in
Operator Theory

4.1 Banach algebras

This section and the next follow closely R.G. Douglas, Banach Algebra Techniques in Oper-
ator Theory, Academic Press 1972 with some input from Rudin’s Functional Analysis.

Definition. A Banach algebra is an associative algebra with unit 1 over the complex (or
real) numbers that is a Banach space and its norm satisfies

[labl| < [[alll|b]], and [|]1]] = 1.
Example. The Banach algebra B(X) of bounded linear operators on a Banach space X.
Example. The Banach algebra of continuous functions C([0, 1]).
We will almost always be concerned with Banach algebras over the complex numbers.

Definition. A series

oo
E Cnln
n=0

with ¢, € C and a,, € B is called absolutely convergent if

oo
> lealllan] < oo
n=0

Proposition 4.1.1. An absolutely convergent series is convergent.
Theorem 4.1.1. Let B be a Banach algebra and let a € B be an element such that |1 —al| <
1. Then a is invertible and

1

NN —

63
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Proof. Set b =1 —a. Then ||b]| < 1. Then the series
L+b+b% 4 6%+ -
is absolutely convergent so it is convergent. We have
(L=0)1+b+b"+b+--)= lm (1 —b)(1+b+b*+--- +b")

n—o0
=1— lim 0" =1.
n—oo

Hence
al=1-b)' =144+ .

By the triangle inequality

1 1
la™ | < 1T+ {[oll + 1B11* + Bl + -+ = = :
Lol 1= —al

]

Definition. For a Banach algebra B, let G, G,., and G; be respectively the sets of invertible
elements, right invertible elements that are not invertible, and left invertible elements that
are not invertible.

Proposition 4.1.2. If B is a Banach algebra, then each of the sets G, G,, and G, is open.

Proof. 1f a is invertible, and

1
la =8l < 7=
[la=tl

then
11— a "0l < [la ||l —b]| < 1.

Hence 1 — a™'b is invertible, and so is a(1 — a~'b) = a — b. This proves that for every a € G
there is a ball of radius 1/||a!|| centered at a and contained in G. Hence G is open.

By the same argument, if a € G; and b € B is such that ba = 1, then if ¢ is such that
lc—al| < 1/||b|| then be is invertible. We have ((bc)~'b)c = 1, showing that c is left invertible.
Note that c itself cannot be invertible, or else bc and ¢ invertible implies b invertible, so a is
invertible, too. This proves G; open. The proof that G, is open is similar. m

Proposition 4.1.3. If B is a Banach algebra and G is the subgroup of invertible elements,
then the map

g—g, ar—a !

1s continuous.
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Proof. Fix a € G. We want to show that for every ¢ > 0, there is 6 > 0 such that if
16— al| <& then |[b~! —a™!| < e. We have

la™ =07 = lla™ (@ = )b~H| < lla™*[[[la — BII]6~"].

If |b—al <1/(2]|la ), then ||1 —a~'b|| < 1/2 and so by Theorem 4.1.1

=M < 1o~ alllla™" | = [I(a™ o) Ml fla” ]| <

= 1
=3

la™* ]l = 2]l

Hence it suffices to choose

()
= min T .
2ja”{|" 2fja?

We conclude that G is a topological group.

Proposition 4.1.4. Let B be a Banach algebra whose group of invertible elements is G. Let
Go be the connected component of G that contains the identity element. Then G, is an open
and closed normal subgroup of G. Consequently G/Gy is a group whose induced topology is
discrete.

Proof. B is a locally path connected space, so connected is equivalent to path connected. It
is a standard fact in topology that G, is open and closed. If a and b are in Gy and ~, and 7,
are paths connecting them to the identity, then v,v, and (7,)~! are paths connecting 1 to
ab respectively 1 to a™!. Hence G, is a group. Moreover, for every a € Gy and ¢ € G, ¢y,c™?
connects 1 to cac™!, hence cac™! € Gy. This shows that G, is normal. O

Definition. The group Ag = G/G is called the abstract index group for B. The abstract
indez is the natural homomorphism G — Ag.

4.2 Spectral theory for Banach algebras
Let B be a Banach algebra.
Definition. Let a be an element of B. The spectrum of a is the set
ogla)={AeCla—\¢G}.
The resolvent is the set
ppla) ={A e Cla—\e€G}.

So the spectrum consists of those A for which a — A is not invertible, and the resolvent
is the complement in C of the spectrum. When there is no risk of confusion, we ignore the
subscript, but be careful, the spectrum depends on the algebra in which your element lies
(in case the given element can be put inside several Banach algebras).
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Example. If B = M, (C), the algebra of n x n matrices, and A € M,,(C), then o(A) is the
set of eigenvalues.

Theorem 4.2.1. The spectrum of an element a € B is nonempty and compact. Moreover,
the spectrum lies inside the closed disk of radius ||a|| centered at the origin.

Proof. First, note that if |A| > ||a||, then by Theorem 4.1.1, 1 — a/X is invertible. Hence
A(1—a/\) = A —a is invertible. This shows that the spectrum is included in the closed disk
of radius ||a|| centered at the origin.

Let us show that the spectrum is nonempty. Assume to the contrary that for some
element a the spectrum is empty. Let ¢ be a continuous linear functional on B. Consider
the function

fo:C=C, fs(N) =d((a=X2)7).
We claim that f; is holomorphic. Indeed,

i )=S0 _

A= Ao A — )\0

= o

For || > ||al|, we have by Theorem 4.1.1 that 1 — a/X is invertible and

(a=2X0)""(a=X2)7") = é((a— o))

lim
)\—>>\0

. 1
I === ey

Hence

limsup | f4(A)| = limsup |¢ (;(a/)\ - 1)_1)

[A] =00 [A| =00
1
1= [la/Al

where for the last step we used Theorem 4.1.1. This last limit is zero. Hence fy4 is a bounded
holomorphic function. By Liouville’s Theorem it is constant.

Using the Hahn-Banach Theorem we deduce that A — (a — A\)~! is constant, and since
the inverse is unique, it follows that A — a — X is constant. But this is clearly not true.
Hence our assumption was false, and the spectrum is nonempty.

Since the map A — a — A is continuous, and G (the set of invertible elements) is open,
the inverse image of G through this map is open. But the inverse image of G is the resolvent.
Hence the resolvent is open, and therefore the spectrum is closed. Being bounded (as it lies
inside the disk of radius ||a||), it is compact. O

. 1 _ , 1
< lim sup WWHH(G//\ -7 < thUPWWH

Example. Let

A:

o O O
OO =
O O O

Then o(A) = {0}. Note that ||A] = 1.
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Example. Let S : 2 — (2, S(z1,79,...,%p,...) = (0,21,...,2,_1,...) be the shift. Then by
Proposition 3.4.1, ||S]|?> = [|S*S|| = ||I|| = 1, since S is an isometry. Thus by Theorem 4.2.1,
o(S)c{reC| A <1}

Note that 0 € o(S) because S = S — 0 is not onto. Also, if |A| < 1, then the sequence
(A"1),,>1 is in (2. However, if we try to solve (A — S)((zp)n>1) = (A"1),>1, we notice that

Y 1_)\271
Ty = A <1+)\1_)\),

and it is not hard to see that lim, .., x, # 0, so A — .S is not onto. Thus the spectrum
contains the closure of the open unit disk, and so o(S) ={\ € C||\| < 1}.

Example. Let T : L?*(R) — L?(R) be the translation operator (Tf)(z) = f(z + 1). It is
unitary, so its spectrum is a priori a closed subset of the closed unit disk. If we consider the
Fourier transform

L Y f(2)dx
P == [ @

then FTF~! is the operator of multiplication by the function f(y) = e~®. This operator
has the spectrum equal to the unit circle, so the same is true for 7T'.

