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We consider the complex plane C as a space filled by two different media, separated by the real axis R. We define
H+ = {z : = z > 0} to be the upper half-plane. For a planar body E in C, we discuss a problem of estimating
characteristics of the “invisible” part, E− = E \H+, from characteristics of the whole body E and its “visible”
part, E+ = E ∩ H+. In this paper, we find the maximal draft of E as a function of the logarithmic capacity of
E and the area of E+.
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1 Introduction

We will discuss problems (called iceberg-type problems below) of estimating characteristics of the “invisible” part
of a compact set E in the complex plane C from some known characteristics of the whole set and its “visible” part.
We emphasize from the beginning that the problems we study in this paper are not directly related to (real) physical
icebergs. The problem name reflects the fact that the object under consideration consists of two parts, hidden and
visible, and the question is to recover some of the properties of the hidden part from the visible part. During the
ages a titanic work has been done to solve this problem in its everyday physical setting.

In this paper, we study iceberg-type problems in two-dimensional space, which will be identified as the complex
plane C. Accordingly, C = C ∪ {∞}, H+ = {z : = z > 0}, and H− = {z : = z < 0} will denote the extended
complex plane, the upper half-plane, and the lower half-plane, respectively. The real axis R will play the role of
the surface of interface between H+ and H−.

For any given compact set E in C, we define E+ = E ∩H+ and E− = E ∩H−. The sets E+ and E− denote
the visible and hidden parts of E, respectively.

An accumulative characteristic of any body E surrounded by media is its potential or capacity. In our two-
dimensional setting, the logarithmic capacity will be chosen as the primary characteristic of E. We remind the
reader that the logarithmic capacity, capE, of a compact set E is defined by

− log capE = lim
z→∞

(g(z)− log |z|),

where g(z) denotes Green’s function of the unbounded component D(E) of C \ E having singularity at z = ∞.
Let F be the collection of all continua (= connected compact sets) E in C such that

cap (E) = 1.
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Fig. 1 Two-dimensional iceberg.

For the measured characteristic of a visible part E+ we will choose the mass of E+, which, assuming homo-
geneity of E, is proportional to the area of E+. For E in F , the well known estimates of the logarithmic capacity
show that

0 ≤ area (E+) ≤ area (E) ≤ π(cap (E))2 = π.

Characteristics of the hidden part E− which one may want to control and which are of a particular importance,
include: the draft of the iceberg H(E), the width of the invisible part of the iceberg w(E), and the safe distance
from the iceberg d(E). Figure 1 illustrates these characteristics while the precise definitions are as follows:

H(E) = max (−=(z)), (1.1)

where the maximum is taken over all z in E,

w(E) = max (<(z2 − z1)), (1.2)

where the maximum is taken over all z1, z2 in E−, and

d(E) = max (<(z2))− sup (<(z1)), (1.3)

where the maximum is taken over all z2 in E− and the supremum is taken over all z1 in E+.

Then, the extremal problem for each of the functionals (1.1), (1.2), and (1.3) is to find its maximal value over
the class F and describe all possible extremal continua. We define

(a) H(F) = maxH(E) (b) w(F) = maxw(E) (c) d(F) = max d(E), (1.4)

where in each case the maximum is taken over all sets E in F .
Our main goal in this paper is to give a complete solution to problem (1.4)(a). Problems (1.4)(b) and (1.4)(c)

along with some other questions will be discussed in the last section.

As is well known, problems on the logarithmic capacity of simply-connected continua can be reformulated as
problems about functions in the class Σ′ of univalent functions

f(z) = z−1 + a0 + a1z + · · · , (1.5)
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which are analytic in the unit disk D, except for a simple pole at z = 0. For f in Σ′, define Ef = C \ f(D) and
define Σ′0 = {f ∈ Σ′ : 0 ∈ Ef}.

We will solve problem (1.4)(a) by solving its reformulated dual problem for the class Σ′0. There is a technical
advantage in shifting to the dual problem in that the analytical and constructional difficulties which surround the
dual problem are more tractable than those in the original setting. The precise formulation of the dual of the
maximal draft problem (1.4)(a) is the following problem on the maximal omitted area for the class Σ′0. For any
given real h such that 0 < h < 4, find

A(h) := max area (Ef ∩ {w : <w > h}), (1.6)

where the maximum is taken over all f in Σ′0, and find all functions f in Σ′0 extremal for (1.6). Thus, the question
is, for any given h, such that 0 < h < 4, to maximize the area omitted by the functions f in Σ′0 in the half-plane
Hh := {w : <w > h}.

We note here that our parameter h, which is equal to the horizontal distance from w = 0 to the half-plane Hh,
gives as well the value of the maximal draft of icebergs with visible area A = A(h). In addition, in Corollary 1.2
(below) we show that the extremal configuration for problem (1.4)(a) coincides with the extremal configuration
for problem (1.6) up to rotation and translation.

For convenience we define Af (h) = area (Ef ∩Hh). The maximal omitted area problem (1.6) is solved by the
following theorem.

Theorem 1.1 Let h satisfy 0 < h < 4 and let f belong to Σ′0. Then,

Af (h) ≤ πβ2 − 2βhr(1− r2)

∫ 1

τ

(
t(1− t2)

√
1− τ2t2

(r2 + t2)2
√
t2 − τ2

− (1− t2)
√
t2 − τ2

t(1 + r2t2)2
√

1− τ2t2

)
dt, (1.7)

where r = r(h) is the solution to the equation

h = 2βr(1− r2)

∫ τ

0

t(1− t2)
√

1− τ2t2

(r2 + t2)2
√
τ2 − t2

dt, (1.8)

which is unique for 0 < r < 1 and where

τ =

√
(1 + r2)

√
2− 2r2 + r4 − (1 + r4)

1 + 3r2
(1.9)

and

β =
4r
√
r2 + τ2)

(1 + r2)2
√

1 + τ2r2)
. (1.10)

Equality occurs in (1.7) if and only if f = fh with fh(z) = F (ψ−1r (z)) with r defined by (1.8), where

z = ψr(s) =
(1− r2)s− r(1− s2)

(1− r2)s+ r(1− s2)
, s ∈ D+ := {s ∈ D : < s > 0}, (1.11)

maps the semidisk D+ conformally onto the unit disk D and

F (s) = −2βr(1− r2)

∫ s

0

t(t2 + 1)
√

1 + τ2t2

(t2 − r2)2
√
t2 + τ2

dt (1.12)

with the principal branches of the radicals and with τ and β defined by (1.9) and (1.10).
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Fig. 2 Maximal omitted area A(h).

