
A proof of Campbell’s subordination
conjecture

Roger W. Barnard Kent Pearce

3 November 2008

Abstract

In the early 70’s, D.M. Campbell published three papers on majorization-
subordination results for locally univalent functions. In particular, he showed that if
F is linearly invariant of order α and if f is subordinate to F on {z : |z| < 1}, then
f ′ is majorized by F ′ on {z : |z| < m(α)} where m(α) = α+ 1−

√
α2 + 2α, provided

α ≥ 1.65. He conjectured, in fact, that this result also held for 1.65 > α ≥ 1. We
review Campbell’s proof and why the restriction α ≥ 1.65 arose in the proof. We
then affirmatively verify Campbell’s conjecture in Theorem 1.
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1 Introduction

Let A(D) denote the set of functions which are analytic on the open unit disk D = {z : |z| <
1}. A function φ ∈ A(D) is a Schwarz function if |φ(z)| ≤ |z| for z ∈ D. Let f, F ∈ A(D).
For 0 < r ≤ 1, the function f is majorized by F on |z| < r if |f(z)| ≤ |F (z)| on |z| < r.
The function f is subordinate to F on D, if there exists a Schwarz function φ such that
f = F ◦ φ – we write f ≺ F .

Let Uα denote the subset of A(D) of all locally univalent functions of order α with the
normalization f(z) = z + · · · . The family Uα is known as the universal linear invariant
family of order α [7]. In the early 70’s Campbell published three papers on majorization-
subordination for locally univalent functions [2, 3, 4] in which he established relationships
between majorization and subordination for functions in Uα. He showed that many of the
classical results on majorization and subordination for univalent functions (see [6, 8]) hold
in the more general setting of locally univalent functions. He remarked “Our investigation
shows that the important datum for majorization-subordination theory, is not univalence,
but the order of a linearly invariant family.”

In particular, he proved:

Theorem A. If F is locally univalent of order α for α ≥ 1 and if f is majorized by F

on D, then f ′ is majorized by F ′ on {z : |z| < n(α)} where n(α) =
(α + 1)1/α − 1

(α + 1)1/α + 1
.
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He further showed:
Theorem B. If F is locally univalent of order α for α ≥ 1.65 and if f is subordinate to

F on D, then f ′ is majorized by F ′ on {z : |z| < m(α)} where m(α) = α + 1−
√
α2 + 2α.

The bounds given in Theorem A and Theorem B are sharp for each α.

The restriction α ≥ 1.65 in Theorem B arose out of the proof that Campbell constructed.
He conjectured that, in fact, Theorem B also held for 1.65 > α ≥ 1.

We will employ the following notation throughout the paper: Let m = m(α) = α+ 1−√
α2 + 2α for α ≥ 1. Let f, F denote functions in A(D) such that f is subordinate to F

on D and F ∈ Uα for some α ≥ 1. Let φ denote the Schwarz function in A(D) such that
f = F ◦ φ. Let a = f ′(0). We will assume that f has been rotated so that 0 ≤ a ≤ 1.

Then, we can write φ(z) = z
a+ ω(z)

1 + aω(z)
where ω ∈ A(D) such that ω is a Schwarz function.

For z = xeit ∈ D with 0 ≤ x ≤ m, let c = ω(z) = reiθ. We have 0 ≤ r ≤ x ≤ m. Note, at

z we have f(z) = F (φ(z)) and φ(z) = z
a+ c

1 + ac
.

In [4], Campbell established two lemmas (Lemma 1 and Lemma 2) for estimating |φ′(z)|
in terms of a and c, depending on whether a was “small” or “large”. Then, referencing
Pommerenke’s classical paper [7] on linearly-invariant families, he established the following
fundamental inequality∣∣∣∣ f ′(z)

F ′(z)

∣∣∣∣ ≤ 1− x2

1− |φ(z)|2

(
|1− φ(z)z|+ |φ(z)− z|
|1− φ(z)z| − |φ(z)− z|

)α

|φ′(z)| (1)

Using Lemma 2 [4], Campbell showed that∣∣∣∣ f ′(z)

F ′(z)

∣∣∣∣ ≤ ba+ 1

b+ a

(
b− a
b− 1

)α
= k(a, α, b) (2)

where b =
1 + x2

2x
≥ α + 1, since x ≤ m. In particular, Campbell showed that k(a, α, b) is

decreasing in b. Hence, k(a, α, b) ≤ k(a, α, α + 1). Following Campbell, we note that

∂k(a, α, α + 1)

∂a
=

(α + 1− a)α−1

(α)α
p(a, α)

(α + 1 + a)2

where

p(a, α) = −α(α + 1)a2 − (α3 + 3α2 + 4α)a+ α(α + 1)2. (3)

Let R = {(a, α) : p(a, α) ≥ 0}, i.e., R is the set where k(a, α, α + 1) is increasing in a.
Campbell showed that R contains the set {(a, α) : 0 ≤ a ≤ 0.4, α ≥ 1}.

