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Abstract.
Let D denote the open unit disk and let f(z) =

∑∞
n=0 anz

n be analytic on D with positive
monotone decreasing coefficients an. We answer several questions posed by J. Cima on the location of
the zeros of polynomial approximants which he originally posed about outer functions. In particular,
we show that the zeros of Cesàro approximants to f are well-behaved in the following sense: (1) if
an

an+1
→ 1, and a0

am
≤ amb, then ∂D is the only accumulation set for the zeros of the Cesàro sums of

f ; and (2) if f has a representation f(z) =
∑∞

n=0 g
(

1
n+c

)
zn where g(x) =

∑∞
n=0 bnx

n 6≡ 0, bn ≥ 0,

then we give sufficient conditions so that the convex hull of the zeros of the Cesàro sums of f will
contain D.
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1. Introduction. Let D denote the open unit disk. An outer function (see [8],
p. 25) is a function that has the representation

f(z) = eiγe
1
2π

∫ 2π
0

eit+z

eit−z
logψ(t)dt

for z ∈ D, where γ is a real number, ψ(t) ≥ 0, and logψ(t) ∈ L1. It is easy to show
that if ψ ∈ Lp, then f ∈ Hp. It is not obvious, from this definition, which functions
are outer functions. One way of producing outer functions is to consider functions
in the class H∞. It can be shown that an H∞ function that is continuous and non-
vanishing on the closed unit disk is an outer function (see [17], p. 105). Another way
of generating outer functions is by considering Smirnov domains (see [13], p. 155).
It also can be shown that if the conformal map f maps ∂D onto a rectifiable starlike
curve which bounds a Smirnov domain and if log

∣∣f ′(eit)∣∣ ∈ L1, then f ′ is an outer
function.

A series of problems was recently posed by J. Cima [3] involving the location of
the zeros of polynomial approximants to outer functions. The problems arose from
discussions with numerical analysts who were investigating stability criteria for non-
linear systems of differential-difference equations. The characteristic equations for
those systems typically involved fractions whose denominators included outer func-
tions. One of Cima’s problems was to determine which polynomial approximants to
outer functions inherit their non-vanishing property on D. Since outer functions are
non-vanishing on D, it is desirable to have the approximants also non-vanishing on D.

Taylor approximants, or partial sums, are natural choices one could think of select-
ing to approximate outer functions. It was shown in [2] that the Taylor approximating
polynomials to outer functions in general can vanish on D, even if fairly restrictive
geometric conditions are put on the outer functions. A second type of approximating
polynomials that one could consider would be the function’s Cesàro sums. Along this
line, it was also shown in [2] that if f is a bounded convex function, then the Cesàro
sums of the outer function f ′ are non-vanishing on D.
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Cima’s problems about polynomial approximants to outer functions motivated
our original interest in the zeros of Cesàro approximants. However, the results which
we have obtained do not require the source functions to be outer functions. The
results extend to fairly general classes of functions with certain properties and can
undoubtably extend to other approximants (See Section 7).

Let M be the set of functions analytic in D with positive monotonically decreasing
coefficients in their series expansion. Let W be the set of functions of the form
g(x) =

∑∞
n=0 bnx

n 6≡ 0, bn ≥ 0, g(x) < ∞ for x ∈ [0, 1c ], where c > 0. Let V be

the set of functions that have the representation f(z) =
∑∞
n=0 g

(
1

n+c

)
zn, where

g ∈ W. Then, V ⊂ M . We note that V contains various outer functions since
f(z) =

∑∞
n=0

zn

(n+c)m ∈ V with g(x) = xm, m ≥ 2, c ∈ (0, 1] and these f belong to

H∞ and are continuous and non-vanishing on D.
The Cesàro sums (see [16], p. 142) of order γ ∈ N ∪ {0} of a series

∑∞
n=0 anz

n

can be defined as

C(γ)
n (z) =

n∑
k=0

(
n− k + γ
n− k

)
(
n+ γ
n

) akz
k,

where

(
a
b

)
=

a!

b!(a− b)!
. We will let Cn denote first order Cesàro sums C

(1)
n .

2. Statement of Theorems. In some cases, the zeros of the Cesàro sums Cn of∑∞
n=0 anz

n behave like the zeros of the partial sums Sn of
∑∞
n=0 anz

n. For example,
we know by Jentzsch’s Theorem (see [7], p. 352), that every point on the circle of
convergence of

∑∞
n=0 anz

n is a limit point of the set of zeros of {Sn}. Observing
that Sn = (n + 1)Cn − nCn−1, it was shown in [2] that Jentzsch’s Theorem can be
extended to the first order Cesàro sums Cn. So we know that some of the zeros of Cn
will accumulate around the circle of convergence as n gets large. It is interesting to

note that the limit set to the zeros of Sn and possibly C
(γ)
n can contain much more

than the circle of convergence; X. Qian and L. Rubel [14] have shown the following:

Theorem A. If F is a finite set of points in D and K is any closed set outside D,
then there is a power series with radius of convergence 1 such that the set of limit
points to the zeros of its partial sums is F inside D and K ∪ ∂D outside D.

In some cases however, the circle of convergence is the complete limit set to zeros

of Sn and C
(γ)
n . J. Cima and G. Csordas [4] have corrected and modified a proof by S.