Theorem 1.1 shows that the maximal omitted area A(h) is given by the explicit expression in the right-hand
side of (1.7) with r, τ , and β defined by (1.8), (1.9), and (1.10), respectively. Its graph shown in Figure 2 suggests,
and we will prove this in Lemma 2.1 in Section 2, that A(h) strictly decreases from π to 0 as h runs from 0 to 4.
Therefore, the inverse, h = Ψ(A), of the function A(h) is well defined on 0 ≤ A ≤ π.

Corollary 1.2 If E ∈ F has the visible area A, 0 < A < π, i.e. if area (E+) = A, then the draft of E is
restricted by

H(E) ≤ Ψ(A), (1.13)

where the function Ψ is defined above.
Equality occurs in (1.13) if and only if E coincides with the continuum i(Efh − h), where h = Ψ(A) and fh is

given in Theorem 1.1, up to a horizontal drift.

The extremal shapes E(h) = Efh for some typical values of h are displayed in Figure 3. As in previous works
on this subject (see [1]- [9]) the boundary ∂E(h) consists of the so-called free boundary Lfr that is an open Jordan
arc in Hh having its ends at the points h± ia for some a, where 0 < a < 4 and the non-free boundary Lnf , which
consists of a horizontal segment [0, h] and two vertical segments [h, h + ia] and [h, h − ia], see Figure 3. The
precise definitions will be postponed until Section 2.

The function z = ψ(s) defined by (1.11) with 0 < r < 1 maps the semidisk D+ conformally onto D such that
ψ(r) = 0. This reveals the role of the parameter r. The parameters τ and β defined by (1.9) and (1.10) also have
special meanings. Namely, the function F (s) maps the segments [−i,−iτ ] and [iτ, i] onto the vertical segments
of the boundary of the corresponding extremal configuration, see Figure 3. In addition, we will prove in Section 2
for an extremal function fh that |f ′h(eiθ)| = β for all eiθ in the free arc lfr = f−1h (Lfr).

To prove Theorem 1.1, we apply techniques developed in [9], [6], and [7]. These techniques use symmetrization-
type transformations to prove some a priori smoothness of the boundary, which in turn allows us to apply Julia-
type local variations to find boundary values of the extremal function. To show that the extremal function can be
recovered from its boundary values and is unique for every h, we prove in Section 4 several monotonicity lemmas.
In each case, we use a Sturm sequence argument as an essential tool in our proofs.

We want to mention two other alternative methods, which may work in the omitted area problems studied in this
paper. The first method is based on the Alt-Caffarelli variational technique which was developed by J. Lewis in
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[16]. His approach does not require any a priori smoothness and has been found to be very efficient for omitted area
problems, see [16] and [4]. The second approach, which was applied in [2] and [8], uses Steiner symmetrization
to reduce the problem to the class of typically-real functions. Then, the well-known integral representation for this
class could be used to characterize the extremal functions.

2 Extremal configurations and functions

In this section, we collect preliminary results about existence and geometric properties of extremal functions and
configurations. For notational convenience, we define Dr(w) = {z : |z − w| < r}, with Dr = Dr(0), and
lx = {z : < z = x}; that is, Dr(w) is the disk centered at w of radius r and lx is the vertical line through the point
x on the real axis.

Lemma 2.1 (a) For every h, where 0 ≤ h ≤ 4, there exists f in Σ′0 such that Af (h) = A(h). In addition,
A(h) is continuous and strictly decreasing in 0 ≤ h ≤ 4.

(b) If f is extremal for A(h), then Ef = C \ f(D) possesses Steiner symmetry with respect to R and circular
symmetry with respect to the ray R0 := {z : < z ≥ 0}.

(c) For 0 < h < 4, the boundary ∂Ef consists of a free boundary Lfr and non-free boundary Lnf . The non-
free boundary Lnf consists of a horizontal segment I(h) = [0, h] and two vertical segments (possibly degenerate)
v+f = [h, h+ iaf ] and v−f = [h, h− iaf ] with some 0 ≤ af < 4 depending on f .

The free boundary Lfr is an open Jordan rectifiable arc in Hh joining the points h ± iaf . In addition,
L̂ = Lfr ∪ [−iaf , iaf ] is a closed Jordan curve that satisfies the following Lavrent’ev condition:

length(J(w1, w2)) ≤ C|w1 − w2| for w1, w2 in L̂, (2.1)

where C is a constant independent of w1, w2 and J(w1, w2) denotes the shortest arc of L̂ between w1 and w2.
Proof. (a) Since the omitted area functional Af (h) is upper semi-continuous, the existence of an extremal

function, at least one for each h, follows from the compactness of the class Σ′0. Since Ef ⊂ {w : |w| ≤ 4} for all
f in Σ′0, a similar compactness argument easily implies the continuity of A(h).

Since for any given f in Σ′0, the area Af (h) does not increase in 0 ≤ h ≤ 4, the non-strict monotonicity of
A(h) is obvious. Let 0 ≤ h1 < h2 ≤ 4. Then, it follows from the property of the free boundary in part (c), which
is proved below, that if f is extremal for A(h2), then f can not be extremal for A(h1). Therefore, A(h) is strictly
decreasing on 0 ≤ h ≤ 4.

(b) Symmetry properties can be established via a standard argument using appropriate Steiner and circular
symmetrizations, cf. [9], [6], [7].

(c) Symmetry properties of the extremal configurations together with the subordination principle, see [14],
imply the assertion about the non-free boundary Lnf .

To rule out the case that Lfr consists of multiple arcs in Hh having their ends on the real axis, we apply
polarization. For the definition and properties of this transformation the reader may consult [11], [18], [9].

Let f in Σ′0 be an extremal for A(h) and let p = maxw∈Ef
{<w} and ph = (p + h)/2. For real τ , let

E+
f,τ = Ef ∩ Hτ , E−f,τ = Ef \ Hτ , and let E∗f,τ denote the set symmetric to E+

f,τ w.r.t. the vertical line
lτ = {w : <w = τ}. We claim that Ef satisfies the following polarization property (cf. [9]):

E∗f,τ ⊂ E−f,τ for all τ such that ph ≤ τ < p. (2.2)

Indeed, if E∗f,τ 6⊂ E−f,τ for some τ , ph ≤ τ < h, then Êpf,τ 6= Ef , where Êpf,τ denotes the polarization of Ef
into the half-plane H−h . It is also obvious that Êpf,τ is not a reflection of Ef in the line lτ . Then, the principle of
polarization implies the following strict inequality

cap (Êpf,τ ) < capEf ,

which easily leads to a contradiction to our assumption that f is extremal for A(h).
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Fig. 3 Extremal shapes E(h).

