Math 4362 - Number Theory Homework 7
 Due in Class - Monday November 24, 2014

1. (a) Find the order of all appropriate positive integers modulo 5.
(b) Using your results from part (a), find a primitive root of 25.
(c) How many primitive roots of 25 are there?
(d) Using your results from part (b) find all primitive roots of 25.
2. Prove that 3 is a primitive root of all integers of the form 7^{k}.
3. Assume that r is a primitive root of an odd prime p and that

$$
(r+t p)^{p-1} \not \equiv 1 \quad\left(\bmod p^{2}\right),
$$

for some $t \in \mathbb{Z}^{+}$. Show that $r+t p$ is a primitive root of p^{k} for each $k \geq 1$.
4. Let $n \in \mathbb{Z}^{+}$. Prove that
(a) p^{n} and $2 p^{n}$ have the same number of primitive roots.
(b) Any primitive root r of p^{n} is also a primitive root of p.