Let C1 = {(a, α) ∈ R : k(a, α, α + 1) = 1} and A1 = {(a, α) ∈ R : k(a, α, α + 1) ≤ 1}.
For (a, α) ∈ A1, we have |f ′(z)/F ′(z)| ≤ 1. In this notation, Campbell explicitly verified
that the rectangles

R1 = {(a, α) : 0 ≤ a ≤ 3/20, 1.65 ≤ α ≤ 2}
R2 = {(a, α) : 0 ≤ a ≤ 1/6, 2 ≤ α ≤ 3}
R3 = {(a, α) : 0 ≤ a ≤ 1/10, 3 ≤ α <∞}
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Figure 1: Rectangles R1, R2, R3 contained in Region A1

each belong to A1. More explicitly, Campbell showed that the “right-hand” edges of R1, R2

and R3 belong to A1. Figure 1 summarizes the above containment conclusions which
Campbell proved.

Using Lemma 1 [4], Campbell showed∣∣∣∣ f ′(z)

F ′(z)

∣∣∣∣ ≤ G(c, x, a) · H(c, x, a) = L(c, x, a) (4)

where

G(c, x, a) =
x(1− a)|1− c|

|1 + ac− x2(a+ c)|

G(c, x, a) =

(
1 +G(c, x, a)

1−G(c, x, a)

)α−1

H(c, x, a) = (1− x2)
|a+ 2c+ ac2|(1− x2) + (x2 − r2)(1− a2)

[|1 + ac− x2(a+ c)| − x(1− a)|1− c|]2
L(c, x, a) = G(c, x, a) · H(c, x, a)

Campbell showed in a separate lemma (Lemma 3 [4]) that L(c, x, a) as a function of θ
maximizes at θ = 0, i.e., L(r, x, a) ≥ L(c, x, a) for c = reiθ, for 0 ≤ r ≤ x ≤ m, on the set
defined by Q(a, α) ≥ 0 where

Q(a, α) = −(1 + α + 2α2 + α3)a2 − (2− 2α− 5α2 − 2α3)a− (α + 1). (5)
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Figure 2: Rectangles R̃1, R̃2, R̃3 contained in Region A2

Finally, Campbell showed that L(r, x, a) is an increasing function of a provided that x ≤ m.
A calculation shows that L(r, x, 1) ≡ 1.

Let C2 = {(a, α) : Q(c, x, a) = 0} and A2 = {(a, α) : Q(c, x, a) ≥ 0}. For (a, α) ∈ A2,
we have |f ′(z)/F ′(z)| ≤ 1. In this notation, Campbell explicitly verified that the rectangles

R̃1 = {(a, α) : 3/20 ≤ a ≤ 1, 1.65 ≤ α ≤ 2}
R̃2 = {(a, α) : 1/6 ≤ a ≤ 1, 2 ≤ α ≤ 3}
R̃3 = {(a, α) : 1/10 ≤ a ≤ 1, 3 ≤ α <∞}

each belong to A2. More explicitly, Campbell showed that the “left-hand” edges of R̃1, R̃2

and R̃3 belong to A2.
Figure 2 summarizes the above containment conclusions which Campbell proved. Note,

the “right-hand” edges of the rectanges R1, R2, R3 were precisely the “left-hand” edges
of the rectangles R̃1, R̃2 and R̃3. Figure 3 summarizes both of the above containment
geometries.

Summarizing the above, Campbell proved that subordination f ≺ F for F ∈ Uα for
1.65 ≤ α <∞ implies majorization |f ′(z)| ≤ |F ′(z)| for |z| ≤ m.

Campbell conjectured that subordination f ≺ F for F ∈ Uα for 1 ≤ α < 1.65 implies
majorization |f ′(z)| ≤ |F ′(z)| for |z| ≤ m. In [1], this conjecture was verified for the case
α = 1. For this case, the family U1 consists of normalized convex functions. The proof
for the case α = 1 given in [1] depended heavily on the convexity of the superordinate
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Figure 3: Rectangles for α ≥ 1.65

function and was not extendable for α > 1. Thus, what remained was to verify Campbell’s
conjecture for the range 1 < α < 1.65.