Now the symmetry properties of Ef when combined with the polarization property (2.2) show that Lfr is an
open Jordan arc in Hh joining the points h± iaf with some 0 ≤ af < 4 depending on f .

Next, since Ef is bounded, Steiner symmetric w.r.t. R, and circularly symmetric w.r.t. R0, the proof of
Lemma 2.2 in [7] shows that L̂ satisfies the Lavrent’ev condition (2.1). In particular, L̂ and therefore Lfr are
rectifiable. The proof of the lemma is complete. �

For f in Σ′0 which is extremal for A(h), we define lfr = {eiθ : |θ| < θ1} be the “free arc”; that is, lfr is
the preimage of Lfr under the mapping f . Similarly, we define l±v = f−1(v±f ) and l±h = f−1(I±(h)), where
I+(h) and I−(h) denote, respectively, the upper part and the lower part of the segment I(h). We also define
e±iθ1 = f−1(h± iaf ) and e±iθ2 = f−1(h± i0). Also, we define lv = l+v ∪ l−v and lh = l+h ∪ l

−
h .

Lemma 2.2 For a given h, 0 < h < 4, let f in Σ′0 be extremal for A(h). Then, there exists a positive β such
that

(a) For every sufficiently small positive ε, f ′ is bounded on the compact set D \ {Dε ∪ Dε(eiθ2) ∪ Dε(e−iθ2)};
(b) |f ′(z)| = β if z ∈ lfr;
(c) |f ′(eiθ)| strictly increases from β to∞ as θ runs from θ1 to θ2;
(d) The vertical non-free boundary is not degenerate, i.e. af > 0;
(e) |f ′(z)| → β as z → eiθ1 such that z ∈ D.

Proof. (a) First we prove that f ′ is bounded near lfr. If not then there is eiθ0 in lfr and a sequence zk → eiθ0

such that zk ∈ D for all k in N and f ′(zk)→∞.
Let ϕk denote the conformal mapping from D onto the domain D \ Dεk(zk) with εk = 1− |zk| normalized by

ϕk(0) = 0, ϕ′k(0) > 0 and define fk = βkf ◦ ϕk with βk = 1− π2ε2k/6. One can easily verify (see, for example,
Lemma 3.1 in [9]) that fk ∈ Σ′0. Since 0 < h < 4 and diam (Efk) ≤ 4 by the well-known Faber’s inequality, an
elementary geometric estimate gives

area (Efk \Hh) ≤ 4π2ε2k. (2.3)

Using (2.3) and the mean value property of the subharmonic function |f ′(z)|2, we can estimate the area Afk(h)
as follows:

Afk(h) = β2
k (Af (h) + area (f(Dzk(εk))))− area (Efk \Hh) (2.4)

≥β2
k

(
Af (h) + πε2k|f ′(zk)|2

)
− 4π2ε2k ≥ Af (h) +

(
π|f ′(zk)|2 − C

)
ε2k + o(ε2k),
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with some constant C > 0 independent of f . Since f ′(zk) → ∞ as k → ∞, (2.4) contradicts the extremality of
f . Therefore, f ′ is bounded near lfr.

(b) First we show that |f ′(z)| is constant a.e. on lfr. Since Lfr is Jordan locally rectifiable, it follows that the
non-zero finite limit

f ′(ζ) = lim
z→ζ,z∈D

f(z)− f(ζ)

z − ζ
6= 0,∞ (2.5)

exists a.e. on lfr; see [17, Theorem 6.8, Exercise 6.4.5]. Assume that

0 < β1 = |f ′(eiν1)| < |f ′(eiν2)| = β2 <∞ (2.6)

for eiν1 , eiν2 ∈ lfr. Note that (2.5) and (2.6), combined with the fact that f ′ is bounded near lfr, allow us to apply
the two-point variational formulas, see [9, Lemma 10] or [6, Lemma 5]. Namely, for fixed positive k1, k2 such
that 0 < k1 < 1 < k2 and k1β−11 > k2β

−1
2 and fixed ϕ > 0 small enough, we consider the two-point variation

D̃ of D = f(D) centered at w1 = f(eiν1) and w2 = f(eiν2) with inclinations ϕ and radii ε1 = k1ε, ε2 = k2ε,
respectively; see [6, Section 2]. Computing the change in the area by [6, formula (2.11)], we find

Area (C \ D̃)−AreaEf =
2πϕ− sin 2πϕ

2 sin2 πϕ
ε2(k21 − k22) + o(ε2) > 0 (2.7)

for all ε > 0 small enough. Similarly, applying [6, formula (2.10)], we get

cap (C \ D̃)

cap (Ef )
=

[
ϕ(2 + ϕ)

6(1 + ϕ)2
k21
β2
1

− ϕ(2− ϕ)

6(1− ϕ)2
k22
β2
2

]
ε2 + o(ε2) < 0 (2.8)

for all ε > 0 small enough and ϕ chosen such that the expression in the brackets is positive.
Inequalities (2.7) and (2.8) lead to a contradiction to the extremality of f for A(h), via a standard subordination

argument. Thus |f ′(eiθ)| = β a.e. on lfr with some β > 0.
To prove that |f ′(eiθ)| = β everywhere on lfr, we consider the auxiliary conformal mapping

g = ϕ ◦ f ◦ kτ with ϕ(w) = 1/(w − ph), (2.9)

where ph is defined in the proof of Lemma 2.1, and with

kτ (ζ) = k−1(τk(ζ)), where k(ζ) = ζ/(1− ζ)2 and τ = 1/ sin2(θ2/2).

We note that kτ maps the slit disk D′ = D\[−1,−r0], where r0 = (
√
τ−
√
τ − 1)2, conformally and one-to-one

onto D in such a way that the radial slit is mapped onto the arc lh = {eiθ : |θ − π| ≤ π − θ2}.
Let D′g = g(D′) and let Dg = D′g ∪ ((ph − h)−1,−p−1h ]. By the Schwarz reflection principle, the function g

can be continued to a function, still denoted by g, which maps the whole disk D conformally and one-to-one onto
Dg . It follows from Lemma 2.1(c) that Dg is a bounded Jordan domain, whose boundary satisfies the Lavrent’ev
condition (2.1) for some C > 0. Therefore, Dg is a Smirnov domain; see [17, Sections 7.3, 7.4]. Thus, log |g′| can
be represented by the Poisson integral

log |ϕ′(w)f ′(z)k′τ (ζ)| = log |g′(ζ)| = 1

2π

∫ 2π

0

P (r, ψ − t) log |g′(eit)| dt (2.10)

