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In this article we recall our variational method, based on Julia’s formula for the Hadamard
variation, for hyperbolically convex polygons. We use this variational method to prove
a general theorem for solving extremal problems for hyperbolically convex functions. Special
cases of this theorem provide independent proofs for controlling growth and distortion
for hyperbolically convex functions.
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1. Introduction

A classical problem in Geometric Function Theory is to maximize the value of a given
functional over a given class of analytic functions. Recent papers have extended this
problem and its study to functionals on hyperbolically convex functions. In particular,
these functions were studied by Beardon in [3], Ma and Minda in [5,6] and Solynin
in [13,14]. More recently, they have been studied by Mejı́a and Pommerenke in
[7–11] and Mejı́a, Pommerenke, and Vasil’ev in [12]. There have been a number of
open problems and conjectures in these papers. A critical obstacle to these studies
has been the lack of a suitable variational method for this class.

In this article, we recall our variational technique developed in [2], based on Julia’s
formula for the Hadamard variation, that was used to overcome this obstacle and to
resolve a number of these problems and conjectures. We then use this variational
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method here to prove a fairly general theorem, which includes as special cases a number
of the results refered to in the referenced papers in the introductory paragraph.

Let D ¼ fz 2 C : jzj < 1g denote the unit disk in C and let T ¼ @D. The hyperbolic
plane can be viewed as D with the imposed hyperbolic metric �ðzÞjdzj ¼
ð2jdzj=ð1� jzj2ÞÞ. Under this metric, hyperbolic geodesics in D are connected subarcs
of Euclidean circles which intersect T orthogonally. A set S � D is hyperbolically
convex if for any two points z1 and z2 in S, the hyperbolic geodesic connecting z1
to z2 lies entirely inside of S.

We say that a function f : D ! D is hyperbolically convex if f is analytic and
univalent on D and if fðDÞ is hyperbolically convex. The set of all hyperbolically
convex functions f which satisfy fð0Þ ¼ 0 will be denoted by H. Interesting examples
are the normal fundamental domains of Fuchsian groups in D.

A hyperbolic polygon is a simply connected subset of D, which contains the origin and
which is bounded by a Jordan curve consisting of a finite collection of hyperbolic
segments and arcs of the unit circle. The hyperbolic segments internal to D will be
referred to as proper sides. We let H poly denote the subset of H of all functions mapping
D onto hyperbolic polygons. Further, we let Hn denote the subclass of H poly of all
functions mapping D onto polygons with at most n proper sides. It is easily seen that
H poly is dense in H. Furthermore, H [ f0g and Hn [ f0g, for each n, are compact.

Each function f 2 H satisfies Schwarz’s lemma and, hence, j f 0ð0Þj � 1: For 0 < � � 1,
let H� ¼ f f 2 H : fðzÞ ¼ �zþ a2z

2 þ a3z
3 þ � � �g. As an aside, we note that H1 consists

only of the identity map.
An important example of a hyperbolically convex function is given by, up to rotation,

fðzÞ ¼ k�ðzÞ �
2�z

ð1� zÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� zÞ2 þ 4�2z

q ð1:1Þ

The function k� maps D to a hyperbolic polygon bounded by exactly one proper side.
Ma and Minda [5,6] and Mejı́a and Pommerenke [7] have given detailed descriptions
of the properites of k�.

Let <fzg ¼ real part z. Our main theorem, which combines the cases H and H�, is

THEOREM 1.1 Let � be entire. For z 2 Dnf0g and ak 2 R, k ¼ 0, . . . , n, let

Fð f, zÞ ¼
Xn
k¼0

ak log f
ðkÞðzÞ ð1:2Þ

and let

Qð�Þ ¼
Xn
k¼0

ak
GðkÞð�, zÞ

f ðkÞðzÞ

� �
, ð1:3Þ

where

GðkÞð�, zÞ ¼
@ðkÞ zf 0ðzÞ �þz

��z

� �
@zðkÞ

: ð1:4Þ
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Let f 2 H ð f 2 H�Þ be extremal for

Lð f Þ ¼ < � � Fð f, zÞ
� �

ð1:5Þ

over H (over H�) such that

(1) � ¼ �0 � Fð f, zÞ 6¼ 0,
(2) �Q maps T to a curve � such that � traversely crosses the imaginary axis (every

vertical line) at most twice.