Campbell’s arguments, as summarized above, imply, in fact, that for (a, α) ∈ A1 ∪ A2

that majorization holds even for α < 1.65. Thus, to verify Campbell’s conjecture what
remained to be shown was that if (a, α) belongs to the parameter region {(a, α) : 0 ≤
a ≤ 1, α ≥ 0} and if (a, α) /∈ A1 ∪ A2, then subordination f ≺ F for F ∈ Uα implies
majorization |f ′(z)| ≤ |F ′(z)| for |z| ≤ m.

2 Preliminary Step

The boundary curves defining the region A1 ∪ A2 are given implicitly via the bivariate
polynomials p and Q, as described above, and are difficult to handle analytically. The
preliminary step to verifying Campbell’s conjecture consists of identifying two explicit line
segments L1 and L2 and analytically verifying that L1 lies in A1 and that L2 lies in A2.
See Figure 4.

Lemma 2.1 Case A1. Let A1 = {(a, α) : p(a, α) ≤ 1} where p is defined by (3). Let

l1(α) =
α− 1

5
, 1 ≤ α ≤ 1.65 and L1 = {(a, α) : a = l1(α), 1 ≤ α ≤ 1.65}. Then, L1 ⊂ A1.

Case A2. Let A2 = {(a, α) : Q(a, α) ≥ 0} where Q is defined by (5). Let l2(α) =
4− 2α

5
,

1 ≤ α ≤ 1.65 and L2 = {(a, α) : a = l2(α), 1 ≤ α ≤ 1.65}. Then, L2 ⊂ A2.
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Proof Case A1. For 1 ≤ α ≤ 1.65, define k1(α) = p(l1(α), α). Then, we have

k1(α) =
((α + 1)(α−1

5
) + 1)

(
4α+6
5α

)α
6α+4

5

As a first step, to assure that our arguments will require only finite arithmetic with no
numerical approximations, thus justifying our use of Sturm sequence arguments, we will
make estmates with rational functions whose coefficients are integers. We will show for
1 ≤ α ≤ 1.65, that (

4α + 6

5α

)α
≤ p2(α) (6)

where p2(α) = 2 +
1

5
(α− 1)− 1

5
(α− 1)2. Then, we will have for 1 ≤ α ≤ 1.65

k1(α) ≤ k2(α) =
((α + 1)(α−1

5
) + 1)p2(α)

6α+4
5

=
n2(α)

d2(α)
.

However, k2(α) is rational in α. A straightforward rearrangement shows that d2(α) −
n2(α) = (α− 1)(α− 2)(α2 − 6) ≥ 0.

To verify (6), we will show that

f2(α) = log p2(α)− α log
4α + 6

5α
≥ 0

However,

f ′2(α) =
7α2 − 9α− 33

(α2 − 3α− 8)(2α + 3)
− log

4α + 6

5α

We will show for 1 ≤ α ≤ 1.65 that

log
4α + 6

5α
≤ p3(α) (7)

where p3(α) =
695

1000
− 52

100
(α− 1) +

1

5
(α− 1)2.

Hence,

f ′2(α) ≥ g(α) =
7α2 − 9α− 33

(α2 − 3α− 8)(2α + 3)
− p3(α)

However, a Sturm sequence argument, using only finite arithmetic (see [5]), shows for
1 ≤ α ≤ 1.65 that g(α) ≥ 0.

Finally, to verify (7), we note that if we let p4(α) = p3(α)− log
4α + 6

5α
, then a Sturm

sequence argument shows that, p′4(α) ≥ 0 and a calculation shows that p4(1) > 0.
Case A2. For 1 ≤ α ≤ 1.65, define j1(α) = Q(l2(α), α). Then,

j1(α) = − 4

25
α5 − 12

25
α4 +

2

25
α3 +

12

5
α2 +

7

5
α− 81

25
.