Izumi [9] to show that the maximum of the moduli of the zeros of Sn(z) =
∑n
k=0 akz

k

approaches 1 as n→∞, where {an} is a monotonically decreasing sequence such that
an
an+1

→ 1 and limm→∞
rm

am
= 0, for any r ∈ (0, 1). We considerably extend the results

of Cima and Csordas to Cesàro sums of all orders in the following theorem.

Theorem 2.1. Let C
(γ)
n be the Cesàro sums of order γ of f(z) =

∑∞
n=0 anz

n,
|z| < 1, where {an} is a positive monotonically decreasing sequence such that an

an+1
→

1, and a0
am
≤ amb for some a, b ∈ R. Then

lim
n→∞

C
(γ)
n (z)

n!γ!
(n+γ)!anz

n
=

1

(1− 1
z )γ+1

uniformly for |z| ≥ 1 + δ, δ > 0.
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Furthermore, let rn denote the maximum of the moduli of the zeros of C
(γ)
n . Then,

limn→∞ rn = 1.
Cima considered the outer function f0(z) =

∑∞
k=0

zk

(k+1)3 , which belongs to V and

conjectured [3] that the convex hull of the zeros of the first order Cesàro sums Cn
would contain the disk D for all n ≥ 6. Various examples in M and V can be given
to show that unless some additional conditions are imposed that this property will
not hold generally. E.g., consider g(x) = 1 + x/10 and f(x) =

∑∞
k=0 g( 1

k+1 )zk. Then,
f ∈ V , but the first order Cesàro sums Cn do not contain the disk D unless n ≥ 13.

We verify Cima’s conjecture by finding conditions under which a fairly general
class of functions in V satisfy Cima’s conjecture. The conditions which we find control
the distributions of the zeros of the first order Cesàro approximants Cn by controlling
the moduli of the zeros of Cn and the distribution of the arguments of the zeros of
Cn.

We can obtain a lower bound to the moduli of the zeros of Cn by applying a
generalization of the Eneström-Kakeya Theorem due to Anderson, Saff, and Varga
[1].

Theorem B. Let p(z) =
∑n
k=0 akz

k, ak > 0, for 0 ≤ k ≤ n. Then, all the zeros of p
are contained in the annulus

min
0≤k<n

ak
ak+1

≤ |z| ≤ max
0≤k<n

ak
ak+1

.

Notice that for each f ∈ V, f has positive monotonically decreasing coefficients. It
is easy to show that the Cesàro sums of f will then have positive decreasing coefficients,
so that the lower bound to the zeros of Cn will be greater than 1 for all n.

To study the distribution of the arguments of zeros of Cn, we first look at some
results on the arguments of the zeros of polynomials. For instance, P. C. Rosenbloom
[15] has shown the following:

Theorem C. Let pn(z) =
∑n
m=0 anmz

m be a sequence of polynomials uniformly

bounded in {z : |z| ≤ 1} . If limn→∞ |ann|
1
n = 1 and |an0| ≥ a > 0 for all n, then the

arguments of the zeros of the polynomials are equidistributed, that is, if n(α, β) is the
number of zeros of pn(z) in the sector α ≤ arg(z) ≤ β, 0 ≤ α < β ≤ 2π, then

lim
n→∞

n(α, β)

n
=
β − α

2π
.

More recently, Erdös and Turán (see [11], pp. 278-279) proved the following:

Theorem D. Let the zeros of the polynomial p(z) =
∑n
k=0 akz

k be denoted by zv =
rve

iθv , v = 1, . . . , n, where n−λ ≤ |ak| ≤ nλ, k = 0, 1, . . . , n. Then, for every 0 ≤ α <
β ≤ 2π we have ∣∣∣∣∣∣

∑
v∈I(α,β)

1− β − α
2π

n

∣∣∣∣∣∣ < 16
√

2λ+ 1
√
n log(n+ 1)(2.1)

where I(α, β) = {v ∈ {1, . . . , n}|α ≤ θv ≤ β} .
We see that a lower bound to the number of zeros of a polynomial in a given

sector can found by (2.1). However, in many cases, the lower bound is a negative
number rendering it useless. We will give conditions on functions in V , so that the
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zeros of the first order Cesàro sum approximants Cn are ‘uniformly’ distributed in the
following sense: Cn has exactly one zero in each of the sectors

(2j + 1)π

n+ 1
< arg(z) <

(2j + 3)π

n+ 1

for j = 0, 1, . . . , bn2 c − 1, and exactly one zero in each of the sectors

− (2j + 3)π

n+ 1
< arg(z) < − (2j + 1)π

n+ 1

for j = 0, 1, . . . , bn2 c − 1. The idea to show this is to compare Cn to a function whose
zeros are precisely equally distributed, namely h(z) = zn+1 − 1, and use Rouché’s
Theorem (see [5], p. 125).

Now, we can state our second result .

Theorem 2.2. Let f(z) =
∑∞
n=0 g

(
1

n+c

)
zn where g ∈ W, and let Cn (n ≥ 6)

denote the first order Cesàro sums of the function f. If

(n− k + 1) cos

(
3π

n+ 1

)
g

(
1

k + c

)
− (n− k)g

(
1

k + c+ 1

)
≥ 0

for k = 0, 1, . . . , n − 1, then the convex hull of the zeros of Cn contains the unit disk
D.

Theorem 2.2 can be applied explicitly to functions related to Cima’s inquiry to
show the following:

Corollary 2.3. For each m ≥ 1 the convex hull of the zeros of
∑n
k=0

n−k+1
n+1

zk

(k+1)m

contains the unit disk, n ≥ 6.

