Math 4362 - Number Theory Homework 6
 Due in Class - Friday November 14, 2014

1. Find the order of all appropriate positive integers modulo 14 .
2. Prove that
(a) if a has order $h k$ modulo n, then a^{h} has order k modulo n.
(b) if a has order $2 k$ modulo an odd prime p, then $a^{k} \equiv-1(\bmod p)$.
3. Prove that
(a) the integer 2 has order n modulo $2^{n}-1$.
(b) $\phi\left(2^{n}-1\right)$ is a multiple of n for any $n>1$.
4. If a has order h modulo n and if b has order k modulo n, when does $a b$ have order $h k$ modulo n ?
5. Let r be a primitive root of the integer n. Prove that r^{k} is a primitive root of n if and only if $\operatorname{gcd}(k, \phi(n))=1$.
6. Determine all primitive roots of $p=19$.