A Sturm sequence argument shows that j1(α) ≥ 0. �
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Figure 4: Critical Trapezoid

Campbell’s arguments imply for (a, α) to the “left” of L1 or for (a, α) to the “right” of
L2, that subordination f ≺ F for F ∈ Uα implies |f ′(z)| ≤ |F ′(z)| for |z| ≤ m. Let T be
the critical trapezoid (see Figure 4) given by

T = {(a, α) : l1(α) ≤ a ≤ l2(α), 1 ≤ α ≤ 1.65}. (8)

We will now prove

Theorem 1. Let (a, α) belong to the critical trapezoid T given by (8). Let F be locally
univalent of order α. Then, if f is subordinate to F on D, then f ′ is majorized by F ′ on
{z : |z| < m(α)} where m(α) = α + 1−

√
α2 + 2α. More specifically, for |z| < m(α)∣∣∣∣ f ′(z)

F ′(z)

∣∣∣∣ ≤ max
(a,α)∈T

G(c, x, a) · max
(a,α)∈T

H(c, x, a) ≤ 1 (9)

Theorem 1, combined with the above observations about Campbell’s original arguments,
implies Campbell’s conjecture.
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The proof of Theorem 1 consists of four steps

• Step 1. Constructing a rational function upper bound estimate for G(c, x, a).

• Step 2. Using the estimate for G(c, x, a) from Step 1, constructing a rational function
upper bound estimate for G(c, x, a).

• Step 3. Constructing a rational function upper bound estimate for H(c, x, a).

• Step 4. Using the estimates for G(c, x, a) and H(c, x, a) from Step 2 and Step 3,
verifing that the right-hand inequality in (9) holds.

3 Step 1

For (a, α) ∈ T and c = reiθ, 0 ≤ r ≤ x ≤ m, we will construct a rational function upper

bound estimate for G(c, x, a); specifically, we will show that G(c, x, a) ≤ 6− α
6 + 9α

.

Recall that G(c, x, a) =
x(1− a)|1− c|

|1 + ac− x2(a+ c)|
. First, we will show that G(c, x, a) ≤

G(−r, x, a), i.e., that G(c, x, a), as a function of the first argument, maximizes at c = −r.

It suffices to show that G1 =
|1− c|2

|1 + ac− x2(a+ c)|2
maximizes at c = −r. Rewriting, we

have

G1 =
1− 2r cos θ + r2

(1− ax2)2 + 2(1− ax2)(a− x2)r cos θ + (a− x2)2r2
=
µ1 + ν1 cos θ

σ1 + τ1 cos θ
.

Hence,
∂G1

∂θ
=

µ1τ1 − ν1σ1

(σ1 + τ1 cos θ)2
(sin θ).

Rewriting, we have

µ1τ1 − ν1σ1 = 2r(1 + a)(1− x2)[1− ax2 + (a− x2)r2]

If a ≥ x2, then clearly µ1τ1 − ν1σ1 ≥ 0. On the other hand, if a < x2, then

µ1τ1 − ν1σ1 = 2r(1 + a)(1− x2)[1− ax2 + (a− x2)r2]

≥ 2r(1 + a)(1− x2)[1− ax2 + (a− x2)1]

= 2r(1 + a)2(1− x2)2

≥ 0

Similarly, by taking derivatives it follows that G(−r, x, a), G(−x, x, a) and G(−m,m, a)

are increasing in r, increasing in x and decreasing in a, resp.

Thus, on T we have G(c, x, a) ≤ G(−m,m, l1(α)). It is a straightforward calculation,

using the relationship that 1 +m2 = 2(α + 1)m, that G(−m,m, l1(α)) =
6− α
6 + 9α

.
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4 Step 2

For (a, α) ∈ T and c = reiθ, 0 ≤ r ≤ x ≤ m, we will construct a rational function upper
bound estimate for G(c, x, a).

Recall that G(c, x, a) =

(
1 +G(c, x, a)

1−G(c, x, a)

)α−1

. It is easily verified, for α ≥ 1, that

g(y) =

(
1 + y

1− y

)α−1

is an non-decreasing function of y. In Step 1, we showed for (a, α) ∈ T

that G(c, x, a) ≤ 6− α
6 + 9α

.

Again, to assure that our arguments will require only finite arithmetic with no numer-
ical approximations, we will make estmates with rational functions whose coefficients are

integers. Let l(y) = 1 +
21

10
(α− 1)(1 +

α− 1

4
)y. We will show that g(

6− α
6 + 9α

) ≤ l(
6− α
6 + 9α

).

Hence, on T we will have that G(c, x, a) ≤ l(
6− α
6 + 9α

).

Let h(α) = l(
6− α
6 + 9α

)− g(
6− α
6 + 9α

). We can rewrite h as h(α) =
n(α)

40(2 + 3α)
where

n(α) = −46 + 225α + 28α2 − 7α3 − 40(2 + 3α)

(
2(3 + 2α)

5α

)α−1

.