with boundary values defined a.e. on T; see [17, p. 155]. Equation (2.10) easily implies that

|g′(eiψ)| = β|ϕ′(f(kτ (eiψ))||k′τ (eiψ)|

for all eiψ such that kτ (eiψ) ∈ lfr and therefore |f ′(eiθ)| = β for all eiθ ∈ lfr. In addition, (2.10) implies that
log f ′ is bounded on D outside any neighborhoods of the points z = 0, z = −1, and z = e±iθ2 .
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(c) Since Ef is Steiner symmetric w.r.t. R, the strict monotonicity of |f ′| along l+v follows from [9, Lemma 4].
To prove that |f ′(eiθ)| > β for all eiθ ∈ lv \ {0}, we assume that β = |f ′(eiν1)| > |f ′(eiν2)| = β2 with
eiν1 ∈ lfr and some eiν2 ∈ l+v . Then, applying the two-point variation as above, we get inequalities (2.7) and
(2.8), contradicting the extremality of f for A(h), again via a subordination argument. Hence, |f ′(eiθ)| ≥ β for
all eiθ ∈ lv which, when combined with the strict monotonicity property of |f ′|, leads to the strict inequality
|f ′(eiθ)| > β for eiθ ∈ lv .

(d) Assume that af = 0. Then, θ1 = θ2, Lnf = I(h), and L̂ = Lfr ∪ {h}. In addition, |f ′(eiθ)| = β > 0 for
all eiθ ∈ lfr by part (b) of this proof.

In the notation of part (b), we consider the function g = ϕ ◦ f ◦ kτ defined by (2.9), which maps D conformally
onto the domain Dg . As we have mentioned above, log |g′(ζ)| can be represented by the Poisson integral (2.10).

Since |k′τ (eiψ)| → 0 as ψ → π, it follows that |g′(eiψ)| = β|ϕ′(kτ (eiψ))||k′τ (eiψ)| → 0 as ψ → π. Therefore,

log |g′(eiψ)| → −∞ as ψ → π. (2.11)

From (2.10) and (2.11), using the well-known properties of the radial limits of the Poisson integral, we obtain
that

log |g′(−r)| → −∞ as r → 1−. (2.12)

Now we show that g has a finite non-zero angular derivative at ζ = −1. To do this, we construct two comparison
functions f1 and f2. Let f1 map D conformally onto the vertical strip {w : 0 < <w < h} such that f1(0) = h/2,
f1(−1) = h and let g1 = ϕ ◦ f1. Then, of course, g′1(−1) exists and g′1(−1) 6= 0,∞. Since g1(D) ⊂ g(D) and
g1(−1) = g(−1) = 1/(h − ph), we can apply the comparison Theorem 4.14 in [17] to conclude that g has the
angular derivative g′(−1) and

|g′(−1)| = c1|g′1(−1)| where 0 ≤ c1 <∞. (2.13)

Next we construct our second comparison function. We define Kph = Ef ∩Hph and K∗ph be the set symmetric
to Kph w.r.t. the vertical line lph . Define Ω = C \

(
Kph ∪K∗ph

)
, let f2 map D conformally onto Ω such that

f2(0) =∞, f2(−1) = h, and let g2 = ϕ ◦ f2. Since the boundary ∂Ω is analytic in a vicinity of w = h, it follows
that g′2(−1) exists and g′2(−1) 6= 0,∞.

It follows from equation (2.2) in the proof of Lemma 2.1(c) that g(D) ⊂ g2(D). Now, Theorem 4.14 in [17]
implies that

|g′2(−1)| = c2|g′(−1)| where 0 ≤ c2 <∞.

This together with (2.13) shows that the finite non-zero angular derivative g′(−1) exists. Now Proposition 4.7
[17] implies that g′(ζ) has the finite angular limit g′(−1) at ζ = −1 where g′(−1) 6 0. In particular,

|g′(−r)| → |g′(−1)| 6= 0 as r → 1−

contradicting (2.12). This proves that af > 0.
(e) To show that |f ′| is continuous at e±iθ1 , we again use the function g defined by (2.9). Using Theorem 4.14

in [17] with g1 defined in part (d) of this proof as a comparison function, we conclude that the finite angular
derivative g′(k−1τ (eiθ1)), and therefore the angular derivative f ′(eiθ1), exists finitely.

By the reflection principle, f can be continued analytically across l−v . By Lemma 2.1, Ef is Steiner symmetric
w.r.t. R and circularly symmetric w.r.t. R0. Using these facts it is not difficult to see that this analytic continuation,
say f̃ , of f is univalent in the disk U = {z : |z − ε0ei(θ1+θ2)/2)| < ρ0} for a sufficiently small positive ε0 and
ρ0 = |eiθ1/2 − ε0eiθ2/2|. By Proposition 4.9 [17], the function f̃ has the angular derivative f̃ ′(eiθ1) at z = eiθ1 ,
which of course coincides with the angular derivative f ′(eiθ1).

We have l−v ⊂ U . Since |f ′(eiθ)| is monotone and greater than β on l−v , it follows that limθ→θ+1
f ′(eiθ) = β0e

−iθ1

where 0 < β ≤ β0. Therefore,

f ′(z)→ β0e
−iθ1 as z → eiθ1 (2.14)

Copyright line will be provided by the publisher



mn header will be provided by the publisher 9

in any Stolz angle in D with the vertex at eiθ1 . To show that β0 = β, we use the Poisson integral (2.10). Let
ψ1 = arg(k−1τ (eiθ1)). If β0 6= β, then the theorem about radial limits of the Poisson integral implies that

lim
r→1−

log |g′(reiψ1)| = 1

2
lim
ε→0

log |g′(ei(ψ1+ε))g′(ei(ψ1−ε))|.

This implies that |f ′(kτ (reiθ1))| →
√
ββ0 as r → 1−, which together with (2.14) shows that we must have

β0 = β.
Using the Poisson integral (2.10) once more, we conclude that log |g′(ζ)| is continuous for ζ such that |ζ| ≤ 1

and |ζ − k−1τ (eiθ1)| is small enough. Since g = ϕ ◦ f ◦ kτ and ϕ and kτ are conformal in the corresponding
domains the latter implies (e).

The proof of Lemma 2.2 is complete. �

3 Closed form of the extremal functions and the proof of Theorem 1.1

Lemmas 2.1 and 2.2 provide sufficient information to find a closed form of the function f extremal for A(h) when
0 < h < 4. It is convenient to work in the auxiliary s-plane with z = ψr(s) defined by (1.11). We note that this
auxiliary mapping was already used in [2] to solve the minimal area a2-problem for convex functions.