In view of Theorem 4.2.1 we define the spectral radius to be
rg(a) = sup{|A| | A € os(a)}.
Proposition 4.2.1. (Beurling-Gelfand) The spectral radius is given by the formula
rs(a) = lim "]V = it {fla" " |n > 1}
Proof. Fix an element a € B and let |A| > ||a||. Then using Theorem 4.1.1 we can write
A—a) ' =22 Za AP+

The series converges absolutely on every circle C'(0,r) centered at the origin and radius
r > |la||. We can therefore multiply by A", then integrate term by term and write

a" = i N'(A—a)td\, n=1,23,... (4.2.1)
21 Joor)
Here we used the fact that A\* has an antiderivative in the plane for all £ # —1, so its integral
is zero, while the integral of A=! on the circle is 2.
Let ¢ be a continuous linear functional. Then as we saw before ¢((A —a)™!) is holomor-
phic. From (4.2.1) we deduce

1
o) =5 [ Na((A =) an
21 Joqor)
The right-hand side is an integral of a holomorphic function, and so by Cauchy’s theorem
the equality also holds true for all circles for which ¢((A—a)™!) is defined. Thus the equality
holds for r > rg(a). Because of the Hahn-Banach theorem we can conclude that

1
"= [ N(A—a)"td\ forn > 0,1 > rs(a).
27 c(0,r)
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Let M (r) be the maximum of ||(A—a)~!|| on C(0,r), (which is finite because A — (A—a)~!
is continuous). Then

la™|| <" M(r), n=0,r>rs(a).
But M(r) is bounded when r — oo, so

limsup ||a" || <7, > rp(a).

n—oo
Hence

rg(a) > limsup [|a" /™.

n—o0

On the other hand, if A € oi(a), then A" € o(a™), because \" —a™ = (A —a)( A" 4+ - +
a™1), which is therefore not invertible. Hence |\"| < ||a™||. We thus have

: n||l/n
rs(a) < inf [l
Combining the two inequalities we deduce
rs(a) = lim [la"||''" = inf{[ja"||'/" |n > 1}
n—oo

and we are done. O
Here is a first application of the notion of spectrum.

Theorem 4.2.2. (Gelfand-Mazur) Let B be a Banach algebra which is a division algebra
(i.e. every nonzero element has an inverse). Then there is a unique isometric isomorphism

of B onto C.

Proof. If a € B, then o(a) # 0. If X\ € o(a), then a — X is not invertible. Hence a — A = 0,
that is @ = A. Moreover, if A £ A, then N —a = X — A, which is invertible. Hence the
spectrum of each element consists of only one point. The map that associates to each element
the unique point in its spectrum is an isometric isomorphism of B onto C (it is isometric
because ||A|| = |Al]|1]| = 1 is a requirement in the definition of a Banach algebra). Moreover,
if ¢ were an arbitrary isometric isomorphism, and if a is an element in B with spectrum
{A}, then we saw that a = A. So ¥(a) = (A1) = AY(1) = A, showing that 1 is the above
constructed homomorphism. Hence the conclusion. O]

4.3 Functional calculus with holomorphic functions

Let a € B. Then o(a) is a compact subset of the plane. Consider a domain D that contains
o(a), and let " be a smooth oriented contour (maybe made out of several curves) that does
not cross itself such that o(a) is surrounded by I' in D and such that I travels around o(a)
in the counterclockwise direction.
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For a holomorphic function in D, we have the Cauchy formula
1
f(z0) = 5 / f(2)(z = 20) " 'dz.
™ Jr

Now let us replace zp by a. Then on T', the element (z — a)~! is defined. With Cauchy’s
formula in mind, we can define

fla) = QL’]TZ /1“ f(2)(z —a) tdz. (4.3.1)

Lemma 4.3.1. The operator f(a) is well defined and does not depend on the contour T

Proof. Because on z +— ||(z —a)~!|| is continuous on p(a) and T is a compact subset of p(a),
it follows that supyp ||(z —a) || < co. So the integral can be defined using limits of Riemann
sums, which converge by Proposition 4.1.1. Hence the definition makes sense.

Let ¢ be a continuous linear functional. The function z — f(2)@((z — a)™') is holomor-
phic. By Cauchy’s theorem, the integral

1 1
i [ 10— = (5 [ 1) -0 e:)
T Jr 211 r
does not depend on I'. So f(a) itself does not depend on T'. [

However, if f(z) =), ¢,2" is an entire function, then we can define the element

f(a) = chan7

n

since again the series converges. The integral formula (4.3.1) would be meaningful only if in
this particular situation the two versions coincide. And indeed, we have the following result.

Proposition 4.3.1. If f(z) =) ¢,2" is a series that converges absolutely in a disk centered
at the origin that contains o(a), then

chan = 2%” /r f(2)(z—a)ldz

for every oriented contour I' that surrounds o(a) counterclockwise.

Proof. Choose N large enough so that > _ v |c,|||la]|™ and supp >,y [c,2"| are as small as
we wish. Then we can ignore these sums and consider just the case where f(z) = ij:o 2"
To prove the result in this case, it suffices to check it for f a power of z. Thus let us show
that

1
a" = — [ 2"(z —a) 'dz.
2m Jr
Now we can rely on Cauchy’s theorem about the integral of a holomorphic function, to to
make I" a circle of radius greater than ||al|. Because on I' |z| > ||a||, we can expand

(z—a) ' = Zak/zk“.

k>0
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The series on the right is absolutely convergent, so we can integrate term-by-term to write

1 =1
e ELCETRTED SET § R
21 Jp 2mi \ Jr

k=0

All of the integrals are zero, except for the one where k = n, which is equal to 27:. Hence
the result is a™, as desired. O

A slight modification of the proof yields the following more general result.

Proposition 4.3.2. Suppose R(z) = P(z)/Q(z) is a rational function with poles outside of
the spectrum of a. Then R(a) is well defined and @Q(a) is invertible, and

Theorem 4.3.1. (The Spectral Mapping Theorem for Polynomials) Let P(z) be a polyno-
mial and a an element in B. Then

Proof. Let A € o(a). Then

Because a— A is not invertible, neither is P(a) — P(\). Hence P(\) € o(P(a)). Consequently
P(o(a)) C o(P(a)).
Let A € 0(P(a)), and let A1, Ag, ..., A, be the roots of P(z) = A. Then

Pla) = A= (a—A)(a— ) (a—\).

Because P(a) — A is not invertible, there is k such that a — )\ is not invertible. Then
A € o(a), and A = P(\;) € P(o(a)). This proves o(P(a)) C P(o(a)). The double inclusion
yields the desired equality. O

Theorem 4.3.2. Let D be a domain in C that contains o(a). Endow the space of holomor-
phic functions on D, Hol(D), with the topology of uniform convergence on compact subsets.
Then the map Hol(D) — B, f +— f(a) is a continuous algebra homomorphism.

Proof. The only difficult step is multiplicativity. But we have multiplicativity for polynomi-
als, and hence for rational functions. By Runge’s theorem, every function in Hol(D) is the
limit of rational functions. By passing to the limit in f,(a)g,(a) = (f.gn)(a), we conclude
that multiplicativity holds in general. ]

Theorem 4.3.3. (The Spectral Mapping Theorem for Holomorphic Functions) Let f be a
holomorphic function in a neighborhood of the spectrum of a. Then
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Proof. Let A € o(a). Then as before f(z)— f(A) = (z—\)g(z) with g a holomorphic function
with the same domain as f. By the previous theorem

fla) = f(N) = (a = A)g(a),

so f(a) — f(X) is not invertible. Hence f(o(a)) C o(f(a)).
For the opposite inclusion, let A € o(f(a)). If f(z) — A is nowhere zero on the spectrum
of a, then g(z) = (f(2) — A\)~! is defined on the spectrum of a, and then

(fla) =N (f =N a) =1

which cannot happen. So f(z) — A is zero for some z € o(a), that is A € f(o(a)). O

4.4 Compact operators, Fredholm operators

In this section we will construct a Banach algebra which is not the algebra of bounded linear
operators on a Banach space. For this we introduce the notion of a compact operator.

Definition. Let X be a Banach space. An operator K € B(X) is called compact if the
closure of the image of the unit ball is compact.

Example. If R is such that im(R) is finite dimensional, then R is compact. Such an operator
is said to be of finite rank.

Theorem 4.4.1. The set K(X) of compact linear operators on X is a closed two-sided ideal

of B(X).

Proof. Let K; and K, be compact operators. Then K;(Bj;) and Ky(Bj,) are compact.
Then

(Kl + KQ)(BOJ) C Kl(B(),l) + KQ(B[)J)

and the latter is compact because is the image through the continuous map (z,y) — = + vy
of the compact set K;(By; X Ko(Bp1) C X x X. This proves that K; + K5 is compact.

Also for every A € C, if K is compact then AK is compact, because the image of the set
Ki(By 1) through the continuous map = — Az is compact.

Finally, if T € B(X) and K € K(X) then T(K(By,)) is the image of a compact set
through a continuous map, so it is compact. It follows that TK (B ;) lies inside a compact
set, so its closure is compact. So T'K is compact.

On the other hand, T'(By ) is a subset of By, for some n, so KT'(By ) is a closed subset
of the compact set K(By,,), hence is compact. This proves that KT is compact.