Then, the extremal value for L over H (over H�) can be obtained from a
hyperbolically convex function which maps D onto a hyperbolic polygon with at most
one proper side.

The proofs of the following corollaries will be discussed in section 3.

COROLLARY 1.2 Let z 2 Dnf0g and let f 2 H�, 0 < � < 1, be extremal over H� for
Lð f Þ ¼ j f ðzÞj, a continuous functional on H�. Then, the extremal value for L over H�

can be obtained from the hyperbolically convex function k� in (1.1) which maps D onto
a hyperbolic polygon with exactly one proper side.

COROLLARY 1.3 Let z 2 Dnf0g and let f 2 H be maximal over H for Lð f Þ ¼ j f 0ðzÞj,
a continuous functional on H. Then, the maximal value for L over H can be obtained
from a hyperbolically convex function which maps D onto a hyperbolic polygon with
at most one proper side.

Remark The scope of Theorem 1.1 can be extended in the following fashion: if the
second of the itemized hypotheses (the hypothesis which describes the geometry of
the image of T under the kernel �Q) is generalized.

(2) �Q maps T to a curve � such that � traversely crosses the imaginary axis
(every vertical line) at most 2N times

then the conclusion of theorem generalizes to

Then, the extremal value for L over H (over H�) can be obtained from a hyperbolically
convex function which maps D onto a hyperbolic polygon with at most N proper sides.

Using that generalization we have the following corollaries.

COROLLARY 1.4 Let z 2 Dnf0g and let f 2 H�, 0 < � < 1, be extremal over H� for
Lð f Þ ¼ j f 0ðzÞj, a continous functional on H�. Then, the extremal value for L over H�

can be obtained from a hyperbolically convex function which maps D onto a hyperbolic
polygon with at most two proper sides. If jzj < 1

2, then the maximal value for L over H�

can be obtained from the hyperbolically convex function k� in (1.1) which maps D onto
a hyperbolic polygon with exactly one proper side.

COROLLARY 1.5 Let z 2 D n f0g and let f 2 H� be extremal over H�, 0 < � < 1,
for Lð f Þ ¼ arg f 0ðzÞ, a continuous functional on H�. Then, the extremal value for L
over H� can be obtained from a hyperbolically convex function which maps D onto a
hyperbolic polygon with at most two proper sides. If jzj < 2�

ffiffiffi
3

p
, then the extremal

value for L over H� can be obtained from the hyperbolically convex function k� in (1.1)
which maps D onto a hyperbolic polygon with exactly one proper side.
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Remark on Corollary 1.4 The function k� in (1.1) cannot be extremal function
in Corollary 1.4 for j f 0ðzÞj over H� for all values of z 2 Dnf0g. To see this, we refer
the reader to the cusp domains created in [11] or, alternately, to the following construc-
tion: in [6], Ma and Minda noted that k�ðDÞ ¼ Dnfw : jwþ ð1=�Þj � ð1=�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
g.

For jzj near 1, the maximum growth of k 0
� occurs for z near �, the pre-image under

k� of the corner of k�ðDÞ in the second quadrant. Near �, we have
k 0
�ðzÞ ¼ Oð1=j� � zj1=2Þ: Let Dð��,�Þ ¼ fz : jzj < ��g [ � [ Tð��,�Þ, where Tð��,�Þ is

the hyperbolic triangle which is symmetric about the real axis, bounded on the left
side by the circle jzj ¼ �� and which has vertex � > �� and symmetric sides �1 and �2
which are geodesics which pass through � and are tangent to the circle jzj ¼ �� and
where � is the open arc on the circle jzj ¼ �� bounded between the disc fz : jzj < ��g

and the triangle Tð��,�Þ. For �� near �, 0 < �� < �, there is (by subordination) a
choice of � so that the mapping radius of Dð��,�Þ ¼ �. Let fð��,�; �Þ be the normalized
map in H� which maps D to Dð��,�Þ such that fð��,�; 1Þ ¼ �. For z near 1, the max-
imum growth of f 0ð��,�; �Þ occurs for z near 1. Near 1, we have f 0ð��,�; zÞ ¼
Oð1=jz� 1j1��Þ where �� is the interior angle between �1 and �2 at �. Since � can be
made arbitrarily close to 0 by choosing � sufficiently close to 1, then for jzj sufficiently
close to 1, we have the maximum of j f 0ð�,�; zÞj exceeding the maximum of jk 0