The function z = ψr(s) maps the semidisk D+ conformally onto D such that

ψr(r) = 0, ψr(i) = eiθ(r),

where

θ(r) = 2 arcsin
2r

1 + r2
. (3.1)

Lemma 3.1 Let f be extremal for A(h), 0 < h < 4, and let Fr(s) = f(ψr(s)), 0 < r < 1. Then, there are
parameters r, τ, β where 0 < r < 1, 0 < τ < 1, and β > 0 such that

F ′r(s) = −2βr(1− r2)s(s2 + 1)(1 + τ2s2)1/2

(s2 − r2)2(s2 + τ2)1/2
(3.2)

with the principal branches of the radicals.

Proof. Let θ1 and θ2 be the angles defined for f as in Section 2. Since θ(r) defined by (3.1) strictly increases in
0 < r < 1, its inverse, r(θ), is well defined. Choose r = r(θ1). For this r, let iτ = ψ−1r (eiθ2). Then, 0 < τ < 1.
By Lemma 2.2, there is a positive β such that |f ′(eiθ)| = β for all |θ| ≤ θ1.

Let Φ(s) = Φ(s; r, τ, β) denote the expression in the right-hand side of (3.2) considered as a function of s ∈ D+

for the values of r, τ , and β chosen above.
It follows from (1.5) and (1.11) that the limit

lim
s→r

(F ′r(s)/Φ(s)) =
4r(r2 + τ2)1/2

β(1 + r2)2(1 + r2τ2)1/2
(3.3)

exists and is finite and non-zero. Using (3.3) one can easily show that the function

g(s) = u(s) + iv(s) := log (F ′r(s)/Φ(s))

is analytic and single-valued on D+.
It follows from Lemma 2.1 and the definition of Φ(s) that g(s) takes real values on the vertical diameter [−i, i]

except its three singularities at the points s = 0, s = iτ , and s = −iτ . By the Schwarz reflection principle, g(s)
can be continued as an analytic multi-valued function in the punctured disk D′ = D \ {0,±iτ}.
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To analyze the nature of the multi-valuedness of g, we compute the periods ω0, ω1, and ω−1 of g at the singu-
larities s = 0, s = iτ , and s = −iτ , respectively.

Since Fr(s) maps the segments [−iτ, 0] and [0, iτ ], each one-to-one onto the horizontal segment [0, h], it follows
that Fr(s) is analytic near s = 0 and its Taylor expansion at s = 0 has the form Fr(s) = Cs2 + · · · where C 6= 0.
Then, we have

F ′′r (s)

F ′r(s)
=

1

s
+ non-negative powers of s.

Using this, we easily find that

ω0 =

∫
|s|=ε

dg(s) =

∫
|s|=ε

(
F ′′r (s)

F ′r(s)
− Φ′(s)

Φ(s)

)
ds = 0

for all sufficiently small positive ε. Similarly, we find

ω1 =

∫
|s−iτ |=ε

dg(s) =

∫
|s−iτ |=ε

(
F ′′r (s)

F ′r(s)
− Φ′(s)

Φ(s)

)
ds = 0.

By symmetry, we also have ω−1 = 0.
Since all periods of g are zero, the function g(s) is analytic and single-valued on D.
We claim that u(s) := < g(s) ≡ 0 on D. To prove this, we test the boundary values of u. For s = eit with

|t| < π/2, using Lemma 2.2(b) and (1.11) we compute

|F ′r(s)| = 2βr(1− r2)
|s2 + 1|
|s2 − r2|2

= |Φ(s)|,

which shows that u(eit) = 0 for |t| < π/2. By Lemma 2.2(e), |f ′(z)| → β as z → eiθ1 . Using the explicit
expressions for ψr and Φ, see (1.11) and (3.2), we easily find that |F ′r(s)/Φ(s)| → 1 as s → i. Thus, u has
boundary value 0 at s = i. By symmetry, u(eit) = 0 everywhere on T.

Since u is harmonic in D and continuous on D, the maximum principle implies that u(s) ≡ 0 on D. Then, of
course, g(s) is constant on D, and this constant has the value 0 since = g(r) = 0 by (3.3). This proves the lemma.
�

Using the closed form (3.2) combined with some computational results, the proofs of which are postponed until
Section 4, we can prove our main theorem.

Proof of Theorem 1.1. If 0 < h < 4, let f be an extremal function for A(h), which exists by Lemma 2.1. Let
Fr(s) = f(ψr(s)) be defined as in Lemma 3.1. Then, F ′r(s) has the form (3.2).

We claim that there is a unique set of parameters r = r(h), τ = τ(h), and β = β(h), for which the function
fh(z) = Fr(ψ

−1
r (z)), with Fr(s) defined by (3.2), is in Σ′0. Then, of course, fh will be the unique extremal for

A(h).
Expanding (3.2) into a Laurent series at s = r, we obtain

F ′r(s) =
A−2

(s− r)2
+
A−1
s− r

+A0 + positive powers of (s− r),

where

A−2 = −β(1− r4)(1 + r2τ2)1/2

2(r2 + τ2)1/2
(3.4)

and

A−1 = −βr(1− r
2)((1 + 3r2)τ4 + 2(1 + r4)τ2 − (1− r2))

2(r2 + τ2)3/2(1 + r2τ2)1/2
.
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Since Fr(s) is a single-valued function in D+, we must have A−1 = 0. This gives

τ =

√
(1 + r2)

√
2− 2r2 + r4 − (1 + r4)

1 + 3r2
,

which is equation (1.9) of Theorem 1.1.
To find β, we use the normalization limz→0(−z2f ′(z)) = 1. Then, using (1.11) and (3.4), we obtain

1 = lim
s→r

(
−ψ2

r(s)
F ′(s)

ψ′r(s)

)
= lim
s→r

(
β(s− r)2(1 + r2)2(1 + τ2s2)1/2

4r2(s− r)2(s2 + τ2)1/2

)
.

From this we find

β =
4r(r2 + τ2)1/2

(1 + r2)2(1 + r2τ2)1/2
,

which is equation (1.10) of Theorem 1.1.
Next, using conditions f(eiθ2) = Fr(iτ) = h, we can find an equation that links r and h:

h =

∫ iτ

0

F ′(s) ds = 2βr(1− r2)

∫ τ

0

t(1− t2)(1− τ2t2)1/2

(t2 + r2)2(τ2 − t2)1/2
dt,

which is equation (1.8) of Theorem 1.1.
Let h(r) denote the right-hand side of (1.8) with τ and β considered as functions of r defined by (1.9) and

(1.10). In Lemma 4.2 in Section 4, we will show that h(r) strictly decreases from 4 to 0 as r runs from 0 to 1.
Therefore, for every h, such that 0 < h < 4, (1.8) has a unique solution r = r(h) whenever 0 < r < 1.

