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1. Introduction

Let H denote the class of all functions which are analytic in the open unit disc ∆ = {z : |z| <
1}. Set A = {f ∈ H : f(0) = f ′(0) − 1 = 0} and S = {f ∈ A : f is univalent in ∆}. Let

S∗ denote the class of all functions in A such that f(∆) is starlike with respect to origin. A

function f ∈ A will be said to be close-to-convex if there exists a convex function g (meaning

that g(∆) is convex) such that Re (f ′(z)/g′(z)) > 0 in ∆. Every close-to-convex function

is known to be univalent in ∆ and therefore, the set of all close-to-convex functions form a

subset of S. For β < 1, we let Pη(β) denote the subclass of functions p ∈ H which satisfies

the condition Re eiη(p(z)− β) > 0 for all z ∈ ∆ and for some η ∈ R with the normalization

p(0) = 1. Set P0(β) = P(β) and P(0) = P . We are interested in the following
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PROBLEM 1.1. Are there nice conditions on the Taylor’s coefficients of f ∈ A which can

be used to check the univalency, close-to-convex, starlikeness and convexity of f?

As indicated in Section 2, there exist few conditions on the Taylor’s coefficient of f ∈ A
so that f is close-to-convex on ∆, [14]. On the other hand, there is the following starlikeness

condition due to Fejer [3].

LEMMA 1.2. If an ≥ 0, and the sequences {nan} and {nan − (n + 1)an+1} are both

decreasing, then the function f(z) =
∑∞

n=1 anzn ∈ A is starlike.

This result is particularly useful in the study of starlikeness of hypergeometric functions,

see [16]. In [8, Theorem 2.1] the following result has been obtained as a special case and

as a consequence, a number of previous conditions for the starlikeness of hypergeometric

functions are improved.

LEMMA 1.3. If a function f(z) =
∑∞

n=1 anz
n ∈ A satisfies any one of the following

conditions
∞∑

n=2

|(n + 1)an − nan−1|+ |(n− 1)an − (n− 2)an−1| ≤ 2,

∞∑

n=2

|(n + 1)an − (n− 1)an−2|+ |(n− 1)an − (n− 3)an−2| ≤ 2,

∞∑

n=2

|(n− 2)(an − 2an−1 + an−2) + an − an−2|+ |n(an − 2an−1 + an−2) + an − an−2| ≤ 2,

then f is starlike.

We do not discuss all aspects of Problem 1.1, but in Section 2, we provide four different

two parameter families of close-to-convex functions by applying recently known coefficient

conditions due to Obradović and Ponnusamy [9]. Actually in the coefficient condition of

[9] (see equation (1.5) below), the corresponding function g ∈ A was required to be locally

univalent. On the other hand, in the construction of the four examples (see Examples 2.4,

2.6, 2.8, 2.9), we do not need to assume the local univalency because the associated coefficient

conditions itself guarantee the local univalency of the corresponding function. We note that

this is not true in general.

Moreover, the close-to-convexity of the functions involved in these four sets of the exam-

ples is not possible to obtain with the help of other known methods and in view of these

observations, it is appropriate to say that they are in some sense “useful examples”.
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Let us start by comparing two different known coefficient inequalities for univalent func-

tions. By the Noshiro-Warschawski-Wolff Theorem (see [1] for example) it follows that if

g(z) = z +
∑∞

n=2 bnzn ∈ A and if

∞∑

n=1

|pn| ≤ 1− β (pn = (n + 1)bn+1 =
g(n+1)(0)

n!
, n ≥ 1),(1.4)

then it is clear that |g′(z)− 1| < 1− β and, in particular, g′(z) ∈ P(β) so that g is close-to-

convex, hence univalent in ∆ for 0 ≤ β < 1. From a result of Obradović and Ponnusamy [9,

Theorem 3.2] it follows that if g ∈ A defined above is locally univalent with real coefficients

and satisfies the coefficient condition

∞∑

n=2

n|pn+1 − pn−1| ≤ (1− β)− |p2 − (1− β)|(1.5)

then one also has g′ ∈ P(β). Let us first start by showing by examples that (1.4) neither

implies nor is implied by (1.5). In addition, in view of (1.5), we provide a number of examples

to demonstrate the existence of a two parameter family of close-to-convex functions (and

hence in S) which cannot be shown to be in S by the conditions (1.4). The example

g(z) = − log(1− z)

shows that it is not possible to use (1.4) to conclude that g is univalent in ∆. On the other

hand, according to (1.5) with β = 1/2, it follows that g′ ∈ P(1/2) and the bound β = 1/2 is

sharp. We remark that g is a convex function (of order 1/2). Next we consider the function

φ(z) = 2 log
(

2

2− z

)
, z ∈ ∆.

Then the corresponding pn gives

pn =
φ(n+1)(0)

n!
= 1/2n

so that
∑∞

n=1 |pn| = 1 and hence, according to (1.4) with β = 0, we have |φ′(z)− 1| < 1 for

all z ∈ ∆. On the other hand

∞∑

n=1

n|pn+1 − pn−1| = 3
∞∑

n=1

n

2n+1
= 3

which shows that the condition (1.5) is not applicable in this case even to claim that

Re φ′(z) > 0 in ∆. Thus, these two examples show that (1.5) is more appropriate to use

when pn’s are big while (1.4) is good to use when pn’s are small enough.
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Next we consider f ∈ A with f(z)/z 6= 0 for z ∈ ∆. Let

log

(
f(z)

z

)
=

∞∑

n=1

pnzn.

Then
zf ′(z)

f(z)
= 1 +

∞∑

n=1

npnzn, z ∈ ∆.