3. Remarks. We would like to make some comments on when Theorem 2.2
holds.

1. Condition (6.1), which comes out of the proof of Theorem 2.2, is equivalent
to, for g(x) =

∑∞
j=0 bjx

j ,

∞∑
j=0

bj

 (n− k + 1) cos
(

3π
n+1

)
(k + c)j

− n− k
(k + c+ 1)j

 ≥ 0

for k = 0, 1, . . . , n− 1, c > 0. It can be shown (see Appendix) that

(n− k + 1) cos
(

3π
n+1

)
(k + c)j

− n− k
(k + c+ 1)j

> 0,

for n ≥ 44, k = 0, . . . , n − 1, j ≥ 0, and also for n ≥ 14, k = 0, . . . , n − 1, j ≥ 1,
c ∈ (0, 1].

Thus, the convex hull of the zeros of Cn(z) =
∑n
k=0

n−k+1
n+1 g

(
1
k+c

)
zk will always

contain the unit disk if n ≥ 44 - a result not true for the partial sums Sn(z) =∑n
k=0 g

(
1
k+c

)
zk. (Consider, g(x) = 1 and f(x) =

∑∞
k=0 x

k.) In addition, if g(0) = 0

and c ∈ (0, 1], then the result is always true for n ≥ 14.

2. Examples of functions such that Theorem 2.2 holds for all n ≥ 6 are g(x) =
bxm, where b > 0, m ≥ 7, c ∈ (0, 1].
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4. Proof of Theorem 2.1. Proof of Theorem 2.1. Fix δ > 0 and let |z| ≥
1 + δ. Then,∣∣∣∣∣ C

(γ)
n (z)

n!γ!
(n+γ)!anz

n
− 1

(1− 1
z )γ+1

∣∣∣∣∣ =

∣∣∣∣∣ (n+ γ)!

n!γ!anzn

n∑
k=0

(n− k + γ)!n!

(n− k)!(n+ γ)!
akz

k −
∞∑
k=0

(k + γ)!

γ!k!
z−k

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=0

(n− k + γ)!

(n− k)!γ!

ak
an
zk−n −

∞∑
k=0

(k + γ)!

γ!k!
z−k

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=0

(k + γ)!

γ!k!

an−k
an

z−k −
∞∑
k=0

(k + γ)!

γ!k!
z−k

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=0

(k + γ)!

γ!k!

[
an−k
an
− 1

]
z−k −

∞∑
k=n+1

(k + γ)!

γ!k!
z−k

∣∣∣∣∣
≤

m∑
k=0

(k + γ)!

γ!k!

∣∣∣∣an−kan
− 1

∣∣∣∣ 1

(1 + δ)k

+

n∑
k=m+1

(k + γ)!

γ!k!

∣∣∣∣an−kan
− 1

∣∣∣∣ 1

(1 + δ)k

+

∞∑
k=n+1

(k + γ)!

γ!k!

1

(1 + δ)k
(4.1)

Now, we will estimate each sum above. Let ε > 0, ε < δ
2 .

First, consider the sum
∑∞
k=n+1

(k+γ)!
γ!k!

1
(1+δ)k

. By applying the ratio test, we see

that the series converges for δ > 0. Thus, there exists an integer N1 such that for all
n ≥ N1,

∞∑
k=n+1

(k + γ)!

γ!k!

1

(1 + δ)k
<
ε

3
.

Second, consider the sum
∑n
k=m+1

(k+γ)!
γ!k!

∣∣∣an−k
an
− 1
∣∣∣ 1
(1+δ)k

. Since an
an+1

→ 1, there

exists an integer N2 ≥ N1 such that for all n ≥ N2,

0 <
an−1
an

< 1 + ε.(4.2)

Let Km = max
{
a0
am
, a1am , . . . ,

am−1

am

}
= a0

am
.

Claim: For n ≥ m ≥ N2,

0 <
an−j
an
≤ Km(1 + ε)j , 0 ≤ j ≤ n.

Proof of Claim: If n− j ≥ m ≥ N2, then

0 <
an−j
an

=
an−j
an−j+1

an−j+1

an−j+2
· · · an−1

an

≤ (1 + ε)j
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by (4.2). If n− j < m, then similarly

0 <
an−j
an
≤ Km(1 + ε)j .

Therefore, the claim is proved.

Now, (k+γ)!
γ!k! is a polynomial in k. Let (k+γ)!

γ!k! = bγk
γ+bγ−1k

γ−1+· · ·+b1k+b0, and

cγ = max {|bγ |, |bγ−1|, . . . , |b0|, 1} . Then, (k+γ)!
γ!k! ≤ (γ + 1)cγk

γ and for n > m ≥ N2,

n∑
k=m+1

(k + γ)!

γ!k!

∣∣∣∣an−kan
− 1

∣∣∣∣ 1

(1 + δ)k
≤

n∑
k=m+1

(γ + 1)cγk
γ

(∣∣∣∣an−kan

∣∣∣∣+ 1

)
1

(1 + δ)k

≤
n∑

k=m+1

(γ + 1)cγk
γ
(
Km(1 + ε)k + 1

) 1

(1 + δ)k

≤ (γ + 1)cγ

n∑
k=m+1

kγ
(
amb(1 + ε)k + 1

) 1

(1 + δ)k

≤ a(γ + 1)cγ

∞∑
k=m+1

kγ+b
(

1 + ε

1 + δ

)k
+a(γ + 1)cγ

∞∑
k=m+1

kγ
1

(1 + δ)k
.