We thus showed that K(X) is an ideal. Let us prove that it is closed. Let K,, n > 1,
be a sequence of compact operators that is norm convergent to an operator 7. We want
to prove that T is compact. For this we use the characterization of compactness in metric

spaces: “Every sequence contains a convergent subsequence.”
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Let xp, k > 1 be a sequence of points in the unit ball of X. Let us examine the sequence
Txp,n > 1. For every € > 0, there is n(e) such that for n > n(e), || Kyzr—Tzi|| < ||K,—T| <
e. For n > n(e),

| Tzy — Tay|| < ||Tar — Knzg|| + | Knxr — Kpx|| + || Knzy — Tayl] < 2e + || Kpze — Kpa|.

The sequence K,z has a convergent subsequence, and so we can find a subsequence T,,x,
such that ||Tzy,, — Txy, || < 3¢ for all m,r. Do this for € = 1, then choose the first term of a
sequence Yy to be xg,. Inductively let € = 1/k, and choose from the previous sequence xy,
a subseqgence such that || Tz, — Txy, || < 3¢ and let y, be the first term of this subsequence.
The result is a Cauchy sequence Ty, which therefore converges. We conclude that T is
compact. 0

Theorem 4.4.2. Let K € B(X) be a compact operator. Then
(a) If im(K) is closed, then dimim(K) < oc.
(b) If A # 0, then dimker(K — ) < oo.
(c) If dimX = oo, then 0 € o(K).

Proof. (a) If im(K) is closed, then it is a Banach space. The Open Mapping Theorem
implies that the image of the unit ball is a neighborhood of the origin. This neighborhood
is compact, and this only happens if im(K) is finite dimensional.

(b) The operator K |ker(K — AI) is a multiple of the identity operator. This operator is
also compact. By (a) this can only happen if we are in a finite dimensional situation.

(¢) The operator K cannot be onto.
[

Theorem 4.4.3. Let B be a Banach algebra and let M be a two-sided closed ideal. Then
/M is a Banach algebra with the norm

falll = inf{lja +m[|[m € M}.

Here we denote by [a] the image of a under the quotient map.

Proof. Let us show first that || - || is a norm. Clearly if [a] = 0 then a € M so ||[a]]| <
la — al]| = 0. Now assume that ||[a]|| = 0. Then there is a sequence m,, € M such that
lim,, o [|a + my|| = 0. Since M is closed, it follows that a € M, so [a] = 0. Thus ||[a]|| =0
if and only if [a] = 0.

If a € B and o € C, then

lafa]|| = |[[aa]|| = inf{[la + am|| |m € M} = |a|inf{[|a +m/|| |[m" € M} = |a]]|[a]]|
Also
I[a] + [0]]| = ||[a + B]|| = inf{||a + b+ m]| |m € M} =inf{|la+m+b+m|||m,m € M}

< inf{[ja +m| [m € M} +inf{{la +m|[|m e M} = ||[a][] + [|[B]]].



4.4. COMPACT OPERATORS, FREDHOLM OPERATORS 73

Thus || - || is a norm.
Next, let us show that the norm satisfies the requirements from the definition of a Banach
algebra. First,

I} = inf{[[1 +m][ [m € M} =1,

where the equality is attained for m = 0, and one cannot have ||1 + m|| < 1 for in that case
m must be invertible and hence cannot be an element of an ideal.
Secondly, for a,b € B, we have

lfallb]l] = ll[ab]|| = inf{ljab + m| |m € M} < inf{[[(a +m1)(b +ms) [m1,my € M}
< inf{fla +ma| [mi € Myinf{[[b+ms| [my € M} = [|a]|[[[[0]]]-

Finally, let us show that B/M is complete. Showing that every Cauchy sequence is
convergent is equivalent to showing that every absolutely convergent series is convergent. It
is clear that the fact that every Cauchy sequence is convergent implies that every absolutely
convergent series is convergent. For the converse, let z,,n > 1, be a Cauchy sequence. By
choosing a subsequence, we may assume that |y, — 3| < 1/2F whenever n,m > k. Set
Tk = Yr+1 — Yr- Then > zy is absolutely convergent, and its sum is the limit of .

So let > [a,] be a series such that ) ||[a,]]| = M < oco. Then for each n there is m,,
sucht that ||a, + my,|| < ||la,| +1/2". Hence )" (a, + m,) is absolutely convergent, and
therefore convergent in B. If a is its sum, then a + M is the sum of the original series in

BB/ M. This concludes the proof that B/M is a Banach algebra. [
Corollary 4.4.1. The algebra B(X)/KC(X) is a Banach algebra.
Definition. The algebra B(X)/K(X) is called the Calkin algebra.

Definition. An operator with finite dimensional kernel and with closed image of finite
codimension is called Fredholm.

Example. A very standard example is the shift.

Theorem 4.4.4. Let H be a Hilbert space. Then an operator is compact if and only if it is
the limit of a sequence of finite rank operators.

Theorem 4.4.5. (Atkinson) Let H be a Hilbert space. Then the Fredholm operators form
the preimage through the quotient map of the invertible elements of B(H)/KC(H).

Corollary 4.4.2. The Fredholm operators form an open set.
Definition. If T is Fredholm, then the index of T is
ind(7") = dim ker(7T") — codimim(7") = codim im(7™) — dim ker(7™).

Theorem 4.4.6. The index is continuous and invariant under compact perturbations.
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4.5 The Gelfand transform

Definition. Let B be a Banach algebra. A complex linear functional ¢ on B is said to be
multiplicative if

(a) ¢(ab) = ¢(a)p(b) for all a, b,

(b) o(1) = 1.

We denote the set of all multiplicative functionals by M.
Proposition 4.5.1. If B is a Banach algebra and ¢ € Mp, then ||¢| = 1.

Proof. Since ¢(a — ¢(a)) = 0 it follows that every element in B is of the form A + a, for
some A € C and a € ker(¢). Note that if A # 0 and |\ + a|| < [A| = [¢(X + a)], then a is
invertible. This cannot happen, because ¢(a) = 0 implies 1 = ¢(aa™') = ¢(a)p(a™t) = 0.
Hence |¢(b)| < [|b|| for all b. Because ¢(1) = 1, the equality is attained, so ||¢| = 1. O

Proposition 4.5.2. Mg is a compact subspace of X* endowed with the weak* topology.

Proof. As a corollary of the previous proposition, Mp is a subset of the unit ball in X*.
Because of the Banach-Alaoglu theorem, all we have to show is that Mg is weak*-closed.
This amounts to showing that if a linear functional is in the weak*-closure of this set, then
it is multiplicative.

Assume ¢(1) # 1, and let € < |p(1) — 1. If v € MpNV(1,¢), then

e <lp(l) =1 = [o(1) —y(1)] <e

This is impossible, so ¢(1) = 1.
Similarly, if ¢(ab) # ¢(a)p(b) for some a,b (which we may assume to lie in the unit ball),
choose € = |p(ab) — ¢(a)d(b)], and ¢ € V(a,b, ab,e/3). Then

€ < |p(ab) — ¢(a)p(b)| = [d(ab) — ¢ (ab) + ¥ (ab) — ¥ (a)(b) + (a)y(b) — d(a)d(b)|
< [@(ab) — y(ab)| + |¢(a)p(b) — p(a)y(b)] < €/3 + |¢(a)(b) — ¢(a)y(b) + d(a)y(b) — P(a)i(b)]
< ¢/3+|o(a)l|o(b) = Y (O)] + |[L(b)[[d(a) —Pla)] < €/3+e€/3+¢€/3=e

Again this is impossible, so ¢ is multiplicative. O]

Proposition 4.5.3. If B is a commutative Banach algebra, then My is in one-to-one corre-
spondence with the set of maximal two-sided ideals in B.

Proof. The correspondence is ¢ — ker(¢).

So first, let us show that if ¢ is a multiplicative linear functional, then ker(¢) is a maximal
two-sided ideal. That it is an ideal follows from ¢(a) = 0 — ¢(ab) = ¢(a)p(b) = 0. It is
maximal because every element in B is of the form A + a where a € ker(¢). If a were in an
ideal and A+ a were in an ideal, then A and hence 1 would be in an ideal, which is impossible.
Hence the kernel is maximal.

Conversely, let M be a maximal two-sided ideal. We will prove that there is ¢ € Mg
such that ker(¢) = M. Because if a € M, then a is not invertible, then |1 —a| > 1, s0 1 is
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not in the closure of M. Thus the closure of M is an ideal, and because of maximality, this

ideal must be M. So M is closed.
The quotient algebra B/M is a division algebra, because M is maximal. So by the
Gelfand-Mazur Theorem it is C. The quotient map is the desired multiplicative functional.
O

Recall that for every a € B, the function a : (B*); — C given by a(¢) = ¢(a) is continuous,
where (B*); is the unit ball in B*, endowed with the weak* topology.