We will show explicitly for 1 ≤ α ≤ 1.65 that n is an non-negative increasing function of

α. Let β =

(
2(3 + 2α)

5α

)α−1

and γ = log
2(3 + 2α)

5α
. Then, we can write

n′(α) =
n1(α)

α(3 + 2α)
=
A0 + β(B0 + γC0)

α(3 + 2α)

where

A0 = 675α + 618α2 + 49α3 − 42α4 ≥ 0

B0 = −240− 480α + 120α2 ≤ 0

C0 = −240α− 520α2 − 240α3 ≤ 0.

It is sufficient to show that n1 is non-negative.
In a separate lemma, in the appendix, we will show for 1 ≤ α ≤ 1.65 the following

upper bounds for β and γ hold

β ≤ β1 = 1 +
694

1000
(α− 1)− 361

1000
(α− 1)2 +

69

1000
(α− 1)3 (10)

γ ≤ γ1 =
6932

10000
− 5992

10000
(α− 1) +

42

100
(α− 1)2 − 2795

10000
(α− 1)3 (11)

+
111

1000
(α− 1)4

Using the upper bounds for β and γ in (10) and (11), we have

n1(α) ≥ n2(α) = A0 + β1(B0 + γ1C0)

However, a Sturm sequence argument shows for 1 ≤ α ≤ 1.65 that n2(α) ≥ 0.
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5 Step 3

For (a, α) ∈ T and c = reiθ, 0 ≤ r ≤ x ≤ m, we will construct a rational function upper
bound estimate for H(c, x, a).

The construction of the upper bound for H(c, x, a) in Step 3 consists of five separate
substeps.

• Substep 3-1. For fixed (a, α) and fixed x, H(c, x, a) is a function of c = reiθ where
0 ≤ r ≤ x and 0 ≤ θ ≤ π. We show that any maximal value of H(c, x, a) must occur
on the boundary of the region of variability for c.

• Substep 3-2. For fixed (a, α) and x, we show that on the boundary of the region of
variability for c, the maximal value of H(c, x, a) must occur on the portion of the
boundary of variability for c where r = x.

• Substep 3-3. For fixed (a, α) and for c = xeiθ, H(c, x, a) is a function of (x, θ) where
0 ≤ x ≤ m and 0 ≤ θ ≤ π. We show that any maximal value of H(c, x, a) must occur
on the boundary of the region of variability for (x, θ).

• Substep 3-4. For fixed (a, α) and for c = xeiθ, we show that on the boundary of
the region of variability for (x, θ), the maximal value of H(c, x, a) must occur on the
portion of the boundary of variability for (x, θ) where x = m.

• Substep 3-5. We then construct a rational function upper bound estimate for
H(meiθ,m, a).

To simplify notation, we will write H(c, x, a) = (1− x2)
C(c, x, a)

[B(c, x, a)]2
where

C(c, x, a) = |a+ 2c+ ac2|(1− x2) + (x2 − r2)(1− a2)

B(c, x, a) = |1 + ac− x2(a+ c)| − x(1− a)|1− c|

5.1 Substep 3-1

Let (a, α) ∈ T be fixed and let x ≤ m be fixed. For c = reiθ, we first show that H(c, x, a)
does not have a local extreme value on the open set Or = {(r, θ) : 0 < r < x, 0 < θ < π}.

Since a, x are fixed and the only variable parameter is c = reiθ, we will write, in Substep
3-1, H(r, θ) ≡ H(c, x, a), B(r, θ) ≡ B(c, x, a), etc. Specifically, ifH(r, θ) had a local extreme
value, say at (r, θ), then we would have

∂H
∂r

(r, θ) = 0 (12)

∂H
∂θ

(r, θ) = 0

However, (12) implies that

B(r, θ)
∂C

∂r
(r, θ)− 2C(r, θ)

∂B

∂r
(r, θ) = 0

B(r, θ)
∂C

∂θ
(r, θ)− 2C(r, θ)

∂B

∂θ
(r, θ) = 0

10



which in turn implies that

∆r =

∣∣∣∣∣∣
∂C
∂r

(r, θ) ∂B
∂r

(r, θ)

∂C
∂θ

(r, θ) ∂B
∂θ

(r, θ)

∣∣∣∣∣∣ = 0 (13)

We will show that the determinant in (13) is, however, non-zero. Specifically, computing
we have

∆r = 2r2 sin θ(1− a2)
Nr

Dr

where

Nr = (pr + qrX) + (Pr +QrX)G

Dr = |1− c|X
X = |a+ 2c+ ac2|

and pr, qr, Pr and Qr are polynomials, with rational coefficients, in r, cos θ, x and a, and
G = G(c, x, a).