Since γ is fixed, each series converges by the ratio test. Thus, there exists an integer
N3 ≥ N2 such that for all n > m ≥ N3,

n∑
k=m+1

(k + γ)!

γ!k!

∣∣∣∣an−kan
− 1

∣∣∣∣ 1

(1 + δ)k
<
ε

3
.

Finally, consider the sum
∑m
k=0

(k+γ)!
γ!k!

∣∣∣an−k
an
− 1
∣∣∣ 1
(1+δ)k

. Since (1 + β)N3 − 1→ 0

as β → 0, there exists β0 > 0, β0 < ε such that

0 < (1 + β0)N3 − 1 <
δ(1 + δ)N3

3 [(1 + δ)N3+1 − 1]

γ!

(N3 + γ)!
ε.(4.3)

Since an−1

an
→ 1, there exists an integer N4 such that for all n ≥ N4

0 <
an−1
an

< 1 + β0.

Let N5 = N4 +N3. Then, as before, we can show for n− i ≥ N4

0 <
an−i
an

< (1 + β0)i(4.4)

for n ≥ N5, 0 ≤ i ≤ N3. For n ≥ N5, i = 0, . . . , N3∣∣∣∣an−ian
− 1

∣∣∣∣ =
an−i
an
− 1

< (1 + β0)i − 1
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by (4.4). By (4.3) we have

(1 + β0)i − 1 ≤ (1 + β0)N3 − 1

<
δ(1 + δ)N3

3 [(1 + δ)N3+1 − 1]

γ!

(N3 + γ)!
ε

Now, taking m = N3, we have

m∑
k=0

(k + γ)!

k!γ!

∣∣∣∣an−kan
− 1

∣∣∣∣ 1

(1 + δ)k
=

N3∑
k=0

(k + γ)!

k!γ!

∣∣∣∣an−kan
− 1

∣∣∣∣ 1

(1 + δ)k

≤ (N3 + γ)!

γ!

N3∑
k=0

γ!

(N3 + γ)!

δ(1 + δ)N3

3 [(1 + δ)N3+1 − 1]
ε

1

(1 + δ)k

=
δ(1 + δ)N3

3 [(1 + δ)N3+1 − 1]
ε

N3∑
k=0

(
1

1 + δ

)k
=
ε

3
.

Therefore, each sum in (4.1) is less than ε
3 . Thus,∣∣∣∣∣ C

(γ)
n (z)

n!γ!
(n+γ)!anz

n
− 1

(1− 1
z )γ+1

∣∣∣∣∣ < ε

for |z| ≥ 1 + δ, δ > 0.

Since {an} is a monotonically decreasing sequence, we have that rn ≥ 1 by the En-
eström-Kakeya Theorem. This implies that lim infn→∞ rn ≥ 1. Suppose lim supn→∞ rn >
1. Let R = lim supn→∞ rn. Let 1 < 1 + δ < R for some δ > 0. Then, for any integer
N1 there exist infinitely many integers n greater than N1 such that,

1 < 1 + δ < rn.(4.5)

Choose ε > 0 such that ε <
(

1+δ
2+δ

)γ+1

. Then, by the above there is an integer N2

such that for all n ≥ N2, ∣∣∣∣∣ C
(γ)
n (z)

n!γ!
(n+γ)!anz

n
− 1

(1− 1
z )γ+1

∣∣∣∣∣ < ε

for |z| ≥ 1 + δ. This implies∣∣∣∣∣ C
(γ)
n (z)

n!γ!
(n+γ)!anz

n

∣∣∣∣∣ > 1∣∣1− 1
z

∣∣γ+1 − ε

≥
(

1 + δ

2 + δ

)γ+1

− ε > 0.

Thus,
∣∣∣C(γ)
n (z)

∣∣∣ > 0 for n ≥ N2, |z| ≥ 1 + δ. But this contradicts (4.5). Therefore,

1 ≤ lim inf
n→∞

rn ≤ lim sup
n→∞

rn ≤ 1,

which implies limn→∞ rn = 1.
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5. Statements and Proofs of Auxiliary Lemmas. We need the following
lemmas to prove Theorem 2.2. In these lemmas, Cn denotes the first order Cesàro

sums of f(z) =
∑∞
n=0 g

(
1

n+c

)
zn, where g ∈W .

Lemma 5.1. Cn(z)
(
zn+1 − 1

)
6= iλ for λ > 0, z = Reiθ, θ ∈ (0, π), R is

sufficiently large.
Lemma 5.2. If

∑n
k=1(n− k + 1)xk sin(ky) > 0 for x > 0, y ∈ R, then∑n

k=1(n− k + 1)g
(

1
k+c

)
xk sin(ky) > 0 for g ∈ W, x > 0.

Lemma 5.3.
∑n
k=1(n− k+ 1)xk sin(wjk) =

x sin(wj)

|1−xeiwj |4 pj(x), where wj = (2j+1)π
n+1 ,

pj(x) = (x2 − 1)(n+ 2 + xn+1) + 2(n+ 1)(1− x cos(wj)).

Lemma 5.4. Cn(z)(zn+1 − 1) 6= iλ, λ > 0 for z = xeiwj , where x > 0, wj =
(2j+1)π
n+1 , j = 0, 1, . . . , bn+1

2 c − 1, n ≥ 2.

Lemma 5.5. For n even,
∑n
k=0(n− k + 1)g

(
1
k+c

)
(−x)

k
> 0 for g ∈ W, x ≥ 0.