Definition. The Gelfand transform of the Banach algebra B is the function I' : B — C'(Mjp)
given by I'(a) = a|Mp.

Theorem 4.5.1. The Gelfand transform is an algebra homomorphism and ||I'(a)|| < ||a||
for all a € B.

Proof. T' is clearly linear and I'(1) = 1. Let us check that I' is multiplicative. We have

[C(ab)](¢) = d(ab) = ¢(a)p(b) = [[(a)](P)[L(b))(¢) = [[(a)T(B)I(¢)-

Next, let us check that I' is contractive. We have

IT(a)ll = sup{lé(a) | ¢ € Mg} < sup{||¢]l[la]l | ¢ € Mz} = |la].
O

If B is not commutative, the Gelfand transform has large kernel which is generated by
the elements of the form ab — ba. For this reason it is not so interesting.

Proposition 4.5.4. If B is a commutative Banach algebra and a € B, then a is invertible
in B if and only if I'(a) is invertible in C'(Mp).

Proof. 1f a is invertible, then I'(a™!) = (TI'(a))~!. If a is not invertible, then My = {ab|b € B}
is a proper ideal. It is contained in a maximal ideal, whose associated functional is zero on
a. Hence I'(a) is not invertible. O

Remark 4.5.1. The fact that a invertible implies I'(a) invertible does not use the fact that
the Banach algebra is commutative. Because I'(ab—ba) = I'(a)['(b) —['(b)I'(a) = 0, it follows
that ab — ba is not invertible. This means that the canonical commutation relations for the
position and momentum operators in quantum mechanics

PQ—QP:;]

cannot be modeled with bounded linear operators.

Proposition 4.5.5. If B is a commutative Banach algebra and a € B, then oz(a) = im(I'(a))
and rg(a) = ||T'(a)]|.

Proof. If Xis not in o(a), then a — A is invertible. This is equivalent to I'(a) — A is invertible.
And this is further equivalent to the fact that A is not in the image of I'(a). [
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Chapter 5

C* algebras

5.1 The definition of C'*-algebras

Again, most of this chapter is from the book of Ronald Douglas.

Definition. A C*-algebra is a Banach algebra over the complex numbers with an involution
x that satisfies

Additionally, the involution should satisfy
la*all = llalllla"]] (5.1.1)
Alternatively, the involution should satisfy
la*all = Jla]*. (5.1.2)

The two conditions (5.1.1) and (5.1.2) are equivalent, though it is hard to show that
(5.1.1) implies (5.1.2). Thus our working definition will be the one with (5.1.2), what is
usually called a B*-algebra. This condition implies (5.1.1) as follows:

l=[1* = llz"z| < [lzlll|="]-

Hence ||lz|| < [lo*| and |l2*| < [[(z*)*[ = [lz]. So [« = [l&"[. Then |lz"z| = |l|* =
|z||||=*||. From these calculations we conclude that in a C* algebra the involution is an
isometry.

Example. The algebra B(H) of bounded linear operators on a Hilbert space with the invo-
lution defined by taking the adjoint.

7
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Example. Let X be a compact Hausdorff space. The algebra C'(X) of complex valued
continuous linear functions on X with the sup norm and the involution given by (f*)(z) =
f(z) is a C*-algebra.

Example. The algebra IC(H) of compact operators on a Hilbert space H is a C*-algebra.
We know that it is a subalgebra of B(H), so all we have to check is that it is closed under
taking the adjoint. Thus we have to show that the adjoint of a compact operator is compact.

Let T' be compact and consider a sequence y,,n > 1 in the unit ball By; centered at
the origin of H. Let us prove that 1™y, has a convergent subsequence. Define the functions

fn . T(BOJ) — C,

fa(2) = (2, yn)

where (-, -) is the inner product. Note that since T" is compact, the domains of these functions
are compact. Then

()] < [lllllyall < M.

So f,,n > 1is a bounded sequence. Also,

[fn(@) = ful@)] < lgmlllz = 2l < Jlz = 2.

Thus for every € > 0, if ||z — 2'|| < § =€, then |f,(z) — fn(2')|| < € for all n, so the sequence
fn is also equicontinuous. By the Arzela-Ascoli theorem, f,, has a convergent subsequence
in C(T(By,)). Note also that

[fnll = sup{|fu(2)| |2 € T(Bo1)} = sup{| {T'z,yn) | |z € Boa} = sup{| (2, T"yn) | |2 € Boa}
= [[T"ynl|.

So we have a sequence of linear functionals that converges in norm, and the limit is also
a linear functional. Thus 7™y, has a norm convergent subsequence, showing that 7™ is
compact.

We obtain that compact operators form a C*-algebra. Moreover, B(H)/K(X), the quo-
tient of all operators module compact operators is a C*-algebra.

Definition. If B and B’ are C*-algebras then f : B — B’ is called a homomorphism if it is
an algebra homomorphism and f(a*) = f(a)* for all a.

An element a is called self-adjoint if @ = a*, normal if aa* = a*a and unitary if aa* =
a*a = 1. A first observation is that

We also have the following result.

Theorem 5.1.1. In a C*-algebra the spectrum of a unitary element is contained in the unit
circle, and the spectrum of a self-adjoint element is contained in the real axis.
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Proof. If w is unitary, then 1 = ||1]| = ||Ju*ul| = [|v?||, so ||u|| = ||u*|| = |[u~!|| = 1. Then if
|A| > 1, then A —w is invertible. So og(u) C {\||A] > 1}. But then also og(u™') C {\||A] >
1}, because u~! is also unitary. Hence by the Spectral Mapping Theorem, oz(u) C {)\ €
C||A| > 1}. Taking the intersection, we find that og(u) is in the unit circle.

Let B be the C*-algebra. If a € B is self-adjoint, then u = exp(ia) is unitary. Indeed,
u* = exp(ia)* = exp(—ia), and

uu® = exp(ia) exp(—ia) = exp(ia — ia) = 1 = u*u.

Because op(u) is a subset of the unit disk, and, by the Spectral Mapping Theorem, o(u) =
exp(io(a)), the spectrum of a must be real. O

5.2 Commutative C*-algebras

Theorem 5.2.1. (Gelfand-Naimark) If B is a commutative C*-algebra and Mp is the set of
multiplicative functionals on B, then the Gelfand transform is a *-isometrical isomorphism
of B onto C(Mp).

Proof. Let us show that I' is a «-map. If a € B, then b = (a + a*) and ¢ = - (a — a*) are
self-adjoint operators such that a = b+ ic and a* = b — ic. Recall that og(b) and og(c) are
subsets of R, by Theorem 5.1.1. By Proposition 4.5.5, the functions I'(b) and I'(c) are real

valued. Hence

[(a) = T(b) +4l(c) = T(b) — iT(c) = T(a*).

This shows that I" is a homomorphism of C*-algebras.
Let us show that it is an isometry. We have

lall* = lla*all = ll(aa)*"[**" = lim [(a*a)*"[|'”*" = ry(a"a).
By Proposition 4.5.5, this is equal to the sup norm of I'(a*a). We have
IT(a*a)|| = |T(a")T(a)|| = [IT(a)*|| = [IT(a)]]*.

Hence ||al| = ||T'(a)]|, as desired.

Finally, if ¢ and ¢ are multiplicative functionals, then I'(a)(¢) = I'(a)(?) for all a means
that ¢(a) = 1(a) for all a, hence ¢ = 1. This shows that the functions in the image
of I' separate points. The image contains the identity function, and for each function it
contains its complex conjugate. So by the Stone-Weierstrass theorem, they are all continuous
functions on Mp. O

Theorem 5.2.2. (The Spectral Theorem) If H is a Hilbert space and NN is a normal operator
on H, then the C*-algebra Cy generated by N and N* is commutative. Moreover, the
maximal ideal space of Cy is homeomorphic to o(N) and hence the Gelfand map is a *-
isometrical isomorphism of Cx onto C'(a(V)).
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Proof. The algebra Cy is commutative because it is the closure of the algebra of all polyno-
mials in N and N*.

Let us show that the set of multiplicative functionals, Mc,, is homeomorphic to o(N).
In view of Proposition 4.5.5, we can define the onto function

¢(N) =T(N)(¢) = L(N)(¢) = ¢'(N),

and also

¢(N*) = T(N*)(¢) = T(N)(¢) = T'(N)(¢) = T(N")(¢) = ¢'(N).