According to (1.5) (with β = 0), the coefficient condition

∞∑

n=2

n|(n + 1)pn+1 − (n− 1)pn−1| ≤ 1− |2p2 − 1|(1.6)

implies that f ∈ S∗. For example, if f(z) = z/(1− z)2 then

log

(
f(z)

z

)
= −2 log(1− z) = 2

∞∑

n=1

zn

n

so that, with pn = 2/n, the condition (1.6) is clearly satisfied. Similarly, the starlikeness of

f(z) = z/(1− z2) is easy to see from the condition (1.6).

2. Two Parameter Families of Close-to-convex Func-

tions

In this section we exploit the fact that if zg′ is starlike then f ′/g′ being in P(β) for some

0 ≤ β < 1 implies that f is close-to-convex. Thus, by making careful choices of g we can

obtain conditions on the coefficients, pn, of f ′/g′ to relate recurrence properties of the pn’s

to the close-to-convexity of f .

For f(z) = z +
∑∞

n=2 anzn, we compute (with a0 = 0 = a1 − 1),

(1− z)f ′(z) = 1 +
∞∑

n=1

pnz
n (pn = (n + 1)an+1 − nan)

(1− z2)f ′(z) = 1 +
∞∑

n=1

pnz
n (pn = (n + 1)an+1 − (n− 1)an−1)

(1− z)2f ′(z) = 1 +
∞∑

n=1

pnzn (pn = (n + 1)an+1 − 2nan + (n− 1)an−1)

(1− z + z2)f ′(z) = 1 +
∞∑

n=1

pnz
n (pn = (n + 1)an+1 − nan + (n− 1)an−1)

and, in view of these equations, we have the following result whose extended form was shown

in the work of Ponnusamy [14].
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LEMMA 2.1. If f ∈ A and pn is one of the above forms, then
∑∞

n=1 |pn| ≤ 1 implies that

the corresponding f is close-to-convex in ∆.

This lemma has been very useful in finding the range values of the parameters a, b, c for

which the Gaussian hypergeometric functions F (a, b; c; z)− 1 and zF (a, b; c; z) are close-to-

convex. For example, if f ∈ A satisfies the condition Re {(1 − z2)f ′(z)} > 0 for all z ∈ ∆,

then f is close-to-convex and that

∞∑

n=1

|(n + 1)an+1 − (n− 1)an−1| ≤ 1 (a0 = 0, a1 = 1)(2.2)

is sufficient for that. But we can get an appropriate condition by using the coefficient

condition (1.5) which seems to be more useful in the special situations that we consider in

this section in the form of examples. Now,

(1− z2)f ′(z) = 1 +
∞∑

n=1

((n + 1)an+1 − (n− 1)an−1)z
n (a0 = 0, a1 = 1)

so that, for an ∈ R, the inequality (1.5) is equivalent to

∞∑

n=2

n|(n + 2)an+2 − 2nan + (n− 2)an−2| ≤ 1− |3a3 − 2|.(2.3)

Observe that if f0(z) = z/(1− z), then

(1− z2)f ′0(z) =
1 + z

1− z

so that f0 is close-to-convex with respect to 1
2
log((1 + z)/(1− z)). However, the (sufficient)

condition (2.2) is not satisfied for f0(z) = z/(1 − z) although it does satisfy the condition

(1.5) with the condition (2.2) being equivalent to
∑∞

n=0 2 ≤ 1! but the condition (2.3) is

equal to 0 ≤ 0 so that (2.3) is applicable for f0(z). Similar situations arise when we consider

the other three coefficient conditions addressed in Lemma 2.1.

In the next four examples, we use the condition (1.5) to obtain two parameter families

of close-to-convex with respect to specific convex functions.

EXAMPLE 2.4. Consider a locally univalent function f(z) = z +
∑∞

n=2 anzn, an ∈ R.

Then, we have

(1− z)f ′(z) = 1 +
∞∑

n=1

pnz
n

where pn = (n+1)an+1−nan. Suppose that |p2−1| ≤ 1 and, for convenience, we restrict our

attention to the special case pn+1 = pn−1 for n ≥ 2. Then, it is easy to find the explicit form
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of f(z) satisfying (1.5) for β = 0 which is equivalent to showing that Re {(1− z)f ′(z)} > 0

in ∆. Indeed, for n ≥ 2, the condition pn+1 = pn−1 is equivalent to the recurrence relation

(n + 2)an+2 − (n + 1)an+1 − nan + (n− 1)an−1 = 0, n ≥ 2.

Solving this, one can easily see that for k ≥ 1

a2k =
3(k − 1)a3 + 2a2 − (k − 1)

2k
and a2k+1 =

3ka3 − (k − 1)

2k + 1
.

In view of these two expressions, f takes the form

f(z) = z +
∞∑

k=1

3(k − 1)a3 + 2a2 − (k − 1)

2k
z2k +

∞∑

k=1

3ka3 − (k − 1)

2k + 1
z2k+1

which after a routine computation may be written equivalently as

f(z) = z +
(

3a3 − 2a2 − 1

2

) (
z2

1− z
+ log(1− z2)− 1

2
log

(
1 + z

1− z

)
+ z

)

+a2

(
z2

1− z

)
+ (1− a2)

(
1

2
log

(
1 + z

1− z

)
− z

)
.(2.5)

The condition |p2 − 1| ≤ 1 is equivalent to |3a3 − 2a2 − 1| ≤ 1. Under this condition every

locally univalent function f(z) of the form (2.5) is always close-to-convex with respect to the

convex function − log(1− z). It is a simple exercise to see that if f is given by (2.5), then

f ′(z) =
1 + (2a2 − 1)z + (3a3 − 2a2 − 1)z2

(1− z)2(1 + z)
.