Proof of Lemma 5.1. Expanding Cn(z)
(
zn+1 − 1

)
and letting z = Reiθ gives

Cn(z)
(
zn+1 − 1

)
=

n∑
k=0

n− k + 1

n+ 1
g

(
1

k + c

)
zkzn+1 −

n∑
k=0

n− k + 1

n+ 1
g

(
1

k + c

)
zk

=

n∑
k=0

n− k + 1

n+ 1
g

(
1

k + c

)
Rk
[
Rn+1ei(k−n−1)θ − eikθ

]
.

Let S(θ) =
∑n
k=0

n−k+1
n+1 g

(
1
k+c

)
Rk
[
Rn+1ei(k−n−1)θ − eikθ

]
.We will show that Re(S(θ)) >

0 for θ ∈ (0, π4 ], Im(S(θ)) < 0 for θ ∈ [π4 ,
3π
4 ], and Re(S(θ)) < 0 for θ ∈ [ 3π4 , π), where

R is sufficiently large. This will imply that Cn(z)
(
zn+1 − 1

)
6= iλ, λ > 0. Now,

1

R2n+1
Re(S(θ)) =

n∑
k=0

n− k + 1

n+ 1
g

(
1

k + c

)
Rk−n

[
cos((k − n− 1)θ)− cos(kθ)

Rn+1

]
.

Notice that as R→∞, 1
R2n+1 Re(S(θ))→ 0. The dominant term of 1

R2n+1 Re(S(θ)) is,
when k = n,

1

n+ 1
g

(
1

n+ c

)[
cos(−θ)− cos(nθ)

Rn+1

]
≥
g
(

1
n+c

)
(n+ 1)

[
1√
2
− 1

Rn+1

]
> 0

for θ ∈ (0, π4 ], and R sufficiently large. Now considering the imaginary part we have

1

R2n+1
Im(S(θ)) =

n∑
k=0

n− k + 1

n+ 1
g

(
1

k + c

)
Rk−n

[
sin((k − n− 1)θ)− sin(kθ)

Rn+1

]
.

Again, the dominant term of 1
R2n+1 Im(S(θ)) is, when k = n,

1

n+ 1
g

(
1

n+ c

)[
sin(−θ)− sin(nθ)

Rn+1

]
= −

g
(

1
n+c

)
(n+ 1)

[
sin(θ) +

sin(nθ)

Rn+1

]
< 0
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for θ ∈ [π4 ,
3π
4 ], and R sufficiently large. The proof of Re(S(θ)) < 0 for θ ∈ [ 3π4 , π),

with R sufficiently large is similar.

Proof of Lemma 5.2. Assume
∑n
k=1(n − k + 1)xk sin(ky) > 0. Then, multiplying

by xc−1 > 0 and integrating gives

n∑
k=1

(n− k + 1)
xk+c

k + c
sin(ky) > 0.

Repeating this process we obtain

n∑
k=1

(n− k + 1)
xk+c

(k + c)m
sin(ky) > 0

for x > 0, m ∈ N. Now, multiplying by amx
−c ≥ 0 and summing over m gives

∞∑
m=0

n∑
k=1

(n− k + 1)xk
am

(k + c)m
sin(ky) > 0.

Note that the double sum is positive since am ≥ 0 and g(x) =
∑∞
m=0 amx

m 6≡ 0. Since
g(x) <∞ for x ∈ [0, 1c ], we can interchange the summations and apply the definition
of g to obtain

n∑
k=1

(n− k + 1)g

(
1

k + c

)
xk sin(ky) > 0.

Proof of Lemma 5.3. Since sin(0) = 0 and sin θ = Im eiθ we have

n∑
k=1

(n− k + 1)xk sin(wjk) = Im

[
(n+ 1)

n∑
k=0

(
xeiwj

)k − n∑
k=0

kxkeiwjk

]
.(5.1)

By applying the identity
∑m
k=0 y

k = 1−ym+1

1−y and simplifying, the right-hand side of

(5.1) becomes

Im

[
(n+ 1)

1− xn+1eiwj(n+1)

1− xeiwj
− x d

dx

n∑
k=0

(
xeiwj

)k]

= Im

[
(n+ 1)(1− xeiwj )− x(1 + xn+1)eiwj

(1− xeiwj )2

]
.(5.2)

Multiplying out the numerator in (5.2) and using Im
(
a
b

)
= Im

(
ba
|b|2

)
gives us

Im

[
(n+ 1)(1− xeiwj )− x(1 + xn+1)eiwj

(1− xeiwj )2

]
= Im

[
1

|1− xeiwj |4
{
n+ 1− x(n+ 2 + xn+1)eiwj − 2(n+ 1)xe−iwj

+2x2(n+ 2 + xn+1) +(n+ 1)x2e−2iwj − x3(n+ 2 + xn+1)e−iwj
}]

(5.3)



10 R.W. Barnard, K. Pearce, W. Wheeler

Now, taking the imaginary part and applying the trigonometric identity sin(2y) =
2 sin(y) cos(y), (5.3) becomes

1

|1− xeiwj |4
{
−x(n+ 2 + xn+1) sin(wj) + 2(n+ 1)x sin(wj)

−(n+ 1)x2 sin(2wj) + x3(n+ 2 + xn+1) sin(wj)
}

=
x sin(wj)

|1− xeiwj |4
{

(x2 − 1)(n+ 2 + xn+1) + 2(n+ 1)(1− x cos(wj))
}
.