Hence ¢ and ¢’ coincide on Cy, so they are equal.
Finally, let us show that W is continuous. Let

By,r ={A€a(N)||X—Xo| <r}.
Set ¢y, = U1 (Xg). Then

U™ (Bhgr) = {0 € Mey | [9(N) — 65, (N)] <1},

which is open in the weak* topology. Hence W is continuous.
Because Mc, and o(N) are compact Hausdorff spaces, ¥ is a homeomorphism. O

This theorem allows us to perform functional calculus with continuous functions on the
spectrum of N. Note the particular case of self-adjoint operators.

5.3 ('*-algebras as algebras of operators
Definition. Given a C*-algebra B, a x-representation is a (continuous) C*-homomorphism
p:B— B(H),

for some Hilbert space H, that is non-degenerate in the sense that p(a)z is dense when a
ranges through a and x ranges through H. A vector x is called cyclic if the set {p(a)x | a € B}
is dense in H; in this case the representation is called cyclic.

Definition. A state on a C*-algebra is a linear functional ¢ such that ¢(a*a) > 0 for all a
and ¢(1) = 1.

Proposition 5.3.1. If ¢ is a state, then
(a) (Cauchy-Schwarz) |¢(b*a)* < ¢(a*a)p(b*D);
(b) [loll = 1.
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Proof. For (a), repeat the proof of Cauchy-Schwarz for inner products.
For (b), note that ¢(1) = 1 implies that ||¢|| > 1. Thus it suffices to show that

|p(a)| < |laf|, for all a € B.
By Cauchy-Schwarz we have
[p(a)]* = [6(1"a)| < &(1"1)¢(a"a) = ¢(1)¢(a"a)
= ¢(a"a) < ¢(|la’al)) = [la"a]| = [lal|*
because ||a*a|| > a*a. O

Theorem 5.3.1. (The Gelfand-Naimark-Segal Construction) Given a state ¢ of B, there is
a #-representation p : B — B(H) which is cyclic, and a cyclic vector z such that

o(a) = (pla)z,xz) for all a € B.
Proof. Let a € B act on the left on B by
pe(a)b = ab.

This is the left regular representation. We want this to be a representation on a Hilbert
space, and for that reason we attempt to turn B into a Hilbert space. We define the inner
product by

(a,b)y = ¢(b*a).

This has all the nice properties of an inner product, except that it might be degenerate, in
the sense that there might be a such that (a,a) = ¢(a*a) = 0. Adapting the Cauchy-Schwarz
inequality, we deduce that the set Ny of elements a such that (a,a) = 0 form a subspace of

B.
Let us show that N, is also a left ideal of B. This is because of the Cauchy-Schwarz
inequality:
|6((a"b"ba)|* < ¢(a”a)d((b"ba)(a"b"d)) = 0.
Then B/N, is an inner product space. Consider the completion H, of this space, which
is therefore a Hilbert space. We have

l|al|2b*b — b*a*ab = b*(||al|> — a*a)b = b*c*cb,

where

c=c" = ([al’ - a*a)'’* = (|la*a]| - a*a)"/>.

The element ¢ can by defined because the function f(t) = (||a*a|| — a*a)'/? is continuous on
o(a*a), so we can use Theorem 5.2.2. So, because ¢ is positive,

o(b*a*ab) < ¢([|al*b*d) = ||all*¢(b*D).
It follows that
la(b+ Ng)lla, < llall®[|b+ Nollm,,

s0 py(a) is continuous. This implies that pys(a) can be extended to the entire Hilbert space
H,. This representation is cyclic, with cyclic vector 1 4+ Ny. Also, (ps(a)l, 1) = ¢(1*al) =
o(a). O
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The set of states is a weak™ closed convex subset of the unit ball of B*. The extremal
points are called pure states.

Theorem 5.3.2. (Gelfand-Naimark) Every C*-algebra admits an isometric *-representation.
If the C*-algebra is separable, then the Hilbert space can be chosen to be separable as well.

Proof. Consider the set of pure states and define
p:B— ®B(Hy), p=Dpy

where the sum is taken over all pure states. It suffices to show that p is faithful, namely
one-to-one, because the fact that it is an isometric *-homomorphsm then follows from The-
orem 5.4.3 proved in next section.

To prove that p is injective, let a be a nonzero element of B. Then there is a state ¢ such
that ¢(a*a) > 0. Indeed, consider a real-valued linear functional ¢ : R(a*a) — R such that
to(a*a) > 0. Now B is also a real vector space, in which the positive elements form a cone
(an element is positive if it is of the form a*a). Use the theorem of M. Riesz about extension
of positive functionals to extend g to v : B,, — R, where By, consists of the self-adjoint

elements. Now define
o1(a) :C(w (a—;a*) L (w(a;ia*>) |

where ¢ is chosen so that ¢1(1) = 1. Then ¢; is positive and ¢;(a*a) > 0. By the Krein-
Milman theorem, there is a pure state ¢, that satisfies ¢;(a*a) > 0, because the closure of
the convex hull of the pure states is the set of all states, so if all pure states are zero on a*a,
then all states are zero.

Consider the GNS representation associated to this pure state ¢, and let x be its cyclic
vector. Then

lps(@)e]> = (poa)e, ps(a)) = (pola*a)a, ) = é(a’a) > 0.

In this case pg # 0, hence the representation is faithful. The theorem is proved. O

5.4 Functional calculus for normal operators

Throughout this section we assume that the Hilbert space H is separable.

Definition. Let H be a Hilbert space. The weak operator topology is the topology defined
by the open sets

V<T0;x17x27'"7xk;y17y27"'7yk;r) = {TE B(H)||<(T—T0)I']’y]> ’ < T,j = 1727"'Jk}'
The strong operator topology is the topology defined by the open sets
V(To; 1,29, ., x5 r) ={T € B(H) | |(T —To)x;|| <r, j=1,2,...,k}.

Definition. A von Neumann algebra is a C*-subalgebra of B(H) that is weakly closed.
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Remark 5.4.1. If C is a self-adjoint subalgebra of B(H), then its weak closure is a von
Neumann algebra. If C is commutative, then its closure is commutative.

Proposition 5.4.1. If N is a normal operator on H, then the von Neumann algebra Wy
generated by N is commutative. If My, is the set of multiplicative functionals on Wy, then
the Gelfand transform is a *-isometrical isomorphism of Wy onto C(Myy,, ).

We want to show that there is a unique *-isometrical isomorphism I'* : Wy — L*(c0(N))
which extends the functional calculus with continuous functions defined by the Spectral
Theorem (Theorem 5.2.2).

Assume we have a finite positive reqular Borel measure on o(N). We can assume that
the measure of the entire space is 1, so that we have a probability measure. For the moment,
we work in this hypothesis.

The map f +— My, where M; : L*(o(N)) — L*(6(N)) Mg = fg identifies L>(c(N))
with a maximal commutative von Neumann subalgebra of the algebra of operators on
L*(o(N)).

Proposition 5.4.2. The weak operator topology and the weak* topology on L*° coincide.

Proof. L>* = L%, and recall that every function in L' is the product of two L? functions.
Thus an element of the form

o(h = | g

with f € L> and g € L', can also be represented as

/Mf91§2 = (Msgi, ga)

where g = g1¢g2. Hence the conclusion. O]
Proposition 5.4.3. The space C(o(N)) is weak*-dense in L>®(a(N)).

Proof. We will show that the unit ball in C(o(N)) is weak*-dense in the unit ball in
L*(o(N)). Consider a step function in the unit ball of L™, f = " a;xg,, |a;| < 1 with E|
disjoint and their union is o(N)). For each j, choose K; C E;. Using Tietze’s Extension
Theorem we can find ¢ in the unit ball of C'(¢(V)) such that g(z) = «; for x € K;. Then

for h € LY,
'/h(f—g)‘§/|h||f—g|
=Z/E\K WIS = gl < Z/E\K 13

Because the measure is regular, we can choose K; such that the integrals are as small as
desired. []
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Recall that a vector z is cyclic for an algebra B C B(H) if Bx is dense in H and separating
if Tx = 0 implies T' = 0. If B is commutative, then x cyclic implies = separating, because
Tx = 0 implies Bz € ker(T"), hence T' = 0.