�ðzÞj.
We note that in addition to the above limiting case argument that for fixed �,

the function k� in (1.1) cannot be extremal for j f 0ðzÞj over H� for all values of
z 2 Dnf0g, numerical examples can be computed which show for fixed � that for jzj
near 1 there are two-sided (real-axis symmetric) hyperbolically convex polygons
f 2 H� for which j f 0ðzÞj exceeds the maximum of jk 0

�ðzÞj.
As an aside, corollaries similiar in nature to Corollary 1.4 could be stated for the

problems of extremizing the functionals Re f 0ðzÞ and Im f 0ðzÞ over H�. Here again,
for fixed �, the function k� in (1.1) cannot be extremal for Re f 0ðzÞ over H� for all
values of z 2 Dnf0g nor for Im f 0ðzÞ over H� for all values of z 2 Dnf0g. Numerical
examples can be computed which show for fixed � that for jzj near 1, that there are
two-sided (real-axis symmetric) hyperbolically convex polygons f 2 H� for which
Re f 0ðzÞ exceeds the maximum (minimum) of Re k 0

�ðzÞ and others for which Im f 0ðzÞ
exceeds the maximum (minimum) of Im k 0

�ðzÞ.

Remark on Corollary 1.5 In contrast to the previous remark, where it was observed
that the conclusion of Corollary 1.4 is best possible, i.e., that for fixed �, that there are
cases where the extremal function for j f 0ðzÞj over H� will have two proper sides, numer-
ical evidence tends to suggest for fixed � that k� is the only extremal function for arg f 0ðzÞ
overH�, even for jzj near 1. Given the numerical evidence, we conjecture that, in fact, for
fixed � and for z 2 Dnf0g that k� is the only extremal function for arg f 0ðzÞ over H�.

2. Variations for H poly

For completeness and to help with referencing, we include the following summary of
variations for H poly which were introduced in [2]. The Julia variational formula is
developed as follows: let f 2 H poly map D ! � � D such that @� is piecewise analytic
with right and left tangents at all points. For w 2 @�, let n(w) be the outward unit
normal where it exists and the zero vector where it does not. Let 	 be a
piecewise differentiable function, 	: @� ! R with 	ðwjÞ ¼ 0 where fwjg is the collection
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of points at which @� is not analytic. We define a new curve @�
 pointwise by
letting w
 ¼ wþ 
�	ðwÞnðwÞ, where the control � is a fixed real parameter. By choosing

 sufficiently small, @�
 is a Jordan curve. We now define �
 to be the region bounded
by @�
. Let f
 be the Riemann map sending D onto �
 such that f
ð0Þ ¼ 0.

Julia’s result (which was really a generalization of Hadamard’s work with Green’s
functions) was that we can write f
 as a variation of our original f. In particular,

f
ðzÞ ¼ fðzÞ þ

�zf 0ðzÞ

2�i

Z
� þ z

� � z

	ðwÞnðwÞ

� f 0ð�Þ½ 	
2
dwþ oð
Þ, ð2:1Þ

where w ¼ fð�Þ for � ¼ ei�, 0 � � < 2�, and o(
) is analytic in z, piecewise differentiable
in 
 and converges uniformly on compact subsets of D.

Since, the normal to the boundry of f ðDÞ, where the boundary can be parameterized
as ! ¼ fð�Þ, can be written as nðwÞ ¼ ð�f 0ð�Þ=j�f 0ð�ÞjÞ, then equation (2.1) can be
rewritten as

f
ðzÞ ¼ fðzÞ þ 
�

Z
zf 0ðzÞ

� þ z

� � z
d�þ oð
Þ, ð2:2Þ

where d� ¼ ð	ðwÞ=2�Þ ðd�=j�f 0ð�ÞjÞ is a non-negative measure on T. Furthermore, the
change in mapping radius between f
 and f is given by

�mrð f
, f Þ ¼ 
�f 0ð0Þ

Z
d�þ oð
Þ: ð2:3Þ

The problem encountered in using the method of Julia variations with hyperbolically
convex functions is the difficulty in finding variations on the sides of the approximating
polygons that leave the varied functions in the original class. We describe two basic
types of variations which preserve the class H poly. One of these will preserve
the number of sides in the varied polygon. The other will increase it by one.