Proof of Lemma 5.4. For z = xeiwj ,

Cn(z)(zn+1 − 1) =

n∑
k=0

n− k + 1

n+ 1
g

(
1

k + c

)
xkeiwjkxn+1e−i(n+1)wj

−
n∑
k=0

n− k + 1

n+ 1
g

(
1

k + c

)
xkeiwjk

= −
n∑
k=0

n− k + 1

n+ 1
g

(
1

k + c

)
xk(xn+1 + 1)eiwjk

≡ T (x).

Taking the imaginary part of T gives us

Im(T (x)) = −
n∑
k=0

n− k + 1

n+ 1
g

(
1

k + c

)
xk(xn+1 + 1) sin(wjk).

It suffices to show that Im(T (x)) < 0 for x > 0, j = 0, 1, . . . , bn+1
2 c− 1. Im(T (x)) < 0

if and only if
∑n
k=1(n − k + 1)g

(
1
k+c

)
xk sin(wjk) > 0. By Lemma 5.2, it suffices

to show that
∑n
k=1(n − k + 1)xk sin(wjk) > 0 for x > 0. First, we will show that∑n

k=1(n− k + 1)xk sin(wjk) > 0 for x ≥ 1, n ≥ 2. By Lemma 5.3,

n∑
k=1

(n− k + 1)xk sin(wjk) =
x sin(wj)

|1− xeiwj |4
pj(x),

where

pj(x) = (x2 − 1)(n+ 2 + xn+1) + 2(n+ 1)(1− x cos(wj)).

Since sin(wj) > 0 for j = 0, 1, . . . , bn+1
2 c − 1, we need to show that pj(x) > 0 for

x > 0. First, for x = 1,

pj(1) > 0, 0 ≤ j ≤
⌊
n+ 1

2

⌋
− 1, n ≥ 2.

For x > 1,

pj(x) > (x2 − 1)(n+ 2 + xn+1) + 2(n+ 1)(1− x)

> (x− 1) [2(n+ 3)− 2(n+ 1)]

> 0.
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For x ∈ (0, 1), first consider n−1
4 ≤ j ≤ bn+1

2 c − 1. So that wj ∈
[
π
2 , π

)
and

cos(wj) ≤ 0. Then,

pj(x) ≥ (x2 − 1)(n+ 2 + xn+1) + 2(n+ 1)

> n− xn+1

> 0, n ≥ 2.

For x ∈ (0, 1) and 0 ≤ j ≤ n−1
4 − 1, we have that wj ∈ (0, π2 ) and cos(w0) ≥

cos(wj). So that

−2(n+ 1)x cos(w0) ≤ −2(n+ 1)x cos(wj)

which implies

p0(x) ≤ pj(x).

Now, p0(x) =
|1−xeiw0 |4
x sin(w0)

∑n
k=1(n−k+1)xk sin(w0k) > 0 for x > 0, since sin(w0k) > 0

for k = 1, . . . , n. Therefore, pj(x) > 0 for x ∈ (0, 1), wj ∈
(
0, π2

)
.

Proof of Lemma 5.5. It is sufficient to show that

n∑
k=0

(n− k + 1)(−x)
k
> 0(5.4)

for x > 0, because (5.4) implies

n∑
k=0

(n− k + 1)yk(−x)
k
> 0

for x > 0, y > 0, which in turn implies, adapting the argument in the proof of Lemma
5.2, the conclusion of the lemma. However, we can write

n∑
k=0

(n− k + 1)(−x)
k

=
1 + 2x+ n+ nx+ (−x)

n
x2

(1 + x)2

which implies the positivity of (5.4).

6. Proofs of Theorem 2.2 and Corollary 1. Proof of Theorem 2.2. We
first apply Rouché’s Theorem to show that Cn has exactly one zero in each of the

sectors: (2j+1)π
n+1 < arg(z) < (2j+3)π

n+1 , j = 0, 1, . . . , bn2 c − 1, n ≥ 5.

Let h(z) = i(zn+1 − 1) and let Γ be the following contour: Γ is the line segment
z = xeiwj , 0 ≤ x ≤ R, followed by the arc z = Reiθ, wj ≤ θ ≤ wj+1, followed

by the line segment z = xeiwj+1 , 0 ≤ x ≤ R, where wj = (2j+1)π
n+1 . The zeros of h

are z = ei
2πk
n+1 , k = 0, 1, . . . , n. Then, h has exactly one zero in each of the sectors

(2j+1)π
n+1 < arg(z) < (2j+3)π

n+1 , − (2j+3)π
n+1 < arg(z) < − (2j+1)π

n+1 , j = 0, 1, . . . , bn2 c − 1,
n ≥ 5.
Now, it is clear that the following statements are equivalent

|Cn + h| < |Cn|+ |h|
Cnh 6= λ ≥ 0.



12 R.W. Barnard, K. Pearce, W. Wheeler

Hence, we need to show that Cn(z)
(
i(zn+1 − 1)

)
6= λ on Γ, where λ ≥ 0, or equiva-

lently, Cn(z)
(
zn+1 − 1

)
6= iλ, λ ≥ 0. Fix n ≥ 5. Choose R > 1 so that the zeros of

Cn are contained in |z| < R and such that Cn(z)
(
zn+1 − 1

)
6= iλ, λ > 0, by Lemma

5.1. Then, Cn(z)
(
zn+1 − 1

)
6= iλ, for λ ≥ 0, z = Reiθ, θ ∈ (0, π).