Theorem 5.4.1. If N is a normal operator on H such that Cy has a cyclic vector, then
there is a positive regular Borel measure v supported on o(N) = Mg, and an isometrical
isomorphism + from H onto L?(a(N),v) such that the map

I : Wy — B(L*(0(N),v), T*T)=~T~""

is a x-isometrical isomorphism from Wy onto L>(o(N),v). Moreover, I'* is an extension of
the Gelfand transform I' : Cp — C(o(V)). Lastly, if 14 is a positive regular Borel measure
on o(N) and I'] us a x-isometrical isomorphism from Wy that extends I', then v and v, are
mutually absolutely continuous, L>(c(N),v) = L*(c(N),v;) and I'f = T'™.

Proof. Let z be a cyclic vector for Cy with ||z|] = 1. Consider the linear functional on

C(o(N)) defined by ¢(f) = (f(N)x,x). Then ¢ is positive because if f > 0 then f = g* for
some real valued function g, and then

and hence
(F(N)z,2) = (g(N)z, g(N)z) = lg(N)z||* > 0.
We also have

() =1 {(F(N)z,2) | < ANl = 171,

thus ¢ is continuous. By the Reisz Representation Theorem (Theorem 2.1.2), there is a
unique positive regular measure v on (V) such that

/ o = ) for f € Ol (V)

If the support of v were not the entire spectrum, then, by Urysohn’s lemma, we could find
a continuous function f that is 1 somewhere on the spectrum and is zero on the support of
v. Then because f is not identically equal to zero, f(N) # 0 and because x is separating,
we have

07 [f(N)z|* = (f(N)z, f(N)z) = (|f*(N)z,2) = /(N) |[f[*dv =0,

impossible. So supp(v) = o(N).
Define

Y0 : Cyz — L*(a(N),v), ~(f(N)z) = f.
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The computation
HfH%I/ |fIPdv = (|fP(N)z,2) = || f(N)z]?
o(N)

shows that 7 is a Hilbert space isometry. Because Cy is dense in H and C(o(N)) is dense
in L?(o(N),v), v can be extended uniquely to an isometrical isomorphism

v:H — L*(c(N),v).
Moreover, if we define
I*: Wy — B(L*(a(N),v)), I*(T)=~Ty"

then I'* is a *-isometrical isomorphism onto the image.
Let us show that ['* extends the Gelfand transform

[':Cy — B(L*(a(N),v)).
Indeed, if f € C(o(N)), then for all g € C(a(NV)),

[T (F(N)lg = vf(N)v g = v f(N)g(N)z = [(f9)(N)z] = fg = M;g.
Since C'(o(N)) is dense in L*(c(N),v), it follows that

(f(N)) = My = T(f(N)).

Because the weak operator topology and the weak* topology coincide on L* (Proposi-
tion 5.4.2), I'* is a continuous map from Wy with the weak operator topology to L>(c(N), v)
with the weak* topology. And because continuous functions are weak*-dense in L*°, it fol-
lows that I'*(Wr) = L>(0(N), v). Thus I'* is a *-isometrical isomorphism mapping Wr onto
L*>®(o(N),v).

Finally, if (v,I'}) are a different pair with the above properties, then I*I%™! is a
x-isometrical isomorphism from L*°(c(N), 1) onto L*°(o(N),v) which is the identity on
C(o(N)). Then v and 14 are mutually absolutely continuous, L>*(c(N),v) = L*(a(N),14)
and I*Tt! is the identity map. This completes the proof. n

However, not all operators have cyclic vectors. Instead we will use separating vectors and
replace H by the smallest invariant subspace containing a separating vector. We proceed to
show that every normal operator has a separating vector.

An easy application of Zorn’s lemma yields the following result.

Proposition 5.4.4. Every commutative C*-algebra is contained in a maximal commutative
von Neumann algebra.

Definition. If A C L(H), then the commutant of A, denoted A’ is the set of operators in
L(H) which commute with every operator in A.

Proposition 5.4.5. A C*-algebra in £(H) is a maximal commutative von Neumann algebra
if and only if it is equal to its own commutant.
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Proof. Let B be the C*-algebra. If B is commutative, then B C B’. If B is maximal
commutative then necessarily we have equality.

Conversely, if equality holds, then B is a von Neumann algebra. It must be maximal
commutative, for if A commutes with everything in B, then A € B’ = B. ]

Lemma 5.4.1. Let T' € B(H), V is a closed subspace of H, and Py, the orthogonal projection
onto V. Then P,T = TPy if and only if V' is an invariant subspace for both T" and T™.
Moreover, in this case both V and V* are invariant for 7.

Proof. V is invariant for T if and only if P,T' P, = T Py,. So V is invariant for both 7" and T™
if and only if PyT Py = TPy and P,T* Py, = T*P,. The latter is equivalent, by conjugating
to PyT Py = PyT. So V is invariant for both 7" and T if and only if PyT = TPy (in which
case the equality to Py TPy is superfluous). Note also that V invariant for T* implies V*
invariant for 7' (by the equality (T'x,y) = (z, T*y)). O

Definition. A subspace V of H is a reducing subspace for T’ if it satisfies any of the equivalent
conditions from the statement of the above lemma.

Lemma 5.4.2. If B is a C™-algebra contained in B(H) and v € H, then the orthogonal
projection onto Bv is in B'.

Proof. By Lemma 5.4.1, it suffices to show that Bv is invariant for both T and T* for every
T € B. Note that T € B so both T" and T™ leave Bv invariant, and so they do with Bv. [

Theorem 5.4.2. If B is a maximal commutative von Neumann algebra on a separable
Hilbert space H, then B has a cyclic vector.

Proof. Let € be the set of all collections of projections {E,}aca in B such that
e For each o € A there is v, € H\{0} so that E, is the projection onto Bu,
e F,E, =Ey E, =0 for a # o/

Clearly £ is not empty, since we can build an element in £ starting with one vector, via
Lemma 5.4.2. Order £ by inclusion. The hypothesis of Zorn’s Lemma is satisfied. Pick a
maximal element {FE,}aca-

Let F be the collection of all finite subsets of the index set A partially ordered by inclusion
and let { Pr}per be the net of the orthgonal projections defined by

Pp = Z E,.
aeF

Then the net is increasing. If F' > F’ then
”(PF — PF’)‘THQ = <(PF — PF/>2.%',£C> = <(PF — PF/>£C,£L'> = <PF§C,£E> — <PF/£L',$> .

The net (Ppxz, ) is increasing and bounded from above by ||z]|?, so it is convergent. Hence
it is Cauchy, and so is ||Prz||. Then Ppx is norm convergent. Define Pz = limp Ppx. Then
P is an orthogonal projection.
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The range V of P has the property that both V and V+ are invariant under B. Moreover
P € B by Lemma 5.4.2. Note that if v € V!, then Bv is orthogonal to each E, so we can
add the projection onto this space to the family {E,},, contradicting maximality. Hence
V1 =0, showing that P is the identity map.

Because H is separable, A is countable. Thus we can define w = ) v,. Then for each
«, the range of E, is contained in Bw. So w is a cyclic vector for B. n

Corollary 5.4.1. Every commutative C*-algebra of operators on a separable Hilbert space
has a separating vector.

Proof. Include the C* algebra into a maximal one. The new algebra has a vector that is
cyclic hence separable. This vector is also separable for the subalgebra. O

Theorem 5.4.3. If & : B; — B, is a *-homomorphism of C*-algebras, then ||®|| < 1 and ¢
is an isometry if and only if it is one-to-one.

Proof. 1f a € By and a = a* (i.e. a is self-adjoint), then C, is a commutative C*-algebra con-
tained in B; and ®(C,) is a commutative C*-algebra contained in By. If ¢ is a multiplicative
linear functional on ®(C,), then ¢ o ® is a multiplicative linear functional on C,. Because of
the Gelfand-Naimark Theorem, we can choose ¢ so that |¢(®(a))| = ||®(a)|. Then

lall > [¢(®(a))| = [|(a)ll,
so @ is a contraction on self-adjoint elements. For arbitrary b € By,
(611 = [16°0]] > [@(b"D) || = [|2(0)* (D) [| = |2 (D)||.

Hence ||®]| < 1.

For the second part, clearly if ® is an isometry than it is one-to-one. Assume that ® is
not an isometry and choose b such that ||b]| = 1 but || ®(b)|| < 1. Set a = b*b; then |la|| =1
but ||®(a)|| = 1 — € with € > 0. Choose a function f € C([0,1]) such that f(1) = 1 and
f(z) =0if 0 <z <1—e. Using the functional calculus on C,, define f(a). Since

we conclude that 1 € o(f(a)), so f(a) # 0. We have ®(f(a)) = f(®(a)) (true on polynomials,
then pass to the limit). But ||®(a)| =1 —¢, so o(®(a)) C [0,1 — ¢]. But then o(f(P(a)) =
f(o(®(a)) =0so f(P(a)) =0. Hence ®(f(a)) = f(P(a)) = 0. Thus & is not one-to-one. []

Let H be a separable Hilbert space and N normal on H. By Corollary 5.4.1, the com-
mutative von Neumann algebra Wy has a separating vector . If we set H, = Wyz, then
both H, and H are invariant under Wy. We can therefore define a map ® : Wy — B(H,)
by ®(N) = N|H,.