In particular, if 3a3 = 2a2 + 1 then f takes the form

f(z) = a2

(
z

1− z

)
+ (1− a2)

1

2
log

(
1 + z

1− z

)

so that

f ′(z) =
1 + (2a2 − 1)z

(1− z)2(1 + z)

which shows that f is locally univalent whenever a2 is real and lies in the closed unit interval

[0, 1], and therefore, f is close-to-convex in ∆. Note that the well-known functions

f(z) =
z

1− z
and f(z) =

1

2
log

(
1 + z

1− z

)

which correspond to the cases a2 = 1 and a2 = 0, respectively, satisfy the condition Re {(1−
z)f ′(z)} > 0 in ∆, and in particular, they are close-to-convex with respect to − log(1− z).

EXAMPLE 2.6. Suppose that f(z) = z +
∑∞

n=2 anzn (an ∈ R) is locally univalent. Then

we compute

(1− z2)f ′(z) = 1 +
∞∑

n=1

pnzn
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where pn = (n + 1)an+1− (n− 1)an−1. Suppose that |p2− 1| ≤ 1 and pn+1 = pn−1 for n ≥ 2.

Then it is easy to find an explicit form of f(z), involving the coefficients a2 and a3, which

ensures that Re {(1− z2)f ′(z)} > 0 in ∆. For n ≥ 2, the condition pn+1 = pn−1 is equivalent

to the recurrence relation

(n + 2)an+2 − 2nan + (n− 2)an−2 = 0, n ≥ 2.

Solving this, one can easily see that for k ≥ 1

a2k = a2 and a2k+1 =
3ka3 − (k − 1)

2k + 1
.

Using these two expressions, f takes the form

f(z) = z +
∞∑

k=1

a2z
2k +

∞∑

k=1

3ka3 − (k − 1)

2k + 1
z2k+1

which after computation may be written equivalently as

f(z) = z + a2

(
z2

1− z2

)
+

(
3a3 − 2

2

) (
z3

1− z2
− 1

2
log

(
1 + z

1− z

)
+ z

)

+
1

2

(
z3

1− z2
+

1

2
log

(
1 + z

1− z

)
− z

)
.(2.7)

The condition |p2−1| ≤ 1 is equivalent to the inequality |3a3−2| ≤ 1. Under this condition,

we conclude that every locally univalent function of the form f defined by (2.7) is always

close-to-convex with respect to the convex function 1
2
log((1 − z)/(1 + z)). To discuss the

local univalency, we may compute

f ′(z) =
1 + 2a2z + (3a3 − 2)z2

(1− z2)2
.

In particular, if a3 = 1, then f takes the form

f(z) =
z

1− z2
+ a2

(
z2

1− z2

)

so that

f ′(z) =
1 + 2a2z + z2

(1− z2)2

and therefore, for a2 ∈ R with | − a2 +
√

a2
2 − 1| = 1, f in this case is seen to be locally

univalent in ∆. The cases a2 = 0 and a2 = 1 give the functions z/(1 − z2) and z/(1 − z),

respectively. Moreover, if a3 =
2

3
, then we have

f(z) = z + a2

(
z2

1− z2

)
+

1

2

(
z3

1− z2
+

1

2
log

(
1 + z

1− z

)
− z

)
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which is close-to-convex in ∆ if a2 ∈ R with | − a2 +
√

a2
2 − 1| = 1. For example, for a2 =

1

2
,

we have the close-to-convex function

f(z) =
1

2

(
z

1− z
+

1

2
log

(
1 + z

1− z

))
.

EXAMPLE 2.8. For f(z) = z +
∑∞

n=2 anz
n ∈ A, we write

(1− z)2f ′(z) = 1 +
∞∑

n=1

pnzn

where

pn = (n + 1)an+1 − 2nan + (n− 1)an−1 (a0 = 0, a1 = 1).

Note that |p2 − 1| ≤ 1 if and only if |3a3 − 4a2| ≤ 1. Again, we are interested in verifying

the coefficient inequality (1.5) with β = 0 and, for the case pn+1 = pn−1. Thus, pn+1 = pn−1

for n ≥ 2 is equivalent to the relation

(n + 2)an+2 = 2(n + 1)an+1 − 2(n− 1)an−1 + (n− 2)an−2.

Solving this recurrence relation, one can obtain that for k ≥ 1

2ka2k = k(k − 1)(3a3 − 1)− k(k − 2)2a2

and

(2k + 1)a2k+1 = k2(3a3)− k(k − 1)(2a2)− (k2 − 1)

which may be rewritten as

a2k =
k(3a3 − 2a2 − 1)− (3a3 − 4a2 − 1)

2

and

a2k+1 =
(

3a3 − 2a2 − 1

2

)
k −

(
3a3 − 6a2 − 1

4

)
+

(
3a3 − 6a2 + 3

4(2k + 1)

)
,

respectively. Thus, a simple calculation shows that f has the form

f(z) = z +
(

3a3 − 2a2 − 1

2

)
z2(1 + z)

(1− z2)2
−

(
3a3 − 4a2 − 1

2

)
z2

1− z2

−
(

3a3 − 6a2 − 1

4

)
z3

1− z2
+

(
3a3 − 6a2 + 3

4

) {
1

2
log

(
1 + z

1− z

)
− z

}
.
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Hence, every locally univalent function f(z) of the above form with |3a3 − 4a2| ≤ 1 is close-

to-convex with respect to the convex function z/(1− z). To check the local univalency of f ,

we rewrite f in the form

f(z) = z + A
z2(1 + z)

(1− z2)2
−B

z2

1− z2
− C

z3

1− z2
+ D

{
1

2
log

(
1 + z

1− z

)
− z

}

and obtain that

f ′(z) =
M(z)

(1− z2)3
,

where

M(z) = 1 + (2A− 2B)z + (3A− 3C + D − 3)z2 + (2A + 2B)z3 + (A + 4C − 2D + 3)z4

+ (−C + D − 1)z6.