For each type of variation, there are three cases with which we need to consider,
depending on the angles at the ends of the sides being varied. The first case is when
a single side meets the boundary of the unit circle at an angle of �=2: The next case
is the one in which two sides meet on the interior of the disk at an angle lying between
0 and �. Finally, we deal with the case in which the two sides meet on the boundary
of the disk at a zero angle. This case must be subdivided into two variations, one in
which the side is pushed out thus turning the cusp into two right angles and one
in which the meeting of the two sides is moved into the disk and the angle is increased
to a positive angle.

We first introduce the class preserving variations for Hn, i.e., variations which for
f in Hn will produce varied functions f
 which again are in Hn. We use these in the
proof of Theorem 1.1 to reduce the number of sides in the extremal domain to at
most two. After the class preserving variations, we define the variations which increase
the number of sides, i.e., variations which for f in Hn will produce varied functions
f
 which are in Hnþ1. These we use, in the manner described by Barnard, Cole,
Pearce and Williams [2], to reduce the possible extremal domains from polygons
with at most two sides to those having at most one side.
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The analyses of the first two cases are similar, so we discuss those concurrently.
We illustrate by varying a side meeting the boundary of the disk on one side with
an angle of �=2 and meeting internally another side with an angle of � with 0<�<�
on the other (although the analysis works identically with any permutation of the
two sorts of corners, see figure 1).

We consider side cAB of our hyperbolically convex polygon �. We label
the point on the geodesic continuation of cAB to T as the point C, allowing for
the possiblility that B¼C. To perform our variation we take the midpoint of dAC
and call it M. Our variation will consist of moving M radially by a fixed small distance

	ðM Þ for constant 	(M ). This 	(M ) is chosen sufficiently small to assure that
the varied polygon retains the same number of sides as the original. This will give
us the new point M 0 ¼ Mþ 
	ðM ÞnðM Þ. Having defined the variation at M, we now
define the variation 	(w) for all other w on cAB.

For a given 
, we define a new curve dA0B 0 which is the arc of the unique hyperbolic
geodesic through M0 having M0 as the midpoint of the extension dA0C0 and connecting
A0 toB 0 the resulting endpoints on @�
 in the interior variation or the necessary extension
of the original connecting sides of @� in the exterior case. We then define the variation
	ðwÞ ¼ 	ðw, 
Þ to be the distance to the point on dA0B 0 which is on the line extended
along the normal n(w).

LEMMA 2.1 For 
 small, expanding 	ðw, 
Þ linearly at 
¼0 gives

	ðw, 
Þ ¼
@	ðw, 0Þ

@


þ oð
Þ

with @	ðw, 0Þ=@
 6¼ 0.

Figure 1. Variation at an internal angle.
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Proof Without loss of generality, we consider only the case when 
<0. To simplify
constructions and descriptions we also assume that M and M 0 are both real and
negative. We start by considering the circle �0 in the plane concentric with our original
geodesic through the point M 0. We define ~	ðwÞ to be the radial distance from w to �0.
Note that clearly we have

~	ðwÞ¼
	ðM Þ:

Our strategy is to show that for each w 2 cAB, we have that 	ðwÞ > ~	ðwÞ. Since 	(w)
is sufficiently smooth, we may expand it as a first-order Taylor polynomial.
Suppose that @	ðw, 0Þ=@
 ¼ 0. Then, on expanding as a function of 
 we get that
	ðw, 
Þ ¼ oð
Þ.

So if we divide 	ðw, 
Þ by ~	ðwÞ and take the limit as 
 goes to zero from below, we get
zero, by the definition of o(
). However, as we show 	ðwÞ > ~	ðwÞ, the quotient must be
greater than one for every sufficiently small 
. Thus, the limit, if it exists at all, must be
greater than or equal to one. Hence, we have a contradiction. The assumption that
@	ðw, 0Þ=@
 ¼ 0 must fail and we have our result.