It suffices to show that Nr is negative. Since Nr is linear in G and, from Step 1, we

have that 0 ≤ G ≤ 6− α
6 + 9α

, then ng0 ≤ Nr ≤ ng1 where

ng0 = (pr + qrX) + (Pr +QrX)0

ng1 = (pr + qrX) + (Pr +QrX)
6− α
6 + 9α

Further, since ng0 and ng1 are each linear in X and 0 ≤ X ≤ a+ 2x+ ax2, then we have
ng00 ≤ ng0 ≤ ng01 and ng10 ≤ ng1 ≤ ng11 where

ng00 = (pr + qr0) + (Pr +Qr0)0 = pr

ng01 = (pr + qr(a+ 2x+ ax2)) + (Pr +Qr(a+ 2x+ ax2))0 = pr + qr(a+ 2x+ ax2))

ng10 = (pr + qr0) + (Pr +Qr0)
6− α
6 + 9α

= pr + Pr
6− α
6 + 9α

ng11 = (pr + qr(a+ 2x+ ax2)) + (Pr +Qr(a+ 2x+ ax2))
6− α
6 + 9α

In a lengthy, finite arithmetic/integer argument, using exact calcluations, in the Maple
worksheet campbell-maple-substep1.mws1, we explicitly verify that each of the factors
ng00, ng01, ng10, ng11 are negative.

5.2 Substep 3-2

Since H(c, x, a) does not have a local extreme value on the open set Or = {(r, θ) : 0 < r <
x, 0 < θ < π}, then any extreme value of H(c, x, a) must occur on either

1The complete url for each of the Maple worksheets referenced in the five substeps of this section is
http://www.math.ttu.edu/∼pearce/papers/filname.
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2a) the set E(r)+ = {(r, 0) : 0 ≤ r ≤ x}
2b) the set E(r)− = {(−r, 0) : 0 ≤ r ≤ x}
2c) the set E(x, θ) = {(x, θ) : 0 ≤ θ ≤ π}
A straightforward calculus argument shows that on the boundary of the set Or the

maximum value of H(c, x, a) must occur on on the set E(x, θ). Formal details of that ar-
gument are given in the Maple worksheets campbell-maple-substep2a.mws, campbell-maple-
substep2b.mws.

5.3 Substep 3-3

Consider the set E(x, θ). Let (a, α) ∈ T be fixed. For c = xeiθ we will show that H(c, x, a)
does not have a local extreme value on the open set Ox = {(x, θ) : 0 < x < m, 0 < θ < π}.

Since a is fixed and the only variable parameters are x and θ, we will write, in Substep
3-3, H(x, θ) ≡ H(xeiθ, x, a), B(r, θ) ≡ B(xeiθ, x, a), etc. Specifically, if H(c, x, a) had a
local extreme value, say at (x, θ), then we would have

∂H
∂x

(x, θ) = 0 (14)

∂H
∂θ

(x, θ) = 0

However, (14) implies that

B(x, θ)
∂C

∂x
(x, θ)− 2C(x, θ)

∂B

∂x
(x, θ) = 0

B(x, θ)
∂C

∂θ
(x, θ)− 2C(x, θ)

∂B

∂θ
(x, θ) = 0

which in turn implies that

∆x =

∣∣∣∣∣∣
∂C
∂x

(x, θ) ∂B
∂x

(x, θ)

∂C
∂θ

(x, θ) ∂B
∂θ

(x, θ)

∣∣∣∣∣∣ = 0 (15)

We will show that the determinant in (15) is, however, non-zero. Specifically, computing

we have

∆x = 2x sin θ(1− x2)
Nx

Dx

where Nx = Px +QxG,Dx = |1− c||a+ 2c+ ac2| and Px, Qx are polynomials, with rational
coefficients, in r, cos θ, x and a, and G = G(c, x, a).

It suffices to show that Nx is negative. Since Nx is linear in G and, from Step 1, we

have that 0 ≤ G ≤ 6− α
6 + 9α

, then nG0 ≤ Nr ≤ nG1 where

nG0 = Px +Qx0 = Px

nG1 = Px +Qx
6− α
6 + 9α

In a lengthy, finite arithmetic/integer argument, using exact calcluations, in the Maple
worksheet campbell-maple-substep3.mws, we explicitly verify that each of the factors
nG0, nG1 are negative.