Using the values of A, B, C, D, it is easy to see that

f ′(z) =
(1 + z)2[(3a3 − 4a2)z

2 + (2a2 − 2)z + 1]

(1− z2)3
.

By a computation, we can find the range for a2 and a3 for local univalency of f(z). In

particular, for a2 = 1, one has

f ′(z) =
(1 + z)2[(3a3 − 4)z2 + 1]

(1− z2)3

which shows that, if a3 ∈ [1, 5/3] and a2 = 1, then f is locally univalent in ∆ and therefore,

in this case f must be close-to-convex in ∆.

Similarly, if a3 = (4/3)a2 with a2 ∈ [1/2, 3/2] then f becomes close-to-convex in ∆.

EXAMPLE 2.9. For f ∈ A, consider

(1− z + z2)f ′(z) = 1 +
∞∑

n=1

pnz
n,

where, for n ≥ 1,

pn = (n + 1)an+1 − nan + (n− 1)an−1

(
an =

f (n)(0)

n!
∈ R

)

with a0 = 0 = a1 − 1. As before, |p2 − 1| ≤ 1 if and only if |3a3 − 2a2| ≤ 1 and we assume

that f is locally univalent in ∆ with real coefficients. Note that pn+1 = pn−1 for n ≥ 2 is

equivalent to the recurrence relation

(n + 2)an+2 = (n + 1)an+1 − (n− 1)an−1 + (n− 2)an−2, n ≥ 2.
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By a calculation, it is easy to see that, for n ≥ 4

nan =





3a3 − 1 for n = 6k + 4

3a3 − 2a2 for n = 6k + 5

0 for n = 6k + 6

1 for n = 6k + 7

2a2 for n = 6k + 8

3a3 for n = 6k + 9

, k ∈ N ∪ {0}.

Thus a simple calculation shows that f has the form

f(z) = z + a2z
2 + a3z

3 +
(

3a3 − 1

4

)
z4φ1(z

6) +
(

3a3 − 2a2

5

)
z5φ2(z

6)(2.10)

+
(

1

7

)
z7φ3(z

6) +
(

2a2

8

)
z8φ4(z

6) +
(

3a3

9

)
z9φ5(z

6),

where,

φ1(z
6) = F

(
1,

2

3
;
5

3
; z6

)

φ2(z
6) = F

(
1,

5

6
;
11

6
; z6

)

φ3(z
6) = F

(
1,

7

6
;
13

6
; z6

)

φ4(z
6) = F

(
1,

4

3
;
7

3
; z6

)

φ5(z
6) = F

(
1,

3

2
;
5

2
; z6

)
.

Here F (a, b; c; z) denotes the classical/Gaussian hypergeometric function usually defined by

F (a, b; c; z) := 2F1(a, b; c; z) =
∞∑

n=0

(a, n)(b, n)

(c, n)(1, n)
zn, a, b ∈ C, c ∈ C\{0,−1,−2, · · ·}

with (a, 0) = 1 for a 6= 0 and for n ≥ 1, (a, n) = a(a + 1) · · · (a + n− 1). To verify the local

univalency, by a calculation, we obtain that

(1− z6)f ′(z) = 1 + 2a2z + 3a3z
2 + (3a3 − 1)z3 + (3a3 − 2a2)z

4.

Thus, for all those real values of a2, a3 such that |3a3 − 2a2| ≤ 1 and

Φ(z) = 1 + 2a2z + 3a3z
2 + (3a3 − 1)z3 + (3a3 − 2a2)z

4(2.11)

a non-vanishing function in ∆, the function f is close-to-convex in ∆. In particular, if

3a3 = 2a2 then, in this choice, we have

f ′(z) =
(1 + z + z2)(1 + z(2a2 − 1))

1− z6
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which clearly shows the corresponding f given by (2.10) is locally univalent in ∆ whenever

a2 is real and lies in the closed unit interval [0, 1], and therefore, f is close-to-convex in ∆.

Similarly, if 3a3 = 2a2 + 1 then Φ defined by (2.11) becomes

Φ(z) = 1 + 2a2z + (2a2 + 1)z2 + 2a2z
3 + z4

which may be rewritten as

Φ(z) = (1 + z + z2)(1 + (2a2 − 1)z + z2).

It is easy to see that, Φ(z) 6= 0 in ∆ provided a2 ∈ R is such that

∣∣∣∣∣∣
a2 − 1

2
±

√(
a2 − 1

2

)2

− 1

∣∣∣∣∣∣
= 1.(2.12)

Hence, under this condition f defined by (2.10) is close-to-convex in ∆ whenever a3 =
2a2 + 1

3
and a2 ∈ R is given by (2.12).

REMARK 2.13. In all the four examples, we have chosen pn’s such that pn+1 = pn−1. This

is just a convenient choice to demonstrate the usefulness of the coefficient inequality (1.5) in

obtaining different types of two parameter families of close-to-convex functions which cannot

be generated by other means.

However, other choices of pn’s can be also made for a similar purpose, for example to

obtain three parameter families of close-to-convex functions and so on.

