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Abstract. A homotopy continuation method is applied to solve an inverse
interpolation problem for representing data by a positive sum of decaying

exponentials. The homotopy method transforms the interpolation problem
to a problem of determining the roots of a given polynomial. The relative
effectiveness of the continuation method is contrasted with several other root-

finding schemes.

Transmitted by John Casti

This communication describes the application of a continuation method to the
solution of the exponential interpolation problem. Exponential interpolation prob-
lems are an important and frequently occurring class of problems which have a
history of being numerically intractable. For applications and alternative methods
of solution, the papers of Ruhe [6], Wiscome and Evans [9], and Evans et al. [1]
should be consulted.

The problem of fitting a data set with a sum of exponentials is, in general, a
problem of statistics. However, if the data set is small it is reasonable to ask if
the data can be reproduced exactly, i.e., if the interpolation problem can be solved.
The interpolation problem can, of course, be attacked by Prony’s method, but we
were interested in determining if the problem could be successfully mastered using
the more direct approach of solving the set of nonlinear equations. In [2] we give
a very detailed account of the continuation techniques. In this note we summarize
the results of extensive numnerical simulation. The conclusion is that continuation
methods are indeed competitive for problems of small dimensions under certain
physically reasonable constraints.

The problem is formulated as follows: The expression

y(t) = c1e
−λ1t + · · ·+ cne−λnt

is sampled at 2n equally spaced time intervals

t = ∆t, 2∆t, · · · , 2n∆t,

giving rise to 2n equations in the 2n unknowns c1, · · · , cn, λ1, · · · , λn:
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c1e
−λ1∆t + · · ·+ cne−λn∆t = p1

c1e
−2λ1∆t + · · ·+ cne−2λn∆t = p2

...
c1e

−2nλ1∆t + · · ·+ cne−2nλn∆t = p2n(1)

If we set x1 = e−λ1∆t, x2 = e−λ2∆t, . . . , xn = e−λn∆t, then (1) can be expressed
as

c1x1 + · · ·+ cnxn = p1

c1x
2
1 + · · ·+ cnx2

n = p2

...
c1x

2n
1 + · · ·+ cnx2n

n = p2n(2)

We assume the coefficient variables c1, · · · , cn are positive. This assumption is
standard in the literature and, for many of the applications of exponential interpo-
lation, is physically reasonable. Many of the techniques used to solve this problem,
especially the least squares, become numen intractable without this assumption.
The method we propose, continuation, likewise is unreliable if this assumption is
not made.

We now consider F : R2n → R2n where R2n is 2n dimensional euclidean space
and the jth coordinate function is given by

fj(c1, · · · , cn, λ1, · · · , λn) = c1x
j
1 + · · ·+ cnxj

n − pj

The system of polynomial equations (2) is to be solved by finding the zero of the
mapping F by a continuation method which we now describe. (The description of
this method may be found in greater detail in Section 2 of Miller [3].)

The idea of this method is to use the mapping F to lift curves of the form
(1 − t)F (a), where 0 ≤ t ≤ 1 and a is in a bounded convex set C containing the
solution, to curves x(t) = (x1(t), ..., x2n(t)) which lie in C and for which x(0) = a.
Then, since F (x(t)) = (1− t)F (a), the zero of F is clearly x∗ = x(1). This solution
is found by considering x(t) as a trajectory of the differential equation

F ′(x(t))
dx

dt
= F (a)

with initial condition x(0) = a; the solution is then continued from t = 0 to t = 1.
In order for this method to work it is necessary that two conditions hold. First,

JF (x), the Jacobian of F at x, must be nonzero at points of C. A calculation
found in Martin, Miller, and Pearce [2] shows that JF = 0 occurs only when
c1 = · · · = cn = x1 = · · · = xn = 0 or xi = xj . Inasmuch as the coordinates of the
root of (1) must all be positive, C can be taken to be a region in R2n which consists
of positive coordinates and satisfies inequalities of the form xi < xj for appropriate
choices of i and j.
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Secondly, for a in C, F (a) must fall in St(0), the star of 0, which is defined as
follows: Let ∂C be the boundary of C, and U the nonempty connected component
of R2n \ F (∂C) containing the origin. The point y in U is in St(0) provided the
segment (1 − t)y lies in U for all 0 ≤ t ≤ l. Our experience was that these two
conditions were met in all test problems we considered.

As noted above, to calculate the zero of F we solved

F ′(x(t))
dx

dt
= F (a)

for the trajectory that passes through a, which can be done by making use of
numerical methods. We used two methods in this paper.

The first method used was a packaged differential equation solver ODE described
by Shampire and Gordon [7]. The second method used a predictor-corrector path-
following procedure to trace the covering path from a to the zero of F. The details
of this method will appear in Martin, Miller, and Pearce [2].

The homotopy methods used were compared against various methods of varying
complexity, which were as follows: (1) both direct and modified (quasi-trust-region)
forms of Newton’s method, (2) a package nonlinear solver NS01A written by M.
J. D. Powell [5], and (3) an IMSL package nonlinear solver DNEQNF explained
in the IMSL Math/Library User’s Manual [10], which was based on a MINPACK
subroutine HBRD1 as found in Moré, Garbow, and Hillstrom [4].

The comparisons were carried out on standard sets of 1000 randomly generated
problems for given n of 3 and 4. Newton’s method was by far the weakest; NS01A
was only moderately successful. It solved only 79% of the test problems for n = 3
and 55% for n = 4. DNEQNF did less well yet. It solved only 56% of the test
problems with dimension n = 3, and only 34% with dimension n = 4.

On the other hand, ODE solved all the test problems in dimension n = 3 and 99%
of those in dimension n = 4. We found, however, the program generally stagnated
at dimensions n between 6 and 8.

The predictor-corrector scheme we used was very robust and very fast, and
cheaper to use than ODE. It solved 93% of the problems in dimension n = 3
and 83% in dimension n = 4. Failure invariably was due to coalescing of the xj

components of the solution.
When more general problems for an unknown dimension less than 7 were con-

sidered, predictor-corrector techniques produce very reliable results. For problems
with n > 7, the program suffered difficulties, which suggested that a better predic-
tor, such as a higher order Hermite extrapolator, might be required. [We used a
third order polynomial predictor which was constructed from a form of (two-point)
Hermite extrapolation.]
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