Lemma 5.4.3. The map ® defined above is a *-isometrical isomorphism. Moreover o) (1) =
o, (T|Hy) for all T € Wy
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Proof. In view of the previous theorem, let us show that ® is one-to-one. And indeed, if
®(T) = 0 then Tx = 0, because x = [x € Wyx. So T = 0, because x is separating of Wiy.
The equality of spectra is proved as follows.

First,

OB(H) (T) = 0wy (T)

Indeed, o) (1)) C ow, (T) because the inverse of A — 7" might or might not be in Wy.
Moreover, because the resolvent is open both for B(H) and for Wy, oy, (T') is obtained
from o) (T) by adding to it some bounded components of its complement. So if 7" — A is
invertible in B(H), then (T — \)(T* — )) is self-adjoint, so its spectrum is real and hence
necessarily the same in B(H) and Wy. So this operator must be invertible in Wy, and hence
sois T'— . Next

Own (T) = 0a(Wn) (T’Hl")

because ® is a x-isometrical isomorphism onto the image. Repeating the above argument we
also have

ooy (T|Hz) = opm,)(T|H,)
and we are done. O

Theorem 5.4.4. (Functional Calculus for Normal Operators - Version I) Let N be a normal
operator on the separable Hilbert space H and let I' : Cy — C(0(N)) be the Gelfand
transform. Then there is a positive regular Borel measure v having support o(/N) and a
k-isometrical isomorphism I'* from Wy onto L*(o(N),v) which extends I'. Moreover v is
unique up to mutual absolute continuity while L>(o(N),r) and I'* are unique.

Proof. Let x be a separating vector for Wy, H, = Wy, and
o, : Wy — B(H,), &,.(T)=T|H,.

Let W, be the von Neumann algebra generated by N|H,. The map ® is continuous in the
weak operator topology (because it is obtained by restricting the domain). Hence ®(Wy) C
W,.. Moreover, if

L'y : Cnja, — C(o(N|H,)) = C(o(N))

is the Gelfand transform, then I' = I'y o .

Because N|H, is normal and has the cyclic vector x, by Theorem 5.4.1 there is a positive
regular Borel measure v with support o(N|H,) = o(N) (here we use the previous lemma),
and a *-isometrical (onto) isomorphism

Iy : W = L(a(N), ), such that T5|Cxj, = To.

Moreover, I'§ is continuous form the weak operator topology of W, to the weak*-topology on
L>®(o(N),v). Hence I'* = T’y o @ is a #-isometrical isomorphism from Wy into L>*(a(N),v),
continuous in the weak/weak* topologies, and which extends the Gelfand transform.

The only thing that remains to show is that I', takes Wy onto L>®(c(N), v). For this we
need the following result.
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Lemma 5.4.4. Let H be a Hilbert space. Then the unit ball of B(H) is compact in the
weak operator topology.

Proof. The proof is from the book of Kadison and Ringrose, Fundamentals of the theory of
operator algebras. For two vectors z,y € H, let D, , be the closed disk of radius ||z - ||y|| in
the complex plane. The mapping which assigns to each 7' € (B(H)), the point

{(T,y) |x,y € H} C [ Day

Clj7y

is a homeomorphism of (B(H)); with the weak operator topology onto its image X in the
topology induced on X by the product topology of wa D, ,. As the latter is a compact
Hausdorff topology by Tychonoft’s theorem, X is compact if it is closed. So let us prove
that X is closed.

Let b € X. Choose 1, y1, 22,52 € H. Then for every ¢ > 0 there is T € (B(H)); such
that each of

la-b(xj,ye) — a{Txjye) |, [0(z, yk) — (Tj,yx) |,
|b(azy + 29, y5) — (T(ax1 + m2),y5) |, [b(z), ay1 + y2) — Tz, ayy + ) |
is less than e. It follows that
|b(a$1 + X2, yl) —a- b(fﬂb yl) - b($27y1)| < 3e
b(x1, ayr + y2) — @ b(z1,y1) — bz1, y2)| < 3e.
Thus

blaxy + 9, y1) = a - b(x1, 1) + b(x2, y1)  b(x1, ay1 + y2) = Ab(w1,y1) + b(21, o).

Additionally, |b(x,y)| < ||z] - ||ly||. Hence b is a conjugate-bilinear functional on H bounded
by 1. Using the Riesz Representation Theorem, we conclude that there is an operator Tj
such that b(z,y) = (Toz,y). This operator has norm at most 1 and we are done. O

Using the lemma, we obtain that the unit ball in Wy is compact in the weak operator
topology. It follows that its image is weak*-compact in L>(o(NV), v), and hence weak*-closed.
Since this image contains the unit ball of C'(¢(N)), it follows that it contains the unit ball
in L>*(c(N),v). Hence I'* takes the unit ball in Wy onto the unit ball of L>(a(N),v). So
I'* is onto.

The uniqueness is as in Theorem 5.4.1. We are done. O]

Definition. If N is a normal operator and I'* : Wy — L>®(o(N), v) is the map constructed
in the above theorem, then for each f € L>(o(N),v) we can define

FIN) =T (f).

The spectral measure of a normal operator is defined as follows. For each Borel set

A € o(N), let
E(A) =T"" (xa).
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Because
2 _ =
XA = XA = XA

E(A) is an orthogonal projection. Moreover, if ANA’ = (), then E(A)E(A’) = E(A)E(A) =
0. Hence

o

E (2,48 =) E(A).

k=1

We conclude that E is a projection-valued measure.
For every xz,y € H, p,,(A) = (E(A)z,y) is a genuine positive regular Borel measure.
Thus we can define for each function f € C(o(N)) an operator f(N) by

(N, y) = / e

It turns out that f(IV) is the functional calculus defined by the Gelfand transform. In fact
more 1s true.

Let f : 0(N) — C be a measurable function. There is a countable collection of open
disks, D;, i > 1, that form a basis for the topology on o(N). Let V' be the union of those
disks D; for which v(f~*(D;)) = 0. Then v(f~'(V)) = 0. The complement of V is the

essential range of f. We say that f is essentially bounded if its essential range is bounded.

Theorem 5.4.5. (Functional Calculus for Normal Operators - Version II) There is a *-
isometrical isomorphism ¥ : L>®°(o(NN),v) — Wy which is onto, defined by the formula

<\Il<f)x7 y> = fdﬂx,y‘

a(N)
Moreover, ¥ = I'™*~L,
Proof. Check on step functions, then use density. O

This justifies the notation

o= [ e

In particular,

N = / tdE.
a(N)

Example. Say

0o 2 -1
A= 2 3 =2
-1 -2 0
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Then the spectrum of A is o(A) = {5, —1}, with eigenvectors for 5: u; = (—\/Lé, —%, \/ié),
and for —1: uy = (\%,0, \/Li)’ uz = (_\/L§7 \/ig, \/Lg) Then the spectral measure is

E({5})(z) =<z,u; >u;, E({-1})(z)=<z,uy > us+ < x,uz > us.
And for a function f: {5, -1} — C, we have

f(A) = FB)E({5}) + f(=1)E({-1}).
In particular A = 5E({5}) — 1E(—1), which is actually the diagonalization of A.

In general if N is a normal operator on R™ with eigenvalues Ay, ..., A, then the spectral
measure associates to each eigenvalue the projection onto its eigenspace.

Theorem 5.4.6. (The spectral mapping theorem) The spectrum of f(N) is the essential
range of f.

Proposition 5.4.6. If N is normal and has spectral measure Ey, and if f € L>°(Ey), then
f(N) is also normal and the spectral measure of f(N) is defined by Efn)(A) = E(f71(A)).

Example. If A is self-adjoint, then the spectral measure of A is supported on a compact
subset of R. If U is unitary, then the spectral measure of U is supported on a compact subset
of the unit circle.

Example. Let A;, As, ..., A, be self-adjoint operators that commute pairwise. Then there
exists a self-adjoint operator A and functions fi, fs, ..., f, such that A; = f;(A) for all j.