3. Convolution Theorems

THEOREM 3.1. [5, Theorem 11, p.193] If f ∈ S with the representation

(
z

f(z)

)α/2

= 1 +
∞∑

n=1

bnzn, α > 0,

then
∞∑

n=1

(
2n− α

α

)
|bn|2 ≤ 1.(3.2)
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If f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n belong to H, then the Hadamard product or

convolution, denoted by f ∗ g, is defined by

(f ∗ g)(z) =
∞∑

n=0

anbnzn

and that f ∗g ∈ H. Next, we consider the class U(λ) (0 < λ ≤ 1) which is defined as follows:

U(λ) =



f ∈ A :

∣∣∣∣∣∣

(
z

f(z)

)2

f ′(z)− 1

∣∣∣∣∣∣
< λ, z ∈ ∆



 .

The class U(1) ≡ U together with its various generalizations and subclasses have been

discussed by M. Obradović and S. Ponnusamy [9] and later by a number of authors (see

[10, 11, 15]). In fact, Krzyz [6] has shown that function in U(λ) admits a Q- quasiconformal

extension to the whole complex plane with Q =
1 + λ

1− λ
whenever 0 < λ < 1. However, until

our recent work not much attention has been paid to this class. We have shown that, just

like “every normalized (univalent) convex function is starlike of order 1/2”, the following

analogous result from [9, 11] holds,

P (2λ) ⊆ U(λ),

where

P (2λ) =



f ∈ A :

∣∣∣∣∣∣

(
z

f(z)

)′′∣∣∣∣∣∣
≤ λ, z ∈ ∆



 .

Conditions on λ for which each function in U(λ) is starlike or close-to-convex (with respect

to g(z) = z) respectively, has been obtained in [10]. This was the first step towards achieving

the geometric properties of U(λ). Such information has been considered important in the

study of certain integral operators in function theory.

EXAMPLE 3.3. Define f(z) = (z − cz2)(1− z)−2. Then

f ′(z) =
1− z(2c− 1)

(1− z)3

so that f ′(z) 6= 0 in ∆ if |2c − 1| ≤ 1. It can be easily seen that this is also a sufficient

condition for f to be in S. Further, a simple calculation shows that

(
z

f(z)

)2

f ′(z)− 1 = −
(

(1− c)z

1− cz

)2

and it is a simple exercise to see that f is in U if 0 ≤ c ≤ 1. Note c = 1 gives f(z) = z/(1−z)

so that (z/f(z))2 f ′(z)−1 = 0. This observation shows that there will be no λ > 0 such that
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U(λ) ⊂ S∗(β) with β > 1/2. More generally, there can be no λ > 0 such that U(λ) ⊂M(β)

with β > 1/2, where

M(β) = {f ∈ A : f(z)/z ∈ P(β)} .

Further the functions z/(1− z) and z/(1− z2) show that the class U is not preserved under

the square root transform. This fact may be verified by a simple computation.

At first we are interested in finding conditions on a, b, c so that z/F (a, b; c; z) is in U .

Recall the following result from [9].

LEMMA 3.4. [9] Let φ(z) = 1 +
∑∞

n=1 bnz
n be a non-vanishing analytic function in ∆ that

satisfies the coefficient condition
∑∞

n=2(n− 1)|bn| ≤ 1. Then
z

φ(z)
∈ U .

LEMMA 3.5. Assume that a, b,c are nonzero real numbers such that 0 < b ≤ c and

a ∈ [−1, 1) ∪ [c− 1, c + 1]. Then F (a, b; c; z) 6= 0 for z ∈ ∆.

Proof. This is a consequence of [7, Lemma 2] and the fact that

C

AB
F ′(A,B; C; z) = F (A + 1, B + 1; C + 1; z). ¤

THEOREM 3.6. Assume that a, b, c satisfy any one of the following conditions:

(i) 0 < a ≤ c
b+1

− 1, b > 0

(ii) −1 < a < 0, b > 0, c > a + b + 1 and

Γ(c)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
[c− (a + 1)(b + 1)] ≤ 2.

Then f(z) =
z

F (a, b; c; z)
∈ U .

Proof. Let φ(z) = F (a, b; c; z). For a = 0 or b = 0, then φ(z) = 1. Further, if a = −1 then

F (a, b; c; z) = 1− (b/c)z

and the conclusion holds whenever |b| ≤ |c|. If c = a, then we see that

F (a, b; c; z) = (1− z)−b.
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As −1 < a and b > 0, we note that c > a + b + 1 implies that c > max{b, a + 1}. From the

hypothesis and Lemma 3.5, we find that

φ(z) = 1 +
∞∑

n=1

bnzn

(
bn =

(a, n)(b, n)

(c, n)(1, n)

)
,

is a non-vanishing analytic function in ∆. In view of the coefficient condition in Lemma 3.4,

it suffices to show that

S :=
∞∑

n=2

(n− 1)|bn| ≤ 1.

Now, for c > a + b + 1, we find that

S =
∞∑

n=2

(n− 1)

∣∣∣∣∣
(a, n)(b, n)

(c, n)(1, n)

∣∣∣∣∣

=
|a|b
c

[ ∞∑

n=2

(a + 1, n− 1)(b + 1, n− 1)

(c + 1, n− 1)(1, n− 1)
−

∞∑

n=2

(a + 1, n− 1)(b + 1, n− 1)

(c + 1, n− 1)(1, n)

]

=
|a|b
c

[F (a + 1, b + 1; c + 1; 1)− 1]− |a|
∞∑

n=2

(a + 1, n− 1)(b, n)

(c, n)(1, n)
.

