Homework 5

1. Show that the function

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = 2x^3 + 3x$$

is continuous everywhere.

- 2. Let f be defined for all $x \in \mathbb{R}$, $x \neq 2$ by $f(x) = (x^2 + x 6)/(x 2)$. Can f be defined at x = 2 so that f is continuous at this point?
- 3. Let f be defined for all $x \in \mathbb{R}$, $x \neq 0$ by $f(x) = x \cot x$. Can f be defined at x = 0 so that f is continuous at this point?
- 4. Let I = [a, b] and let $f: I \to \mathbb{R}$ be a continuous function such that f(x) > 0 for each $x \in I$. Prove that there exists a number $\alpha > 0$ such that $f(x) \ge \alpha$ for all $x \in I$.