Showing that ~	ðwÞ < 	ðwÞ comes from a simple geometric construction. We note
that except at M0, the curve dA0B 0 will lie outside of �0. Since cAB lies inside of �0,
see figure 2, the distance from w to �0 is less than the distance to dA0B 0 and
we are done. g

Figure 2. Construction of cAB, �0 and dA0B 0.
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With this, we can now write our varied point w 0 from w as

w 0 ¼ wþ
@	ðw, 0Þ

@

�ðwÞ
þ oð
Þ:

We can then absorb the o(
) term into the error term in the Julia variation formula.
Although the variations necessary to produce domains that are in the original class
are not always strictly normal, it was shown by Barnard and Lewis [1], that the
error introduced for small 
 is of order o(
) and thus may also be absorbed into the
o(
) term in the variational formula.

As the previous analysis dealt with both the first two cases, we are left only with the
case in which the two sides meet at a cusp. This in turn will be dealt with in two steps.
In the first case, we take 
>0 and move the arc of the circle outwards. The second case,
of course, is that we take 
<0 and move the arc of the circle towards the middle
of D (see figure 3).

In the first case, 
>0, we are actually removing the cusp and turning it into two sepa-
rate right angles at A and A1. Note that this does not increase the number of new sides,
as the new ‘‘side’’ lies on T and thus does not count as a proper side of the polygon.
Since this variation can be done normally without moving the vertex at the cusp, the
previous arguments hold. In the second case, we pull the side slightly into the disk.
The arguments of Barnard and Lewis for controlling the error rates are valid in this
case also (where we have a bounded cusp with zero opening). Thus, we have a valid
application of the Julia variation formula for all of our class preserving variations
of various angles in our polygons.

Figure 3. Variations at a cusp.

320 R. W. Barnard et al.



We end this section with a final variation, we can apply to all the three types
of intersection. We add a new small side to our polygon ‘‘cutting off ’’ a vertex z0.
This variation, unlike those previously described, will not preserve the class Hn but
will leave the varied function in Hnþ1. We choose a point z1 on the side of the polygon
we are varying, some fixed small (Euclidean) distance � from z0 (see figure 4). Then,
choose a point z2 on either the next side (if the vertex occured at a cusp or in the interior
of D) or along the arc of T (if the vertex was a right angle on the boundary). Choose
z2 some small distance 
 from z0 along the new side. Finally join z1 with z2 with
a hyperbolic geodesic. The variation will ‘‘pivot’’ the new side dz1z2 about z1 into the
polygonal domain. The analysis of the error for these variations follows very much
the same path as for the previous cases.

3. Proofs

Proof of Theorem 1.1 First, consider the case of extremizing L over H. Suppose that
f 2 Hn is extremal for (1.5) over Hn for some n 
 3 and that f ðDÞ has at least three
proper sides. Choose one of the proper sides of f ðDÞ, say �, and let � ¼ f�1ð�Þ.
We apply one of the class preserving variations described in the previous section
to �. From equations (1.4) and (2.2), we have for each k, 0 � k � n,

f ðkÞ
 ðzÞ ¼ f ðkÞðzÞ þ 
�

Z
�

G ðkÞð�, zÞd�þ oð
Þ

Figure 4. Side adding variation (right angle illustrated).
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which can be rewritten as

f ðkÞ
 ðzÞ ¼ f ðkÞðzÞ 1þ 
�

Z
�

G ðkÞð�, zÞ

f ðkÞðzÞ
d�

� 	
þ oð
Þ:

Using this last equation, we can write

log f ðkÞ
 ðzÞ ¼ log f ðkÞðzÞ þ log 1þ 
�

Z
�

G ðkÞð�, zÞ

f ðkÞðzÞ
d�

� 	
þ oð
Þ: ð3:1Þ

Expanding the right-hand side of (3.1) linearly in 
, for sufficiently small values
of 
, gives

log f ðkÞ
 ðzÞ ¼ log f ðkÞðzÞ þ 
�

Z
�

GðkÞð�, zÞ

f ðkÞðzÞ

� �
d�þ oð
Þ:

Hence, we can write using (1.2), (1.3) and (1.5)

Lðf
Þ ¼ < � � Fð f, zÞ þ 
�

Z
�

Qð�Þd�þ oð
Þ

� �� 	
:

If ð@Lð f
Þ=@
Þj
¼0 is non-zero, then the value of Lð f
Þ can be made larger or
smaller than the value of L( f ), which will imply that f cannot be extremal for (1.5)
in Hn. Using the above representation for Lð f
Þ and the fact that � is entire, we can
differentiate Lð f
Þ as a function of 
 and obtain

@Lðf
Þ

@









¼0

¼ < �

Z
�

�0 � Fð f, zÞQð�Þd�

	
:

�

By hypothesis, we have that the first term, � ¼ �0 � Fðf, zÞ is non-zero. We can pass the
< operator through the integral as d� is a real measure. Thus, for the derivative to be
zero, we must have

R
� < �Qð�Þ

� �
d� to be zero. As d� is real valued, we have a real-

valued integrand and a real-valued measure.
We are assuming that f is extremal for (1.5) in Hn and considering the case where

f has at least three proper sides, say �j, j ¼ 1, 2, 3. We now observe that we can vary
each side �j separately. Let �j be the arc ei�j , ei�j

� �
, the preimage of �j under f,

j ¼ 1, 2, 3. Applying the class-preserving variation to each side �j yields the require-
ment, under the supposition that f is extremal in Hn,

Z
�j

< �Qð�Þ
� �

d� ¼

Z
ei�j , ei�j½ 	

< �Qð�Þ
� �

d�ðei�Þ ¼ 0, j ¼ 1, 2, 3:
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Applying the mean value theorem for integrals we obtain

Z
ei�j , ei�j½ 	

< �Qð�Þ
� �

d�ðei�Þ ¼ < �Q


�ð�Þ

�� �


�¼�j

Z
ei�j , ei�j½ 	

d�,

where �j < �j < �j. Note that as �j 6¼ �j, we have
R

ei�j , ei�j½ 	 d� > 0. Thus, the only way
our integral can be zero is for < �Qð�ð�ÞÞ

� �
j�¼�j to be zero.

Since we can perform the appropriate class-preserving variation described above
on each proper side �j, j ¼ 1, 2, 3, we must have

@Lðf
Þ

@









¼0

¼ < �Qðei�jÞ
� �

�

Z
ei�j , ei�j½ 	

d� ¼ 0, j ¼ 1, 2, 3 ð3:2Þ

where �j lies in the interval �j, �j


 �
. Thus, ð@Lð f
Þ=@
Þj
¼0 can only be zero at a root

of <f�Qð�Þg ¼ 0. By hypothesis, �Q maps T to a curve � such that � intersects the
imaginary axis only twice. Since <f�Qðei�j Þg can equal 0 for only two of our three
sides, there exists a third side we can push either in or out and increase (or decrease)
the value of L for some function f
 near f, using our variational argument. Thus, f is
not extremal for L, i.e., if f is extremal in Hn, n 
 3, then f 2 H 2 � Hn.

We now have that the extremal f can have at most two proper sides. We now argue
that f can actually have at most one, using an argument from Barnard et al. [2].
Consider Hn, n 
 3, and let f be extremal in Hn for (1.5). By the above argument,
f ðDÞ can have at most two sides. Suppose fðDÞ has exactly two proper sides. If the
image under the map �Q of the preimage of either side is entirely on one side or
the other of the imaginary axis, then by our previous arguments, we can increase (or
decrease) the value achieved by Lð f
Þ and hence f is not extremal. So, we conclude
that both images intersect the imaginary axis. Thus, for each proper side � of fðDÞ,
we must have that the image under the map �Q of the preimage of one endpoint of
� lies in the left-half plane and the image under the map �Q of the preimage of other
endpoint � lies in the right-half plane.

Suppose the problem we are considering is to maximize L. We consider a vertex z0
whose image under �Q is in the left-half plane. Apply the variation at the vertex z0
described above which adds another side to f ðDÞ, making sure to keep the entire
image of the new side under �Q in the left-half plane. We now have the derivative
(3.2) taken over our newly created side is positive. By our basic variational argument,
the newly varied function has a greater value for L. But this means f cannot be extre-
mal. A similar argument works if the problem we are considering is to minimize L.
Thus, the extremal function for L in Hn, n 
 3, cannot have two proper sides. It
follows, therefore, that the extremal function in Hn can have at most one proper side.