We will need the well-known result

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
(c > a + b).(3.7)

Case (i): Suppose that a, b > 0. Clearly, c ≥ (a + 1)(b + 1) implies that c > a + b + 1 and

therefore,

S =
ab

c
[F (a + 1, b + 1; c + 1; 1)− 1]− F (a, b; c; 1) + 1 +

ab

c

so that, by (3.7), it follows that

S = 1− Γ(c)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
[c− (a + 1)(b + 1)]

which is ≤ 1 whenever a, b, c are related by 0 < a ≤ c/(b + 1)− 1.

Case (ii): Suppose that −1 < a < 0, b > 0 and c > a + b + 1. Then we obtain that

S =
|a|b
c

[F (a + 1, b + 1; c + 1; 1)− 1] +
∞∑

n=2

(a, n)(b, n)

(c, n)(1, n)

= |a|bΓ(c)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
+

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
− 1

=
Γ(c)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
[|a|b + c− a− b− 1]− 1

≤ 1 whenever
Γ(c)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
[|a|b + c− a− b− 1] ≤ 2

which concludes the lemma. ¤
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THEOREM 3.8. Assume that a, b, c > 0 and satisfy any one of the following conditions:

(i) 0 < a ≤ 1, b > 0 and c ≥ (a + 1)(b + 1)

(ii) a > 1, 0 < b ≤ (a + 1)/(a− 1), c ≥ (a + 1)(b + 1)

(iii) a > 1, b ≥ (a + 1)/(a− 1), c ≥ 2ab.

Then f(z) =
z

F (a, b; c; z)
∈ U .

Proof. From [16], we recall if a, b, c > 0 and

c ≥ max{a + b, a + b + (ab− 1)/2, 2ab},

then zF (a, b; c; z) is close-to-convex with respect to the convex function − log(1− z). There-

fore, under this condition F (a, b; c; z) is non-vanishing in ∆. This observation together with

the discussion for Case (i) of Lemma 3.6 complete the proof. ¤

THEOREM 3.9. Let f, g ∈ S with the representations

z

f(z)
= 1 +

∞∑

n=1

bnzn,
z

g(z)
= 1 +

∞∑

n=1

cnzn.

If

Φ(z) =
z

f(z)
∗ z

g(z)
= 1 +

∞∑

n=1

bncnzn 6= 0

for every z ∈ ∆, then F (z) =
z

Φ(z)
∈ U , and, in particular, F is univalent in ∆.

Proof. From (3.2) for α = 2, we have

∞∑

n=2

(n− 1)|bn|2 ≤ 1 and
∞∑

n=2

(n− 1)|cn|2 ≤ 1.(3.10)

Since

∞∑

n=2

(n− 1)|bncn| =
∞∑

n=2

(
√

n− 1|bn|)(
√

n− 1|cn|)

≤
( ∞∑

n=2

(n− 1)|bn|2
)1/2 ( ∞∑

n=2

(n− 1)|cn|2
)1/2

≤ 1 ( from (3.10)),

then, by the hypothesis, we have

Φ(z) = 1 +
∞∑

n=1

bncnzn =
z

f(z)
∗ z

g(z)
6= 0
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for every z ∈ ∆ and therefore, by Lemma 3.4, we conclude that
z

Φ(z)
∈ U . ¤

COROLLARY 3.11. If f ∈ S with z/f(z) = 1 +
∑∞

n=1 bnzn such that 1 +
∑∞

n=1 b2
nzn is

non-vanishing in the unit disc ∆, then

z∑∞
n=1 b2

nzn
∈ S.

EXAMPLE 3.12. Define A∗B = {f ∗g : f ∈ A, g ∈ B}. As a motivation to our next result

which deals with modified convolution of f and g, i.e. we define f
⊕

g = z/f(z) ∗ z/g(z),

then A′ ⊕ B′ = {f ⊕
g : f

⊕
g 6= 0, f ∈ A′, g ∈ B′} with an understanding that A′ = {f ∈

A : z/f(z) 6= 0 for z ∈ ∆}. Recall that the set F of all univalent analytic functions [4]

f(z) = z +
∞∑

n=2

anzn,

with the property that an ∈ Z is finite, namely the set

F =

{
z,

z

1∓ z
,

z

(1∓ z)2
,

z

1∓ z2
,

z

1∓ z + z2

}
.

If f ∈ F , then we have

z

f(z)
∈ {1, 1∓ z, (1∓ z)2, 1∓ z2, 1∓ z + z2} = F ′

and for f, g ∈ F ,

z

f(z)
∗ z

g(z)
∈ {1, 1∓ z, (1∓ z)2, 1∓ z2, 1∓ z + z2} ∪ {1∓ 4z + z2, 1∓ 2z}

so that

F ′ ⊕F ′ = {1, 1∓ z, (1∓ z)2, 1∓ z2, 1∓ z + z2}.

Observe that each of the functions 1 ∓ 4z + z2 and 1 ∓ 2z has a zero inside the unit disc

and therefore, we can not conclude that the functions z/(1 ∓ 4z + z2) and z/(1 ∓ 2z) are

univalent in ∆.

As an application of Theorem 3.9, we have the following results.

THEOREM 3.13. Let f, g ∈ S be such that z/f(z) ∈ P(β) and z/g(z) ∈ P(γ), where

1 ≥ 2(1− β)(1− γ). Then F (z) =
z

(z/f(z)) ∗ (z/g(z))
belongs to U .



Close-to-convex functions and convolution theorems 17

Proof. Recall that if Re p(z) > β and Re q(z) > γ, then (see for example [14])

Re (p(z) ∗ q(z)) > 1− 2(1− β)(1− γ) for z ∈ ∆.

