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Abstract. We prove hypergeometric type summation identities for a function

defined in terms of quotients of the p-adic gamma function by counting points
on certain families of hyperelliptic curves over Fq . We also find certain special

values of that function.

1. Introduction and statement of results

In [11], Greene introduced the notion of hypergeometric functions over finite
fields analogous to classical hypergeometric series. Since then many interesting
relations between special values of these hypergeometric functions and the number
of points on certain varieties over finite fields have been obtained. The arguments
of these functions are multiplicative characters of finite fields and, consequently,
results involving hypergeometric functions over finite fields are often restricted to
primes in certain congruence classes. For example, the expressions for the trace of
Frobenius map on families of elliptic curves given in [1, 2, 9, 15, 16] are restricted to
certain congruence classes to facilitate the existence of characters of specific orders.
To overcome these restrictions, in [18, 19], the third author defined a function

nGn[· · · ] in terms of quotients of the p-adic gamma function which can best be
described as an analogue of hypergeometric series in the p-adic setting. He showed
[17, 18, 19] how results involving hypergeometric functions over finite fields can be
extended to almost all primes using the function nGn[· · · ].

Let p be an odd prime, and let Fq denote the finite field with q elements. Let
Γp(·) denote the Morita’s p-adic gamma function, and let ω denote the Teichmüller
character of Fq with ω denoting its character inverse. For x ∈ Q we let bxc denote
the greatest integer less than or equal to x and 〈x〉 denote the fractional part of x.

Definition 1.1. [19, Definition 5.1] Let q = pr, for p an odd prime and r ∈ Z+,
and let t ∈ Fq. For n ∈ Z+ and 1 ≤ i ≤ n, let ai, bi ∈ Q ∩ Zp. Then we define

nGn

[
a1, a2, . . . , an
b1, b2, . . . , bn

|t
]
q

:=
−1

q − 1

q−2∑
j=0

(−1)jn ωj(t)

×
n∏
i=1

r−1∏
k=0

(−p)−b〈aip
k〉− jpk

q−1 c−b〈−bip
k〉+ jpk

q−1 c
Γp(〈(ai − j

q−1 )pk〉)
Γp(〈aipk〉)

Γp(〈(−bi + j
q−1 )pk〉)

Γp(〈−bipk〉)
.
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We note that the value of nGn[· · · ] depends only on the fractional part of the
parameters ai and bi, and is invariant if we change the order of the parameters.

The aim of this paper is to prove summation identities for nGn[· · · ]. In [19],
the third author showed that transformations for hypergeometric functions over
finite fields can be re-written in terms of nGn[· · · ]. However, such transformations
will only hold for all p where the original characters existed over Fq, and hence
restricted to primes in certain congruence classes. It is a non-trivial exercise to
then extend these results to almost all primes. While numerous transformations
exist for the finite field hypergeometric functions, very few exist for nGn[· · · ] in full
generality. The first and second authors [5, 6] provide transformations for 2G2[· · · ]q
by counting points on various families of elliptic curves over Fq. Recently, the third
author and Fuselier [10] provide two transformations for nGn[· · · ]p when n = 3 and
n = 4, respectively. They also provide two transformations for nGn[· · · ]p for any
n. In this paper we prove eight summation identities for the function nGn[· · · ]q for
any n, which are listed below. Let φ be the quadratic character on F×q extended to
all of Fq by setting φ(0) := 0.

Theorem 1.2. Let d ≥ 4 be even, and let p be an odd prime such that p -

d(d − 1). Let a, b ∈ F×q . For y ∈ Fq, let f(y) = d
a

(
(b−y2)d
a(d−1)

)d−1
and g(y) =

d(b−y2)
a

(
d

a(d−1)

)d−1
. Let l = gcd(d− 1, q− 1), and let χ be a multiplicative charac-

ter of order l. If b is not a square in Fq then∑
y∈Fq

φ(y2 − b)

× d−1Gd−1

[ 1
2(d−1) ,

3
2(d−1) , . . . , d−1

2(d−1) ,
d+1

2(d−1) , . . . , 2d−3
2(d−1)

0, 1
d , . . . , d−2

2d ,
d+2
2d , . . . , d−1

d

|f(y)

