Math 4362 - Number Theory Homework 7 Due in Class - Monday November 24, 2014

- 1. (a) Find the order of all appropriate positive integers modulo 5.
 - (b) Using your results from part (a), find a primitive root of 25.
 - (c) How many primitive roots of 25 are there?
 - (d) Using your results from part (b) find all primitive roots of 25.
- 2. Prove that 3 is a primitive root of all integers of the form 7^k .
- 3. Assume that *r* is a primitive root of an odd prime *p* and that

 $(r+tp)^{p-1} \not\equiv 1 \pmod{p^2},$

for some $t \in \mathbb{Z}^+$. Show that r + tp is a primitive root of p^k for each $k \ge 1$.

- **4.** Let $n \in \mathbb{Z}^+$. Prove that
 - (a) p^n and $2p^n$ have the same number of primitive roots.
 - (b) Any primitive root r of p^n is also a primitive root of p.