12



5.4 Substep 3-4

Since H(c, x, a) does not have a local extreme value on the open set Ox = {(x, θ) : 0 < x <
m, 0 < θ < π}, then any extreme value of H(c, x, a) must occur on either

4a) the set E(x)+ = {(x, 0) : 0 ≤ x ≤ m}
4b) the set E(x)− = {(−x, 0) : 0 ≤ x ≤ m}
4c) the set E(m, θ) = {(m, θ) : 0 ≤ θ ≤ π}
A straightforward calculus argument shows that on the boundary of the set Ox the

maximum value of H(c, x, a) must occur on on the set E(m, θ). Formal details of that ar-
gument are given in the Maple worksheets campbell-maple-substep4a.mws, campbell-maple-
substep4b.mws.

5.5 Substep 3-5

Finally, consider the set E(m, θ) = {(m, θ) : 0 ≤ θ ≤ π}. Let (a, α) ∈ T and let

h3(α) = 1− 4

5
(α− 1) +

13

10
(α− 1)2 − 13

10
(α− 1)3. (16)

In a lengthy, finite arithmetic/integer argument, using exact calcluations, in the Maple
worksheet campbell-maple-substep5.mws, we explicitly verify the inequality that

H(meiθ,m, a) ≤ h3(α).

We note here that in the appendix we state three specific lemmas, which give finite
arithmetic/integer arguments for establishing the validity of certain multivariate polyno-
mial inequalities, which are tacitly used in this last substep to verify that h3(α) is an upper
bound for H(meiθ,m, a) on the set E(m, θ).

6 Step 4

Using the estimates for G(c, x, a) and H(c, x, a) from Step 2 and Step 3, we will now show
that

max
(a,α)∈T

G(c, x, a) · max
(a,α)∈T

H(c, x, a) ≤ 1 (17)

Recall in Step 1 and Step 2, we showed that

G(c, x, a) ≤ l(
6− α
6 + 9α

) = g3(α) = 1 +
21

10
(α− 1)(1 +

α− 1

4
)

6− α
6 + 9α

.

Further, in Step 3 we showed

H(c, x, a) ≤ h3(α) = 1− 4

5
(α− 1) +

13

10
(α− 1)2 − 13

10
(α− 1)3.

It remains to show for 1 ≤ α ≤ 1.65 that g3(α) · h3(α) ≤ 1. It is sufficient to show that
k3(α) ≥ 0 where

k3(α) = 400(6 + 9α)(1− g3(α) · h3(α))

= 8472− 36174α + 52755α2 − 29838α3 + 2874α4 + 2184α5 − 273α6

However, a Sturm sequence argument verifies that k3(α) ≥ 0.

13



7 Appendix

We give here for 1 ≤ α ≤ 1.65 the technical lemma which verifies the upper bounds given
in Step 2 for β and γ:

Lemma 7.1 Let 1 ≤ α ≤ 1.65. Let β =

(
2(3 + 2α)

5α

)α−1

and γ = log
2(3 + 2α)

5α
. Then,

β ≤ β1 = 1 +
694

1000
(α− 1)− 361

1000
(α− 1)2 +

69

1000
(α− 1)3

γ ≤ γ1 =
6932

10000
− 5992

10000
(α− 1) +

42

100
(α− 1)2 − 2795

10000
(α− 1)3

+
111

1000
(α− 1)4

Proof Case γ. We will show that γ2 = γ1 − γ is a non-negative increasing function.
We have

dγ2(α)

dα
=

N1(α)

10000α(3 + 2α)

=
30000− 81651α + 61036α2 + 11865α3 − 30090α4 + 8880α5

10000α(3 + 2α)

A Sturm sequence argument shows that N1 is non-negative.

Case β. It suffices to show that β2 = log β1 − log β ≥ 0. We will show for 1 ≤ α ≤ 1.65
that β2 is a non-negative increasing function of α. We have

dβ2(α)

dα
=

N2(α)

α((−124 + 1623α− 568α2 + 69α3))(3 + 2α)
(18)

where

N2(α) = 372− 372α + 6411α2 − 3562α3 + 621α4

+ (372α− 4621α2 − 1542α3 + 929α4 − 138α5)γ

A Sturm sequence argument shows for 1 ≤ α ≤ 1.65 that the denominator of (18) is
positive. We have then, since γ ≤ γ1 that N2(α) ≥ N3(α) where