]
q

= −1− q · d−2Gd−2
[ 1

d−1 ,
2
d−1 , . . . , d−2

2(d−1) ,
d

2(d−1) , . . . , d−2
d−1

1
d ,

2
d , . . . , d−2

2d ,
d+2
2d , . . . , d−1

d

|f(0)

]
q

and∑
y∈Fq

φ(y2 − b)

× d−1Gd−1

[ 1
2(d−1) ,

3
2(d−1) , . . . , d−1

2(d−1) ,
d+1

2(d−1) , . . . , 2d−3
2(d−1)

0, 1
d , . . . , d−2

2d ,
d+2
2d , . . . , d−1

d

|g(y)

]
q

= −1 + q · d−2Gd−2
[ 1

(d−1) ,
2

(d−1) , . . . , d−2
2(d−1) ,

d
2(d−1) , . . . , d−2

d−1
1
d ,

2
d , . . . , d−2

2d ,
d+2
2d , . . . , d−1

d

|g(0)

]
q

.

If b is a square in Fq then

1 + 2

l−1∑
j=0

χj(−a) +
∑
y∈Fq

y 6=±
√
b

φ(y2 − b)

× d−1Gd−1

[ 1
2(d−1) ,

3
2(d−1) , . . . , d−1

2(d−1) ,
d+1

2(d−1) , . . . , 2d−3
2(d−1)

0, 1
d , . . . , d−2

2d ,
d+2
2d , . . . , d−1

d

|f(y)

]
q
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= −q · d−2Gd−2
[ 1

d−1 ,
2
d−1 , . . . , d−2

2(d−1) ,
d

2(d−1) , . . . , d−2
d−1

1
d ,

2
d , . . . , d−2

2d ,
d+2
2d , . . . , d−1

d

|f(0)

]
q

and

3 +
∑
y∈Fq

y 6=±
√
b

φ(y2 − b)

× d−1Gd−1

[ 1
2(d−1) ,

3
2(d−1) , . . . , d−1

2(d−1) ,
d+1

2(d−1) , . . . , 2d−3
2(d−1)

0, 1
d , . . . , d−2

2d ,
d+2
2d , . . . , d−1

d

|g(y)

]
q

= −q · d−2Gd−2
[ 1

(d−1) ,
2

(d−1) , . . . , d−2
2(d−1) ,

d
2(d−1) , . . . , d−2

(d−1)
1
d ,

2
d , . . . , d−2

2d ,
d+2
2d , . . . , d−1

d

|g(0)

]
q

.

Theorem 1.3. Let d ≥ 3 be odd, and let p be an odd prime such that p - d(d−1). Let

a, b ∈ F×q . For y ∈ Fq, let f(y) = d
a

(
(b−y2)d
a(d−1)

)d−1
and g(y) = d(b−y2)

a

(
d

a(d−1)

)d−1
.

Let l = gcd(d− 1, q − 1), and let χ be a multiplicative character of order l.
If b is not a square in Fq then

∑
y∈Fq

d−1Gd−1

[
0, 1

d−1 , . . . , d−3
2(d−1) ,

d−1
2(d−1) , . . . , d−2

d−1
1
2d ,

3
2d , . . . , d−2

2d ,
d+2
2d , . . . , 2d−1

2d

| − f(y)

]
q

= q · d−1Gd−1
[ 1

2(d−1) ,
3

2(d−1) , . . . , d−2
2(d−1) ,

d
2(d−1) , . . . , 2d−3

2(d−1)
1
2d ,

3
2d , . . . , d−2

2d ,
d+2
2d , . . . , 2d−1

2d

| − f(0)

]
q

and

φ(a)

q
·
∑
y∈Fq

φ(y2 − b)

× d−1Gd−1

[
0, 1

d−1 , . . . , d−3
2(d−1) ,

d−1
2(d−1) , . . . , d−2

d−1
1
2d ,

3
2d , . . . , d−2

2d ,
d+2
2d , . . . , 2d−1

2d

| − g(y)

]
q

= d−1Gd−1

[ 1
d−1 ,

2
d−1 , . . . , d−1

2(d−1) ,
d+1

2(d−1) , . . . , d−2
d−1 ,

1
2

1
d ,

2
d , . . . , d−1

2d ,
d+1
2d , . . . , d−2

d , d−1
d

| − g(0)

]
q

.