Since H 2�Hn for all n
 3, if f is extremal in Hn and is an element of H 2, it must
be extremal in H2 as well. Thus, the extremal element in H2 has at most one proper
side. Thus, the extremal value for L in each Hn is achieved by the region with
at most one proper side and hence the extremal value for H ¼ [n2NHn is achieved
by a region with at most one proper side. This completes the case for extremizing
L over H.
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We now consider the problem of extremizing L over H�. Let H
n
� ¼ Hn \H�. Suppose

that f 2 Hn
� is maximal for (1.5) over Hn

� for some n 
 3 and that fðDÞ has at least
three proper sides, say �j, j¼ 1, 2, 3. Let �j be the arc ½ei�j , ei�j 	, the preimage of �j

under f, j¼ 1, 2, 3.
Applying the class preserving variation to each side �j, with control �j, yields

the requirement, under the supposition that f is extremal in Hn
� ,

@Lðf
Þ

@








"¼0

¼
X3
j¼1

�j< �Qðei�j Þ
� � Z

½ei�j ,ei�j 	

d� ¼ 0 ð3:3Þ

subject to the constraint

@�mrðf
, fÞ

@








"¼0

¼
X3
j¼1

�j�

Z
�j

d� ¼ 0; ð3:4Þ

where again each �j lies in the interval (�j,�j).
By hypothesis �Q maps T to a curve � such that no vertical line intersects � more

than twice. Hence, not all three of the points �Qðei�jÞ, j¼ 1, 2, 3, can have the same
real part. Without loss of generality suppose that <�Qðei�1 Þ > <�Qðei�2Þ. Then, we
can push �1 out, �2 in (and not vary �3) so as to increase the value of Lðf
Þ from
the value of Lð f Þ within the class Hn

� . Specifically, choose �1>0>�2 (and �3 ¼ 0)
so that ð@�mrð f
, f Þ=
Þj
¼0 ¼ 0 in (3.4). Then, we have from (3.3)

@Lðf
Þ

@







¼0

¼ <�Qðei�1 Þ�1

Z

1

d�þ <�Qðei�2Þ�2

Z

2

d�

> <�Qðei�2 Þ �1

Z

1

d�þ �2

Z

2

d�

� �
¼ 0: ð3:5Þ

Thus, f is not extremal for L in Hn
� . Consequently, if f is extremal in Hn

� , n 
 3,
then f 2 H 2

� � Hn
� , that is, the extremal f can have at most two proper sides. A similar

argument works if the problem we are considering is to minimize L.
We now argue that the extremal f can have at most one side in an analogous way to

the preceding argument (for the case extremizing L over H ). We suppose that f ðDÞ

has exactly two proper sides, �j, j¼ 1, 2, 3. Then, the only difference in the argument
is that role of the imaginary axis is replaced by that of a fixed vertical line which
would necessarily intersect the images under �Q of the preimages of the sides �j,
j¼ 1, 2 and the change in the mapping radius can be controlled if there are two available
sides to move. This completes the proof of Theorem 1.1. g

Proof of Corollary 1.2 In this case, extremizing j fðzÞj over H� is equivalent to extrem-
izing log j fðzÞj over H�. For this latter problem, we take � in Theorem 1.1 to be the
identity function and Lð f Þ ¼ <f� � log fðzÞg ¼ log j fðzÞj. In this case, � ¼ 1 and �Q
is a bilinear mapping. Hence, the hypotheses of Theorem 1.1 are satisfied. g
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Proof of Corollary 1.3 Althouth, H is not compact, H [ f0g is compact. If f fng is a
sequence in H [ f0g for which f fng converges to 0, then fj f 0ðzÞjg will converge to 0,
which is not the maximal value for the functional j f 0ðzÞj over H [ f0g. Hence, we
may suppose that the maximal function for j f 0ðzÞj over H [ f0g belongs to H. In this
case, extremizing j f 0ðzÞj over H is equivalent to extremizing log j f 0ðzÞj over H.
For this problem, we take � in Theorem 1.1 to be the identify function and
Lð f Þ ¼ <f� � log f 0ðzÞg ¼ log j f 0ðzÞj. Here again � ¼ 1. Now consider