Thus, we have proven that for every 0 < h < 4, there is a unique function fh in Σ′0 extremal for A(h). In
addition, we have shown that the derivative F ′r(s) = f ′h(ψr(s))ψ

′
r(s), where r = r(h) is defined by (1.8), is given

by (3.2). Integrating (3.2), we obtain (1.12).
To complete the proof of Theorem 1.1, we have to find the maximal omitted area A(h). This calculation will

be given in Lemma 4.1 below. �

4 Area functional and monotonicity lemmas

Lemma 4.1 For 0 < h < 4, the maximal omitted area A(h) is given by

A(h) = πβ2 − 2βhr(1− r2)

∫ 1

τ

(
t(1− t2)

√
1− τ2t2

(r2 + t2)2
√
t2 − τ2

− (1− t2)
√
t2 − τ2

t(1 + r2t2)2
√

1− τ2t2

)
dt (4.1)

with r, τ , and β defined in Theorem 1.1.

Proof. Let f be extremal for A(h) and let Fr(s) with r = r(h) be defined for f as in Lemma 3.1. Applying the
standard line integral formula for the area, we find

A(h) =
1

2
=
∫
∂Ef

w̄ dw =
1

2
=
∫ h−ai

h+ai

w̄ dw +
1

2
=
∫
Lfr

w̄ dw = −ha+
1

2
=
∫
Lfr

w̄ dw,

where

a = =f(eiθ1) = =
∫ i

iτ

F ′r(s) ds = βr(1− r2)

∫ 1

τ

2t(1− t2)
√

1− τ2t2

(t2 + r2)2
√
t2 − τ2

dt. (4.2)

Copyright line will be provided by the publisher



12 R.W. Barnard, K. Pearce, and A.Y. Solynin: Iceberg-type Problems

0

1

2

3

4

h

0.2 0.4 0.6 0.8 1
r

0

0.1

0.2

0.3

0.4

0.5

0.6

a

0.2 0.4 0.6 0.8 1
r

Fig. 4 Functions h(r) and a(r).

Now, taking the condition |f ′(z)| = β for z ∈ lfr into account, we find the integral over the free boundary:

1

2
=
∫
Lfr

w̄ dw =
1

2
<
∫ −θ1
θ1

f(eiθ)e−iθf ′(eiθ) dθ =
β2

2
<
∫ −θ1
θ1

f(eiθ)eiθ

e2iθf ′(eiθ)
dθ

= −β
2

2
=
∫
T

f(z)

z2f ′(z)
dz +

β2

2
<
∫ 2π−θ1

θ1

f(eiθ)

eiθf ′(eiθ)
dθ

= −β
2

2
=Res

[
f(z)

z2f ′(z)
, 0

]
+ β2h

∫ θ2

θ1

dθ

|f ′(eiθ)|

= πβ2 + β2h

∫ θ2

θ1

dθ

|f ′(eiθ)|
.

To find
∫ θ2
θ1
|f ′(eiθ)|−1 dθ, we change variables via z = ψr(s) to obtain

∫ θ2

θ1

dθ

|f ′(eiθ)|
=

∫ 1

τ

|ψ′(it)|2

|F ′(it)|
dt =

2r(1− r2)

β

∫ 1

τ

t(1− t2)
√

1− τ2t2

(t2 + r2)2
√
t2 − τ2

dt.

Combining all of these calculations we obtain (4.1). �

After integration, an explicit formulation for the maximal omitted area A(h) can be expressed as a function of r
that is a complicated combination of polynomials, square roots, and logarithms. Although explicit, this form does
not give us any computational advantages. In contrast, to prove the monotonicity of the function h(r) defined by
(1.8), it is useful to express the integral in (1.8) in terms of elementary functions. The graph of h(r) is shown in
Figure 4.

Changing the variables via t2 = τ2x, we can rewrite (1.8) as

h = βr(1− r2)τ

∫ 1

0

(1− τ2x)(1− τ4x)

(r2 + τ2x)2
dx√

(1− x)(1− τ4x)
.
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Expanding the rational function in the integrand into partial fractions and then integrating, yields the following
explicit representation for h = h(r) as a function of r:

h(r) =
4(1− r2)

(
P (1 + r2)− (1 + r4)

)1/2 (
1 + 3r2 + r2(P − 1 + 2r2)Q

)
(1 + r2)2(1 + 3r2)1/2(P − 1 + 2r2)1/2 (r2(P + 1) + 1− r4)

1/2
, (4.3)

where

P = (2− 2r2 + r4)1/2 and Q = log
P (1 + r2) + r2(3− r2)

(1 + r2)(2− P + r2)
. (4.4)

Lemma 4.2 The function h = h(r) defined by (4.3) strictly decreases from 4 to 0 as r runs from 0 to 1.
Proof. Differentiating (4.3), we find

h′(r) =
−16r(1− r2) ((c0 + c1P ) + (d0 + d1P )Q)

D
,

where

c0 = −96r22 + 184r20 + 144r18 − 318r16 − 228r14 + 220r12 + 296r10

+ 868r8 − 436r6 + 84r4 + 64r2 − 14,

c1 = 96r20 − 88r18 − 280r16

+ 34r14 + 410r12 + 334r10 − 50r8 + 398r6 − 58r4 − 38r2 + 10,

d0 = −32r24 + 72r22 + 16r20 − 124r18 − 11r16 + 127r14 + 1703r12

− 3889r10 + 4041r8 − 1475r6 − 347r4 + 361r2 − 58,

d1 = 32r22 − 40r20 − 72r18 + 56r16 + 111r14 + 3r12

+ 1535r10 − 2293r8 + 1125r6 + 121r4 − 235r2 + 41,

and

D = (1 + r2)3(1 + 3r2)3/2P (2− P + r2)(P (1 + r2) + r2(3− r2))

× (P − 1 + 2r2)5/2(P (1 + r2)− 1− r4)1/2(r2(P + 1− r2) + 1)3/2.

It is easily seen that D is non-negative. Hence, to show that h(r) decreases monotonically, it suffices to show
that g = g(r) := (c0 + c1P ) + (d0 + d1P )Q is non-negative for 0 < r < 1.