Now we need to show for n ≥ 5 that for z = xeiwj , 0 ≤ x ≤ R, wj = (2j+1)π
n+1 ,

j = 0, 1, . . . , bn+1
2 c − 1,

Cn(z)
(
zn+1 − 1

)
6= iλ λ ≥ 0,

and in the case that n is even, that for z = −x, 0 ≤ x ≤ R,

Cn(z)
(
zn+1 − 1

)
6= iλ λ ≥ 0.

For x = 0,

Cn(0)
(

0n+1 − 1
)

= −g
(

1

c

)
6= iλ, λ ≥ 0.

For x > 0, we have by Lemma 5.4 that

Cn(z)
(
zn+1 − 1

)
6= iλ

for λ > 0, z = xeiwj . For λ = 0, suppose that Cn(z0)
(
zn+1
0 − 1

)
= 0, for some

z0 = x0e
iwj , x0 > 0. Then, Cn(z0) = 0 or zn+1

0 − 1 = 0. But, zn+1− 1 6= 0 on the rays
z = xeiwj , x ≥ 0. If Cn(z0) = 0, then Im (Cn(z0)) = 0. But for z = xeiwj ,

Im (Cn(z)) =

n∑
k=0

n− k + 1

n+ 1
g

(
1

k + c

)
xk sin(wjk) > 0

for x > 0, by the proof of Lemma 5.4.

Thus, Cn(z)
(
zn+1 − 1

)
6= iλ for λ ≥ 0, z = xeiwj , 0 ≤ x ≤ R, wj = (2j+1)π

n+1 ,

j = 0, 1, . . . , bn+1
2 c − 1, n ≥ 5.

In the case that n is even, Lemma 5.5 implies that Cn(z) 6= 0 for z = −x, x ≥ 0.
Hence,

Cn(z)
(
zn+1 − 1

)
6= iλ

for λ ≥ 0, z = −x, x ≥ 0.
This gives us that Cn has bn2 c zeros in the upper half plane, and bn2 c zeros in the

lower half plane, since Cn has real coefficients. This also tells us that the maximum
angle between two “consecutive” zeros in the upper half plane or two “consecutive”
zeros in the lower half plane is 4π

n+1 . Also, the maximum angle between two “consecu-
tive” zeros where one zero is in the upper half plane and the other zero is in the lower
half plane is 6π

n+1 .
To show that the convex hull of the zeros of Cn contains the unit disk, consider

the points rje
iαj , rj > 1, j = 1, . . . , n that are distributed around the unit circle
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in the sectors (2j+1)π
n+1 < arg(z) < (2j+3)π

n+1 and in the sectors − (2j+3)π
n+1 < arg(z) <

− (2j+1)π
n+1 , j = 0, . . . , bn2 c. Let r = min {r1, r2, . . . , rn} , H1 be the convex hull of{

reiα1 , . . . , reiαn
}
, and H2 be the convex hull of

{
r1e

iα1 , . . . , rne
iαn
}
.

Claim: H1 ⊆ H2.
Proof of Claim: By the definition of convex hull, it suffices to show that reiαj ∈ H2

for j = 1, . . . , n. For n ≥ 5, 0 ∈ H2. This implies that the line segment connecting 0
and rje

iαj is in H2. Since r ≤ rj , reiαj ∈ H2. Thus, H1 ⊆ H2.
For n ≥ 6, let rje

iαj , 0 < α1 < α2 < · · · < αn < 2π be the zeros of Cn.
Let r = min {r1, . . . , rn} and consider the points reiαj j = 1, . . . , n. For the convex
hull of

{
reiα1 , . . . , reiαn

}
to contain the unit disk, the line segment connecting two

“consecutive” points reiαj and reiαj+1 must not intersect the unit circle. For the line
segment not to intersect the unit circle, we need

r ≥ 1

cos
[
1
2 (αj+1 − αj)

] , 0 < αj+1 − αj <
π

2
.

Since the maximum angle between two “consecutive” zeros of Cn(z) is 6π
n+1 , it suffices

to show that

r ≥ 1

cos
(

3π
n+1

) , n ≥ 6.

From the result of Anderson, Saff, and Varga, we have

r ≥ min
0≤k<n

(n−k+1)g( 1
k+c )

n+1

(n−k)g( 1
k+c+1 )

n+1

≥ 1

cos
(

3π
n+1

)
if and only if

(n− k + 1)g

(
1

k + c

)
cos

(
3π

n+ 1

)
− (n− k)g

(
1

k + c+ 1

)
≥ 0(6.1)

for k = 0, 1, . . . , n− 1. Thus, Theorem 2.2 is proved.

Proof of Corollary 1. Fix m ≥ 7 and take g(x) = xm. Let Hm
n denote the convex

hull of the zeros of
∑n
k=0

n−k+1
n+1

zk

(k+1)m and H̃m
n denote the convex hull of the zeros

of
∑n
k=0

n−k+1
n+1

zk+1

(k+1)m . By the proof of Remark 1, we have that Hm contains the unit

disk for n ≥ 14. As in the proof of Theorem 2.2, we have that 0 ∈ Hm
n for n ≥ 5.

Therefore, Hm
n = H̃m

n , for n ≥ 5. By successively applying Lucas’ Theorem (see [10],
p. 22), we get

Hm
n = H̃m

n ⊇ Hm−1
n = H̃m−1

n ⊇ · · · ⊇ H7
n.