In view of this result, the hypothesis implies that

Re

(
z

f(z)
∗ z

g(z)

)
> 0, z ∈ ∆.

In particular, φ(z) =
z

f(z)
∗ z

g(z)
is non-vanishing analytic function in the unit disc ∆. By

Theorem 3.9, F (z) = z/φ(z) belongs to U and in particular, F is univalent in ∆. ¤

EXAMPLE 3.14.

(i) If f, g ∈ S are such that

Re (f(z)/z) > 0 and

∣∣∣∣∣
g(z)

z
− 1

∣∣∣∣∣ < 1,

then F (z) =
z

(z/f(z)) ∗ (z/g(z))
belongs to U and in particular, F is univalent in ∆.

(ii) Let f ∈ U with f ′′(0) = 0. Then, according to a recent general result from [10], it

follows that Re (f(z)/z) > 1/2, z ∈ ∆. In particular, Re (z/f(z)) > 0. In view of this

observation, we have the following: if

f ∈ U with f ′′(0) = 0 and g ∈ S with

∣∣∣∣∣
g(z)

z
− 1

∣∣∣∣∣ < 1,

then

F (z) =
z

(z/f(z)) ∗ (z/g(z))
∈ U .

Although a bound for the radius of starlikeness has been established for functions

f ∈ U with f ′′(0) = 0, it is not yet known whether the bound is sharp. Note that

every starlike function f of order 1/2 satisfies the condition Re (f(z)/z) > 1/2.

(iii) If f ∈ S∗(1/2) and g ∈ S with

∣∣∣∣∣
g(z)

z
− 1

∣∣∣∣∣ < 1, then F (z) =
z

(z/f(z)) ∗ (z/g(z))
belongs

to U . In particular, choosing g(z) = z − αz2 (|α| ≤ 1/2), it follows that if

z

f(z)
= 1 +

∞∑

k=1

bkz
k,

then

F (z) =
z

1 +
∑∞

n=1 bnαnzn
∈ U

whenever |α| ≤ 1/2.
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THEOREM 3.15. Let f, g ∈ S with
z

f(z)
= 1+b1z+b2z

2 + · · ·, z

g (z)
= 1+c1z+c2z

2 + · · ·.

(i) If
∑∞

n=1 |bncn| ≤ 1, then the function F (z) =
z

(z/f(z)) ∗ (z/g(z))
belongs to U .

(ii) If
∑∞

n=1 n|bn+1cn+1 − bn−1cn−1| ≤ 1 (b0 = c0 = 1), then the function F (z) belongs to U
whenever (z/f(z)) ∗ (z/g(z)) is non-vanishing in the unit disc ∆.

Proof. Note that

φ(z) =
z

f(z)
∗ z

g(z)
= 1 +

∞∑

n=1

bncnz
n

and therefore, by the first condition, we have

Re φ(z) > 1−
∞∑

n=1

|bncn| ≥ 0 for z ∈ ∆

showing that φ(z) is a non-vanishing analytic function in the unit disc. By Theorem 3.9,

F (z) = z/φ(z) ∈ U .

For the proof of the second part, apply (1.5) with β = 0. ¤

4. Integral Transform

LEMMA 4.1. Let Re c > −1 and G denote the Bernardi transform of f ∈ A defined by

G(z) =
1 + c

zc

∫ z

0
tc−1f(t)dt.(4.2)

Let βc be defined by
βc

1− βc

= −(Re c + 1)
∫ 1

0
tRe c 1− t

1 + t
dt.

We have the following:

(1) f ′ ∈ Pη(βc) implies that G′ ∈ Pη(0)

(2) If c is real and −1 < c ≤ 2, then f ′ ∈ Pη(βc) implies that G ∈ S∗.

For β < βc, the function G need not even be in S.

Case 1 of Lemma 4.1 is due to Ponnusamy [12] but in a somewhat different notation,

whereas Case 2 of Lemma 4.1 is due to Fournier and Ruscheweyh [2]. We ask whether the
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Bernardi transform G of f could still be univalent under a weaker/new condition on f for

certain values of c. The answer is yes. To do this, we will need the following lemma.

LEMMA 4.3. [17]. If f, g ∈ H and φ, ψ are convex (need not be normalized) functions in

∆ such that f ≺ φ, g ≺ ψ, then f ∗ g ≺ φ ∗ ψ.

Here ≺ denotes the usual subordination [1].

THEOREM 4.4. Let −1 < c ≤ 0 and G be defined by (4.2). Suppose that f(z)/z ∈ Pη(β).

Then we have G′(z) ∈ Pη(γ) where γ = 1− 2(1− β)(1− β′) with

β′ =
1 + c

2
− c

∫ 1

0

dt

1 + t1/(1+c)
=

1 + c

2
− cF (1, 1 + c; 2 + c;−1).(4.5)

In particular, we have

(1) Re eiη

(
f(z)

z
− 1− 2β′

2(1− β′)

)
> 0 implies Re eiηG′(z) > 0.

(2) Re eiη

(
f(z)

z
− 1

2

)
> 0 implies Re eiη(G′(z)− β′) > 0.