We will show in Lemma 4.4 below that 0 < Q < 1 for 0 < r < 1. Hence, to show that g(r) is non-negative on
0 < r < 1, it will suffice, in view of the linearity of g in Q, to show that

g0 = (c0 + c1P ) + (d0 + d1P ) · 0 and g1 = (c0 + c1P ) + (d0 + d1P ) · 1

are non-negative for 0 < r < 1. By Lemma 4.3 below, we have s < P < t, where

s =
19

50
r3 − 9

10
r2 +

1

125
r +

2827

2000
and t =

9

25
r3 − 39

50
r2 +

1

100
r +

2829

2000
. (4.5)

Hence, since g0 and g1 are linear in P , then we have

min{c0 + c1s, c0 + c1t} ≤ g0 ≤ max{c0 + c1s, c0 + c1t}

and

min{c0 + d0 + (c1 + d1)s, c0 + d0 + (c1 + d1)t} ≤ g1 ≤ max{c0 + d0 + (c1 + d1)s, c0 + d0 + (c1 + d1)t}.

Since all the comparison expressions in these formulas are polynomials in r with rational coefficients, we can ap-
ply a Sturm sequence argument, see Chapter 5 of [15]. This easily implies that c0+c1s, c0+c1t, c0+d0+(c1+d1)s,
and c0 + d0 + (c1 + d1)t are all non-negative for 0 ≤ r ≤ 1. The proof is complete. �
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Fig. 5 Functions τ(r) and β(r).

Lemma 4.3 Let P be defined by (4.4) and let s and t be defined by (4.5). Then, s < P < t for 0 < r < 1.
Proof. It suffices to show that s2 < P 2 < t2 for 0 < r < 1. We have

P 2 − s2 = r4 − 2r2 + 2−
(

19

50
r3 − 9

10
r2 +

1

125
r +

2827

2000

)2

and

t2 − P 2 =

(
9

25
r3 − 39

50
r2 +

1

100
r +

2829

2000

)2

− r4 + 2r2 − 2.

Using a Sturm sequence argument, we can easily see that both P 2−s2 and t2−P 2 are non-negative for 0 < r < 1.
�

Lemma 4.4 Let Q be defined by (4.4). Then, 0 < Q < 1 for 0 < r < 1.
Proof. It suffices to show that 0 < Q1 < e− 1 for 0 < r < 1, where Q1 = exp(Q)− 1. We will show, in fact,

that 0 < Q1 < 3/2, which is equivalent to showing that Q1/(3/2−Q1) > 0. We can write

Q1

3/2−Q1
=

(4 + 4r2)P − (4 + 4r4)

(9r2 + 10 + 7r4)− (7 + 7r2)P
. (4.6)

It is easily seen from (4.4) that 1 < P <
√

2 for 0 < r < 1. Hence, it is clear that the numerator in (4.6) is
positive. On the other hand, we have

(9r2 + 10 + 7r4)2 − (7 + 7r2)2P 2 = 270r4 + 82r2 + 126r6 + 2 > 0,

which shows that the denominator in (4.6) is positive as well. The lemma is proved. �

All the results established so far were used to prove Theorem 1.1. Now we prove monotonicity properties of
the functions τ = τ(r), β = β(r), and a = a(r). Although not needed for our main proof they provide some
additional information about extremal configurations. The graph of a(r) is displayed in Figure 4 and the graphs of
functions τ(r) and β(r) are displayed in Figure 5.

Lemma 4.5 The function τ = τ(r) defined by (1.9) strictly decreases from
√√

2− 1 to 0 as r runs from 0 to
1.
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Proof. It suffices to work with τ2 = τ2(r). Differentiating τ2 we obtain

dτ2

dr
=

2r

P (1 + 3r2)2
p(r),

where P is defined by (4.4) and

p(r) = −5 + r2 − r4 + 3r6 + (3− 2r2 − 3r4)P.

Hence, it suffices to show that p(r) is negative for 0 ≤ r ≤ 1. It is easily seen that P decreases from
√

2 to 1 as r
varies from 0 to 1. Hence, for 0 ≤ r ≤ 1, we have 1 ≤ P < 3/2. Suppose that

c1(r) = −5 + r2 − r4 + 3r6 + (3− 2r2 − 3r4) · 1,
c2(r) = −5 + r2 − r4 + 3r6 + (3− 2r2 − 3r4) · (3/2).

The linearity of p with respect to P implies that

min{c1(r), c2(r)} ≤ p(r) ≤ max{c1(r), c2(r)}.

Using a Sturm sequence argument, it is easily seen that both c1(r) and c2(r) are negative for 0 ≤ r ≤ 1. Thus,
τ2(r) decreases on 0 ≤ r ≤ 1 and the lemma follows. �

Lemma 4.6 Let β = β(r) be defined by (1.10) with τ = τ(r) defined by (1.9). Then, β strictly increases from
0 to 1 as r runs from 0 to 1.

Proof. It suffices to show that β2 is an increasing function of r, which maps [0, 1] onto [0, 1]. We obtain, after
some algebra,

β2 =
16r2(2r4 + r2 − 1) + 16r2(1 + r2)P

(1 + r2)4(1 + 2r2 − r6) + (1 + r2)4(r4 + r2)P
,

where P is defined by (4.4). Differentiating β2, we find

dβ2

dr
=

32r(1− r2)2(1 + r2)5

P ((1 + r2)4(1 + 2r2 − r6) + (1 + r2)4(r4 + r2)P )2
p(r),

where
p(r) = −4r6 − r4 − 5r2 + 2 + (4r4 + 5r2 − 1)P.

Hence, it suffices to show that p(r) is non-negative for 0 ≤ r ≤ 1. Now using a Sturm sequence argument, one
can finish the proof as in the previous lemma. �

Since r = r(h) is monotonic on 0 < h < 4, the parameters τ and β in the definition of the extremal function
fh of Theorem 1.1 are monotonic functions of h. It is worth mentioning that the third natural parameter, a = a(h),
which gives the length of the vertical segment of the non-free boundary, is not monotonic in h. It is easy to see
that the disk {w : |w − 1| ≤ 1} and segment [0, 4] are the limit extremal configurations for the problem under
consideration. Thus, a = 0 in both limit cases. Our next lemma shows however that a = a(r) considered as a
function of r has only one local maximum on 0 < r < 1.

Lemma 4.7 Let a = a(r) be defined by (4.2) with τ and β defined by (1.9) and (1.10). Then, there is a unique
r1, 0 < r1 < 1, such that a(r) strictly increases as r varies from 0 to r1 and strictly decreases as r varies from r1
to 1.

Proof. Upon integration, a(r) can be expressed as an explicit function of r which is a combination of polynomi-
als, square roots, and arctangents. We give here an argument that is reminiscent of the argument given in the proof
of Lemma 4.2, omitting some of the technical details. For convenience, we set r0 = 53/100 and r2 = 57/100.