N3(α) = 372− 372α + 6411α2 − 3562α3 + 621α4

+ (372α− 4621α2 − 1542α3 + 929α4 − 138α5)γ1

A Sturm sequence argument shows for 1 ≤ α ≤ 1.65 that N3(α) ≥ 0. �

We state here three specific lemmas, which give finite arithmetic/integer arguments for
establishing the validity of certain multivariate polynomial inequalities, which are tacitly
used in the last substep of Step 3 to verify that h3(α) is an upper bound for H(meiθ,m, a)
on the set E(m, θ).
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Lemma 7.2 Let p = p(x1, x2, x3) be a polynomial with rational coefficients defined on the
region R = {(x1, x2, x3) : a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2, a3 ≤ x3 ≤ b3}, where aj, bj are

all rational numbers. Let M be an upper bound for | ∂p
∂xj

(x1, x2, x3)| on R, 1 ≤ j ≤ 3. Let

δ > 0 and suppose N1, N2, N3 are chosen so that ∆j = (bj − aj)/Nj ≤ δ, 1 ≤ j ≤ 3. Let L
be the lattice L = L(N1, N2, N3) = {(a1 + i∆1, a2 + j∆2, a3 + k∆3) : 0 ≤ i ≤ N1, 0 ≤ j ≤
N2, 0 ≤ k ≤ N3}. Let

m = min
(x1,x2,x2)∈L

p(x1, x2, x3).

If m ≥ 3
2
Mδ, then p(x1, x2, x3) ≥ 0 on R.

Proof Let (x1, x2, x3) ∈ R. Then, there exists (x0
1, x

0
2, x

0
3) ∈ L such that

dist((x0
1, x

0
2, x

0
30), (x1, x2, x3)) ≤

√
3

2
δ

. Without loss of generality we can suppose that x1 ≥ x0
1, x2 ≥ x0

2, x3 ≥ x0
3. Define

p(t) = pθ,φ(t) = p(x0
1 + t cos(θ) sin(φ), x0

2 + t sin(θ) sin(φ), x0
3 + t cos(φ))

0 < t ≤
√

3
2
δ, 0 < θ < π/2, 0 < φ < π/2. Then, |p′(t)| ≤ M

√
3 for 0 ≤ t ≤

√
3

2
δ. Hence,

p(x1, x2, x3) = pθ,φ(t) ≥ pθ,φ(0)−M
√

3 t = p(x0
1, x

0
2, x

0
3)−M

√
3 t ≥ m− 3

2
Mδ ≥ 0. �

Lemma 7.3 Let p = p(x) be a polynomial with rational coefficients defined on the interval
R1(d) = {x : 0 < x < d} such that p(0) = 0. Let M1 = p′(0) > 0 and let −N1 be a lower
bound for p′′(x) on R1(d) where N1 ≥ 0. Then, p(x) > 0 on R1(δ1) where δ1 = min{2M1

N1
, d}.

Proof The hypotheses imply, using Taylor’s remainder theorem, that

p(x) = M1x+ p′′(c)
x2

2
for some c such that 0 < c < x. Hence, we have

p(x)

x
> M1 −

N1x

2
.

�.

Lemma 7.4 Let p = p(x1, x2, x3) be a polynomial with rational coefficients defined on the
region R3(d) = {(x1, x2, x3) : 0 < x1 < d , 0 < x2 < d , 0 < x3 < d} such that p(0, 0, 0) = 0.
Let

M3 = min{p1(0, 0, 0), p2(0, 0, 0), p3(0, 0, 0)} > 0

where pj denotes the partial of p with respect to xj, j = 1, 2, 3. Let −N3 be a lower bound
for pij(x1, x2, x3) on R3(d), 1 ≤ i, j ≤ 3, where N3 ≥ 0. Then, p(x1, x2, x3) > 0 on R3(δ3)
where δ3 = min{2M3/(3N3), d}.

Proof Let B3(d) = {(x1, x2, x3) ∈ R3(d) : ||(x, y, z)|| < d}. Note that R3(d/
√

3) ⊂ B3(d).
On B3(d) we can write

p(x1, x2, x3) = p(t cos(θ) sin(φ), t sin(θ) sin(φ), t cos(φ)) = pθ,φ(t) = p(t)

where 0 < t < d, 0 < θ < π/2, 0 < φ < π/2. Apply Lemma 7.3 to p on R1(d) with
M1 = M3 and N1 =

√
3N3. Consequently, p(t) > 0 on R1(δ1) where δ1 = 2M3/(

√
3N3).

Hence, p(x1, x2, x3) > 0 on R3(δ3/
√

3). �
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