Proof. We have

G(z) = f(z) ∗ zF (1, 1 + c; 2 + c; z) = f(z) ∗
( ∞∑

n=0

(1, n)(1 + c, n)

(2 + c, n)(1, n)
zn+1

)

and therefore,

G′(z) =
f(z)

z
∗ F (2, 1 + c; 2 + c; z).(4.6)

It is a simple exercise to see that

F (2, 1 + c; 2 + c; z) = (1 + c)

( ∞∑

n=0

zn − c
∞∑

n=0

zn

n + 1 + c

)

= (1 + c)
(

1

1− z
− c

∫ 1

0

tc

1− zt
dt

)

=
1 + c

1− z
− c

∫ 1

0

dt

1− zt1/(1+c)
.

If we let α = 1/(1 + c) and W = 1/(1− ztα) then, for |z| = r (0 < r < 1) and 0 ≤ t ≤ 1, we

have ∣∣∣∣1−
1

W

∣∣∣∣ ≤ rtα

so that ∣∣∣∣W − 1

1− r2t2α

∣∣∣∣ ≤
rtα

1− r2t2α
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which gives
1

1 + rtα
≤ Re W ≤ 1

1− rtα
.

Therefore, for α > 0, we have

Re
∫ 1

0

dt

1− ztα
≥

∫ 1

0

dt

1 + rtα
>

∫ 1

0

dt

1 + tα
, z ∈ ∆.

Thus for c ∈ (−1, 0], one has

Re F (2, 1 + c; 2 + c; z) >
1 + c

2
− c

∫ 1

0

dt

1 + t1/(1+c)
= β′, z ∈ ∆,

and the estimate here is clearly sharp. It is easy to see that β′ is ≥ 1/2. Assume that

f(z)/z ∈ Pη(β). Now, we choose

φ(z) = 1 + 2(1− β)
z

1− z
and ψ(z) = 1 + 2(1− β′)

z

1− z
.

Both φ(z) and ψ(z) are known to be convex in ∆. Further,

(φ ∗ ψ)(z) = 1 + 2(1− β)(1− β′)
z

1− z
= 1 + 2(1− γ)

z

1− z

and the desired conclusion follows from Lemma 4.3 and (4.6). ¤

THEOREM 4.7. Let −1 < c ≤ 0, G denote the Bernardi transform of f ∈ A defined by

(4.2) and β′ is given by (4.5). Suppose that
∣∣∣∣∣
f(z)

z
− α

∣∣∣∣∣ < β for z ∈ ∆

and for some real α and β with |1− α| < β. Then we have

|G′(z)− 1 + 2(1− β′)(1− α)| < 2β(1− β′).

In particular Re G′(z) > 0 (and hence G is univalent) whenever α and β is related by the

condition 1 ≥ 2(1− β′)(1− α + 2β).

Proof. Define

H(z) = F (2, 1 + c; 2 + c; z) = 1 +
∞∑

n=1

Hnzn

and assume that −1 < c ≤ 0. From the proof Theorem 4.4, we have Re H(z) > β′. Thus,

then condition on f and the last condition on H may be rewritten as
∣∣∣∣∣1 +

∞∑

n=1

an+1z
n − α

∣∣∣∣∣ < β and 1 +
1

2(1− β′)

∞∑

n=1

Hnz
n ≺ 1

1− z
.
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By Lemma 4.3, we have
∣∣∣∣∣1 +

1

2(1− β′)

∞∑

n=1

an+1Hnz
n − α

∣∣∣∣∣ < β

which gives that G′(z) = f(z)
z
∗H(z) with

|G′(z)− 1 + 2(1− β′)(1− α)| ≤ 2β(1− β′)

and the desired conclusion follows. ¤

THEOREM 4.8. Let f ∈ U(λ), a = |f ′′(0)|/2 ≤ 1 with 0 ≤ λ + |a| ≤ 1. Suppose that

−1 < c ≤ 0 and G denotes the Bernardi transform of f ∈ A defined by (4.2). Then we have

(1) |G′(z)− 1 + 2(1− β′)(1− α)| ≤ 2β(1− β′) if 0 ≤ λ + |a| < 1

(2) Re G′(z) > β′ if λ + |a| = 1,

where α = 1/(1− (|a|+ λ)2), β = α(|a|+ λ) and β′ is given by (4.5).

Proof. Suppose that f ∈ U(λ). Then, we can write

−z

(
z

f(z)

)′
+

z

f(z)
=

(
z

f(z)

)2

f ′(z) = 1 + λw(z)(4.9)

where w is a Schwarz function with an additional condition w′(0) = 0. We observe from

Schwarz lemma that |w(z)| ≤ |z|2. It can be easily seen that

z

f(z)
= 1− az − λ

∫ 1

0

w(tz)

t2
dt

and therefore, ∣∣∣∣∣
z

f(z)
− 1

∣∣∣∣∣ ≤ |a|+ λ

(strict inequality if 0 < |a|+ λ). By a calculation it follows that
∣∣∣∣∣
f(z)

z
− α

∣∣∣∣∣ ≤ β if 0 ≤ λ + |a| < 1

and

Re

(
f(z)

z

)
>

1

2
if λ + |a| = 1.

The desired conclusion follows from Theorem 4.7. ¤

In particular, we have

COROLLARY 4.10. Let f ∈ U(λ) with f ′′(0) = 0 with 0 ≤ λ ≤ 1. Suppose that

−1 < c ≤ 0 and G denotes the Bernardi transform of f ∈ A defined by (4.2). Then we have

the following:
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(1)

∣∣∣∣∣G
′(z)− 1− λ2c(1− F (1, 1 + c; 2 + c;−1))

1− λ2

∣∣∣∣∣ ≤
λ(1− c + cF (1, 1 + c; 2 + c;−1))

1− λ2
if

0 ≤ λ < 1

(2) Re G′(z) >
1 + c

2
− cF (1, 1 + c; 2 + c;−1) if λ = 1.
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