Copyright line will be provided by the publisher



16 R.W. Barnard, K. Pearce, and A.Y. Solynin: Iceberg-type Problems

Differentiating a(r) with respect to r we obtain a representation

a′(r) = 4r(1− r2)
(c0 + c1 P ) + (d0 + d1 P )G(r)

D1(r)

where P = (2 − 2r2 + r4)1/2, the functions G and D1 are non-negative on (0, 1) and c0, c1, d0 and d1 are
polynomials in r with rational coefficients. We will show that there exists an r1 such that a′(r) > 0 on (0, r1) and
a′(r) < 0 on (r1, 1).

Using the linearity of the terms c0 + c1 P and d0 + d1 P in P and the estimates on P given in Lemma 4.3, one
can give a Sturm sequence argument to show that c0 + c1 P > 0 and d0 + d1 P > 0 on the interval (0, r0) and that
c0 + c1 P < 0 and d0 + d1 P < 0 on the interval (r2, 1). Hence, a′(r) > 0 on (0, r0) and a′(r) < 0 on (r2, 1).

We define n(r) = (c0 + c1 P ) + (d0 + d1 P )G(r). Differentiating n(r) with respect to r we obtain a represen-
tation

n′(r) = 2rτ2
(c̃0 + c̃1 P ) + (d̃0 + d̃1 P )G(r)

D2(r)

where the function D2 is non-negative on (0, 1), τ is defined by (1.9) and c̃0, c̃1, d̃0 and d̃1 are polynomials in r
with rational coefficients.

Using the linearity of terms c̃0 + c̃1 P and d̃0 + d̃1 P in P and the estimates on P given in Lemma 4.3, one can
give a Sturm sequence argument to show that c̃0 + c̃1 P < 0 and d̃0 + d̃1 P < 0 on the interval (r0, r2) and, hence,
that n(r) is strictly decreasing on the interval (r0, r2) and changes sign exactly once. Consequently, a′(r) changes
sign exactly once on (r0, r2).

The value r1 is the unique solution of n(r) = 0, which lies in the interval (r0, r2). �

5 Some remarks and problems

(a) Omitted area problem. The following problem proposed by A. W. Goodman [13] can be considered as a
prototype of all omitted area problems with geometrical constraints: Find A := inff∈S {Area (f(D) ∩ D)} over
the standard class S of univalent functions f in D with f(0) = 0, f ′(0) = 1.

To our knowledge, this problem remains open although many important properties of extremal functions have
been proved since 1949. Here we summarize some of them. If f ∈ S, f is extremal for A and f(1) = ∞, then
D = f(D) is circularly symmetric w.r.t. R0 and there exist θ1, θ2, and β such that 0 < θ1 < θ2 < π, 0 < β < 1,
and f satisfies the following boundary conditions:

(a) = f(eiθ) = 0 for 0 < |θ| ≤ θ1;

(b) |f(eiθ)| = 1 for θ1 < |θ| < θ2;

(c) |f ′(eiθ)| = β for θ2 < θ < 2π − θ2;

(d) f ′ has a non-zero continuous extension to D ∪ {eiθ : θ1 < θ < 2π − θ1} which is Hölder-continuous with
exponent 1/2;

(e) |f ′(eiθ)| strictly decreases in θ1 < θ < θ2;

(f) there is a θ0, 0 < θ0 < θ1 such that |f ′(eiθ)| strictly decreases from +∞ to β1, where β1 > β, and strictly
increases from β1 to +∞ in 0 < θ < θ0 and θ0 < θ < θ1, respectively.

Observations (a) and (b) were made by Barnard and Suffridge, see [10, p. 536]. Condition (d) was proved by
J. Lewis [16] who also proved that (c) holds true for all θ except the set I = {eiθ : = f(eiθ) = 0} which may
consists of at most a finite number of closed arcs. The inequality β < 1 and conditions (e), (f), and (c) without the
above mentioned exception were established in [9].
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The conclusion of Lemma 2.2(d) that the vertical non-free boundary is not degenerate, i.e., that there is a strict
inequality θ1 < θ2 for the parameters θ1 and θ2 of this iceberg-type problem is reminscient of the conclusion
in [16] that there is a strict inequality θ1 < θ2 for the parameters θ1 and θ2 of Goodman’s omitted area problem.
With minor modifications, the proof in [16] that θ1 < θ2 for Goodman’s omitted area problem could have been
modified to prove Lemma 2.2(d). In this paper, we have given an independent proof of Lemma 2.2(d) and we
mention here that, alternatively, with minor modifications the proof of Lemma 2.2(d) could be used to show that
θ1 < θ2 for Goodman’s omitted area problem as well. Approximations to the exact value of A have been given
in [3, 5] by different numerical methods. In particular, [3] suggests that A = 0.2385813284π, where all explicitly
shown digits are exact.

(b) Width of the invisible part of the iceberg. The method of this paper can be also applied to find the
extremal function for Problem (1.4)(b) if one can show a priori that the free boundary of the extremal is smooth
enough. One difference compared to Problem (1.4)(a) is that the extremal configurations now do not possess
circular symmetry although they still possess Steiner symmetry. In view of this lack of symmetry, we cannot apply
the local variations developed in Section 2 since the boundary may be non-rectifiable. Perhaps, the necessary
smoothness can be achieved by applying a more powerful technique such as that of J. Lewis [16] mentioned in the
Introduction.

(c) Safe distance from the iceberg. The situation with Problem (1.4)(c) differs from the other two cases. To
explain this, we start with the limiting case when the whole iceberg is observable, i.e. when area (E+) = π. Then,
of course, E coincides with the disk {w : |w − (1 + i)| ≤ 1} up to translation along the real axis.

This disk has a contact point with the surface of interface at z = 1 and a contact point with the front line,
which coincides with the imaginary axis, at z = i. These two contact points represent the non-free boundary in
this limiting case. It is reasonable to expect that for icebergs with visible area slightly less than π, the extremal
configurations will have two disjoint segments, vertical and horizontal, as their non-free boundary. If so, then
transplanting the problem into the auxiliary s-plane as in Section 3, we have to deal with the omitted area problem
for functions defined in a doubly-connected domain. To our knowledge, there are no known solutions of problems
of this kind.

(d) Convex icebergs. Let Fc denote the collection of all convex compact sets E in F . It will be interesting to
study problems (1.4) for the class Fc. Since there are more available methods for convex sets and functions, there
is a chance that known techniques may give complete solutions to all three problems.
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