For n = 6, . . . , 13, the condition

(n− k + 1) cos

(
3π

n+ 1

)
1

(k + 1)7
− (n− k)

1

(k + 2)7
≥ 0(6.2)

k = 0, 1, . . . , n−1 can be verified directly. Thus, Hm
n contains the unit disk for n ≥ 6,

m ≥ 7.
A similar argument can be made to show for the cases 2 ≤ m < 7 that condition

(6.2) can be verified directly with m = 7 reduced to m = 2 for n = 9, . . . , 13. For
the remaining cases, it can be explicitly shown that the convex hull of the zeros of∑n
k=0

n−k+1
n+1

zk

(k+1)m contain the unit disk.
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7. Extentions to Polynomial Approximations Generated by Convolu-
tions with Positive Coefficient Operators. Let pn(z) =

∑n
k=0 dnkz

k be a se-
quence of polynomial operators with non-negative coefficents dnk such that for f ∈ V
we have that pn ∗ f → f as n→∞ where pn ∗ f denotes the usual Hadamard convo-
lution. The parital sum operators, Sn(z) =

∑n
k=0 z

k, and the Cesàro sum operators

of order γ, Cγn =
∑n
k=0

 n− k + γ
n− k


 n+ γ

n

 zk are examples of such polynomial operator

sequences.
The results in Theorem 2.2 can be extended to polynomial approximations via

other operator sequences than just the first order Cesàro sum operators. The proofs
of the auxiliary lemmas which lead to Theorem 2.2 required only the non-negativity
of the coefficients dnk and the non-negativity of the closed forms for the sums

n∑
k=1

dnkx
k sin(ωjk)

in Lemma 5.3 and

n∑
k=0

dnk(−x)
k
> 0

in Lemma 5.5.
In Theorem 2.2, the proof for controlling the distribution of the arguments of

the zeros of pn ∗ f depended directly on the validity of the auxiliary lemmas. The
analogous condition which would arise for controlling moduli of the zeros of pn ∗ f
would be that

dnkg

(
1

k + c

)
cos

(
3π

n+ 1

)
− dn,k+1g

(
1

k + c+ 1

)
≥ 0

for k = 0, 1, . . . , n− 1.
The specific numerical conclusions in Corollary 1 and in the Remarks depended

heavily on the polynomial operators pn being the first order Cesàro sum operators.
Analogous numerical conclusions would arise for other choices of polynomial operators
with non-negative coefficents.

8. Appendix – Proofs of Remarks. Remark 1. First,
(n−k+1) cos( 3π

n+1 )
(k+c)j −

n−k
(k+c+1)j ≥ 0 if and only if

(k + c+ 1)j(n− k + 1) cos

(
3π

n+ 1

)
− (n− k)(k + c)j ≥ 0.(8.1)

Let qj = (k + c+ 1)j(n− k + 1) cos
(

3π
n+1

)
− (n− k)(k + c)j . For j = 0,

q0 = (n− k + 1) cos

(
3π

n+ 1

)
− (n− k)

≥ (n+ 1) cos

(
3π

n+ 1

)
− n > 0
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for n ≥ 44. For j = 1,

q1 =

[
1− cos

(
3π

n+ 1

)]
k2 + (n− c)

[
cos

(
3π

n+ 1

)
− 1

]
k

+(c+ 1)(n+ 1) cos

(
3π

n+ 1

)
− nc.

Since q1 is a quadratic function in k, its minimum occurs at k = n−c
2 . The minimum

value of q1 is

q1

(
n− c

2

)
=

(
n+ c+ 2

2

)2

cos

(
3π

n+ 1

)
−
(
n+ c

2

)2

.

Since cos(x) > 1− x2

2 for x > 0, we have

q1

(
n− c

2

)
>

(n+ c+ 2)2

4

[
1− 1

2

9π2

(n+ 1)2

]
− (n+ c)2

4

> 4(n+ 1)

[
1− 1

2

9π2

(n+ 1)2

]
− 9π2

2
> 0

for n ≥ 14.
Now, we will show that qj < qj+1 for j ≥ 0. Simplifying the difference qj+1 − qj

gives

qj+1 − qj > (k + c+ 1)j
[
(n− k + 1) cos

(
3π

n+ 1

)
(k + c)− (n− k)(k + c− 1)

]
.

Now, let

l(k) = (n− k + 1) cos

(
3π

n+ 1

)
(k + c)− (n− k)(k + c− 1)

=

[
1− cos

(
3π

n+ 1

)]
k2 +

[
(n+ 1) cos

(
3π

n+ 1

)
− c cos

(
3π

n+ 1

)
− n+ c− 1

]
k

+(n+ 1) cos

(
3π

n+ 1

)
c− n(c− 1).

Now l′(k) = 0, implies k = n+1−c
2 . Hence,

l

(
n+ 1− c

2

)
=

(n+ c+ 1)2

4
cos

(
3π

n+ 1

)
− (n+ c− 1)2

4
.

Thus, l
(
n+1−c

2

)
> 0 if and only if (n+ c+ 1)2 cos

(
3π
n+1

)
− (n+ c− 1)2 > 0. Now,

(n+ c+ 1)2 cos

(
3π

n+ 1

)
− (n+ c− 1)2 > 4n− 9π2

2

(
n+ 2

n+ 1

)2

≥ 4n− 9π2

2

(
14

13

)2

> 0

for n ≥ 12, c ∈ (0, 1].
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