Qð�Þ ¼ A
� þ z

� � z
þ z

� þ z

� � z

� �0

¼
Að�2 � z2Þ þ 2�z

ð� � zÞ2
,

where A ¼ ðzðzf 0ðzÞÞ0Þ=zf 0ðzÞ.
By Jack’s lemma, we have that A is real. Next we multiply through by 1 ¼ ð ��= ��Þ2

to obtain

Qð�Þ ¼
Aðj�j4 � ð ��zÞ2Þ þ 2j�j2 ��z

ðj�j2 � ��zÞ2
:

Define

~QðwÞ ¼
Að1� w2Þ þ 2w

ð1� wÞ2
: ð3:6Þ

Then, we have for w ¼ ��z that ~QðwÞ ¼ Qð�Þ. We substitute w ¼ rei� into ~Q and obtain

A 1� r2 ei�

 �2� �

þ 2 rei�

1� rei�ð Þ
2

:

We then expand the above rational function, multiply through by the conjugate
of the denominator, make the substitution rei� ¼ r cosð�Þ þ i sinð�Þð Þ and collect the
real parts. What is left in the numerator is:

R ¼ ð2Ar3 � 2Arþ 2r3 þ 2rÞ cos �ð Þ

þ A� 4r2 � Ar4:

Since R is linear in cosð�Þ, we have at most two values of � which can be
roots for ~Q. Hence, Q maps T to a curve � which intersects the imaginary axis
at most twice (see, for example figure 5). g

Proof of Corollary 1.4 In this case, extremizing j f 0ðzÞj over H� is equivalent to
extremizing log j f 0ðzÞj over H�. For this problem, we take � in Theorem 1.1 to be
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the identity function and Lð f Þ ¼ <f� � log f 0ðzÞg ¼ log j f 0ðzÞj. Here again � ¼ 1.
Now consider

�Qð�Þ ¼ A
� þ z

� � z
þ z

� þ z

� � z

� �0� �

¼
Að�2 � z2Þ þ 2�z

ð� � zÞ2
:

where A ¼ ðzðzf 0ðzÞÞ0Þ=zf 0ðzÞ real.
Preceding as above in the proof of Corollary 1.3, we examine the related rational

function

� ~QðwÞ ¼
Að1� w2Þ þ 2w

ð1� wÞ2

¼ Aþ 2ð1þ AÞ
w� ðA=ð1þ AÞÞw2

ð1� wÞ2
:

Hence, � ~QðwÞ maps D to the complement of a half line. (See [4], p. 72.) Consequently,
�Q maps T to a curve � which intersects every vertical line at most four times. If A
 1
and jzj < 1

2, then the problem is to maximize 1 and if � ~QðwÞ is convex and hence, �Q
maps T to a curve � which intersects every verticle line at most twice. g

Proof of Corollary 1.5 In this case, we take � in Theorem 1.1 to be �ðwÞ ¼ �iw.
Hence, Lð f Þ ¼ <f� � log f 0ðzÞg¼arg j f 0ðzÞj. Now consider

�Qð�Þ ¼ �i A
� þ z

� � z
þ z

� þ z

� � z

� �0� �

¼ �i
Að�2 � z2Þ þ 2�z

ð� � zÞ2
,

where A ¼ ðzðzf 0ðzÞÞ0Þ=zf 0ðzÞ is purely imaginary.
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Figure 5. Image of Q for jzj ¼ 0:70:
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Preceding as above in the proof of Corollary 1.3, we examine the related rational
function (which is the analog of (3.6))

� ~QðwÞ ¼ �i
Að1� w2Þ þ 2w

ð1� wÞ2

¼ �i Aþ 2ð1þ AÞ
w� ðA=ð1þ AÞÞw2

ð1� wÞ2

� �
:

Hence, � ~QðwÞ maps D to the complement of a half line. Consequently, �Q maps T

to a curve � which intersects every vertical line at most four times. If jzj<2�
ffiffiffi
3

p
,

then � ~QðwÞ is convex (see [4], p. 44) and hence, �Q maps T to a curve � which intersects
every vertical line at most twice. g

Remark The techniques introduced in this article have been used in [2] to determine
the sharp bound for the Schwarzian derivative for functions in H.
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