By repeating some of the self-adjoints, we can assume that n is a power of 2, say n = 2™.
Now let N3 = A; +iA,. Then N; is a normal operator. Let o(NV;) be its spectrum and El,
be its spectral measure. Consider a square S that covers the spectrum and the continuous
surjective map ¢ : C' — S, where C' is the Cantor set that defines the Peano curve. Define
the spectral measure Ep, (A) = En, (¢(A)), and let By = fol tdEg,. Then N7 = ¢(B;) and
Ar = (¢(B1) + ¢(B1)")/2, Ay = (¢(B1) — ¢(B1)") /2t

Moreover, B; = ¢~!(N;). We can define analogously By, Bs, ..., and they all commute.
Thus we have reduced the number of self-adjoint operators to half that many. Now we can
reason inductively to get the conclusion.
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Chapter 6

Distributions

6.1 The motivation for using test functions

Let me point out that most of this material is taken from W. Rudin, Functional Analysis,
McGraw Hill.

Assume that f is a differentiable one variable function and that ¢ is a compactly sup-
ported smooth function. Then integration by parts gives

[ro=- [

But then using the right-hand side we can define the derivative of “any” function f to be a
function g that satisfies
[oo=- [ 16
for all compactly supported ¢.
Here is a practical application of this philosophy. Recall that a function f is harmonic if

Af = 0. Here is a “weak” characterization of harmonicity.

Theorem 6.1.1. (Weyl’s Lemma) Let U be an open subset of R" and let f € L?(U). Then

/Uqus_o

for all smooth functions ¢ with compact support in U if and only if f is harmonic, meaning
that Af = 0.

Proof. Without loss of generality we may assume that U = B7 is the unit ball centered at
the origin. We can extend all functions on B} to the entire R" by setting them equal to zero
outside BY.
First note that if f is at least twice differentiable, then by Green’s theorem
[ orao- [ oar= [ fSE-od o
r P n "

oBY

93
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Hence for all smooth functions ¢ with compact support in B},

/B?Afaﬁ:O,

showing that Af = 0, namely that f is harmonic.
But f is not necessarily a C?-function. We resolve this issue by convoluting f with a
mollifier that turns it into a smooth function. To this end, consider the bump function

(x) = Cle=V/O=IXIP) i |x|| < 1
PEI= 0 if [|x|| > 1,

where C' = ([, e~ V/O=IXIP) dx) =1, Define the family of mollifiers

X

pe(X) =€"p <—> , €>0.

€

These functions have integrals equal to 1, are supported in the ball B” of radius e centered
at the origin and converge, in distributional sense, to Dirac’s delta function as € — 0. Let
us convolute f with these functions to obtain

fe(x) = (f*p)(x) = - f(y)pe(x —y)dy.

Since f is an L? function, f. is smooth because we can differentiate under the integral sign
(using the Dominated Convergence Theorem). By Young’s inequality for convolutions,

[fellz < Noellll.fll2 = 112 (6.1.1)
Next, we will show that
If = fella = 0, as e = 0. (6.1.2)

If ¢ is another function, then

1f = fella < I = gll2 + [lg = gell2 + [lge = fell2
= [If = fellz < If = glla +1lg = gell2 + [(g = F)ell2-

Combining this fact with (6.1.1), we see that if the convergence property (6.1.2) is true for a
sequence of functions that approximates f in L2, then it is true for f itself. We can choose
the function g that approximates f to be continuous and compactly supported in B. We
have

(9= 9)6) = [ (99 = glx = ¥)p.(y)dy
— [ (66 - glox ~ ))pa)dz
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The integrand is compactly supported, tends pointwise to zero almost everywhere and is
bounded from above by a constant that depends on p only (and not on €). Hence by the
Dominated Convergence Theorem g — g. converges to zero in L2 This proves (6.1.2).

For € < 1, and y in the ball B}, the function x — p.(x —y) is smooth and compactly
supported in Bf. Using the hypothesis, we deduce that

Afe= . f(y)Ap(x —y)dy = 0.

This shows that f. is harmonic in B}_..
Now let 0 < € < 4. Then f, and fs are both harmonic in B} ;. Let us examine (fe*ps)(x).
We have

(f. % ps) (%) = / F¥)osx — y)dy

n
x,1—48

where By, _; is the ball of radius 1 — 4 centered at x. Switching to spherical coordinates this
integral becomes

1-6
/ ps(r) fe(z)dzdr,
0 sp—1

because ps is constant on spheres centered at the origin. The inner integral is A(S"™1) f(x),
by the Mean Value Theorem for harmonic functions. Thus the integral is equal to

n

1-6
109 [ st = [ paxiax =1,

It follows that f. = f. * ps on B} ;. For the same reason fs = fs5 * p. on B} ;. We conclude
that for € < 6,

fs =[5 pe=[*ps*pe=[*pexps = fex ps = fo on By_;.

It follows that we can define a function fj, such that f, = f. on B}, for all 0 < e < 1. This
function is harmonic in the unit ball. Moreover

| fn — fella = 0 when € — 0.

Combining this with (6.1.2), we deduce that f = f;, so f is harmonic. The theorem is
proved. ]

6.2 Test functions

Let 2 € R™ be open, and let D(2) be the set of compactly supported smooth functions. For
a multiindex « let || be the sum of its entries.
So we want to be able to define derivatives of functions: D*f = g, by using the formula

/g¢ = (1)l /fD%, for all ¢ € D(w).
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More generally, we want to be able to define the derivative of a linear functional A on D((Q2)
by the formula

D*A(¢) = (—1)*IA(D*¢),

with the functionals of the form ¢ — [ f¢ being a particular example. Or course, we can use
this as the definition, and that would be the end of the story. But arbitrary linear functionals
are not that useful, we need a notion of continuity. This notion of continuity should be well
behaved with respect to differentiation.

It is easy to put a topology on the smooth functions that have a common support. Thus
let K be a compact subset of R, and let D(K') be the set of smooth functions with support
in K. It becomes a Fréchet space if endowed with the seminorms

1@l = sup{|D%¢(2)]| [ = € K, [laf| < N}.

Let 7 be the Fréchet space topology, which we know is metrizable (being Fréchet, the space
is complete in this metric).

D(Q) is the union of all D(K), K C €, so we need to put all the topologies 7k together
in some nice topology 7.

Definition. The topology 7 on D(f2) consists of the unions of the sets of the form ¢ + W,
where ¢ € D(2) and W is a convex balanced set in D(2) whose intersection with any D(K)
lies in 7.

Theorem 6.2.1. The sets W from the definition form a system of neighborhoods of the
origin, and 7 makes D(€2) into a locally convex topological vector space.

Proposition 6.2.1. There is a sequence K,, €> 1 of compact subsets of {2 such that 2 =
U K, and K,, C intK, ;4.

Proof. Set
1
K,={zeQ||z]| <n}n{zeQ]||x—y|| > —, forally e R"\Q}. O
n

Just as an observation, we can define 7 using only the sets K,, because every compact K
lies in one of the K, as it lies in the open cover U,int K, and the inclusion D(K) — D(K,)
is a homeomorphism onto the image.

Theorem 6.2.2. (a) A convex balanced set is open in 7 if and only if its intersection with
every D(K) is in 7. Moreover the subspace topology induced by 7 on D(K) is Tx.

(b) If E C D(Q2) is bounded then E C D(K) for some K and there is a sequence My, N > 1,
such that

|ol|nvx < My, N>1.

Consequently, if a sequence ¢,,n > 1, in D(2) has the property that for every open set V/
there is N such that if m,n > N, then ¢,, — ¢, € V, then z,, lies in some D(K) and is it is
a Cauchy sequence (hence convergent) in this subspace.

(c) Every closed and bounded subset of D({2) is compact.
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Proof. Part (c) is a consequence of

Theorem 6.2.3. (Arzela-Ascoli) A set F C C(G,Y) is normal (i.e. its closure is compact)
if and only if the following two conditions are satisfied:

(a) for each z € G, {f(2)| f € F} has compact closure in Y.

(b) F is equicontinuous at every point in G.

O

Theorem 6.2.4. Suppose A is a mapping of D(Q2) into some locally convex subspace Y.
TFAE:

(a) A is continuous.

(b) A is bounded.

(c) If ¢ = 0 in D(N2) then A¢p; - 0in Y.

(d) The restrictions of A to every D(K) are continuous.
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Appendix A

Background results

A.1 Zorn’s lemma

Theorem A.1.1. Suppose a partially ordered set M has the property that every totally
ordered subset has an upper bound in M. Then the set M contains at least one maximal
element.

Remark A.1.1. This result is proved using the Axiom of Choice.
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