If b is a square in Fq then

∑
y∈Fq

y 6=±
√
b

d−1Gd−1

[
0, 1

d−1 , . . . , d−3
2(d−1) ,

d−1
2(d−1) , . . . , d−2

d−1
1
2d ,

3
2d , . . . , d−2

2d ,
d+2
2d , . . . , 2d−1

2d

| − f(y)

]
q

= −2

l−1∑
j=0

(χjφ)(−a)− q

× d−1Gd−1

[ 1
2(d−1) ,

3
2(d−1) , . . . , d−2

2(d−1) ,
d

2(d−1) , . . . , 2d−3
2(d−1)

1
2d ,

3
2d , . . . , d−2

2d ,
d+2
2d , . . . , 2d−1

2d

| − f(0)

]
q
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and

− 2

q
− φ(a)

q

∑
y∈Fq

y 6=±
√
b

φ(y2 − b)

× d−1Gd−1

[
0, 1

d−1 , . . . , d−3
2(d−1) ,

d−1
2(d−1) , . . . , d−2

d−1
1
2d ,

3
2d , . . . , d−2

2d ,
d+2
2d , . . . , 2d−1

2d

| − g(y)

]
q

= d−1Gd−1

[ 1
d−1 ,

2
d−1 , . . . , d−1

2(d−1) ,
d+1

2(d−1) , . . . , d−2
d−1 ,

1
2

1
d ,

2
d , . . . , d−1

2d ,
d+1
2d , . . . , d−2

d , d−1
d

| − g(0)

]
q

.

We now give one example to show how the above theorems are applied in specific
cases.

Example 1.4. Let a 6= 0 and p ≥ 5. Taking d = 3 and b = 1 in Theorem 1.3, we
deduce that∑
y∈Fq

y 6=±1

2G2

[
0, 1

2
1
6 ,

5
6

| − 27

4a3
(1− y2)2

]
q

= −2− 2φ(−a)− q · 2G2

[
1
4 ,

3
4

1
6 ,

5
6

| − 27

4a3

]
q

and∑
y∈Fq

y 6=±1

φ(y2 − 1) 2G2

[
0, 1

2
1
6 ,

5
6

| − 27

4a3
(1− y2)

]
q

= −2φ(a)− qφ(a) · 2G2

[
1
2 ,

1
2

1
3 ,

2
3

| − 27

4a3

]
q

.

We also derive the following transformation for 2G2[· · · ].

Theorem 1.5. Let q = pr, p > 3 be a prime. Let a, b ∈ F×q and
−27b2

4a3
6= 1. Then

2G2

[
1
4 ,

3
4

1
3 ,

2
3

|−27b2

4a3

]
q

= φ(−a) · 2G2

[
1
4 ,

3
4

1
6 ,

5
6

|−27b2

4a3

]
q

.

In particular, if
27b2

4a6
6= 1 then

2G2

[
1
4 ,

3
4

1
3 ,

2
3

|27b2

4a6

]
q

= 2G2

[
1
4 ,

3
4

1
6 ,

5
6

|27b2

4a6

]
q

.

Remark 1.6. In [5, 6], the first and second authors derived transformations for

2G2[· · · ]q with different parameters. Thus, we can derive many such transforma-
tions by combining the transformation of Theorem 1.5 with those in [5, 6].

Let d ≥ 2. In [4], the first and second authors expressed the number of distinct
zeros of the polynomials xd+ax+b and xd+axd−1+b over Fq in terms d−1Gd−1[· · · ].
We now state four theorems from [4] which we will need to prove our main results.

Theorem 1.7. ([4, Theorem 1.2]) Let d ≥ 2 be even, and let p be an odd prime
such that p - d(d− 1). Let a, b ∈ F×q . If N(xd + ax+ b = 0) denotes the number of

distinct zeros of the polynomial xd + ax+ b in Fq then

N(xd + ax+ b = 0) = 1 + φ(−b)

× d−1Gd−1

[
1

2(d−1) ,
3

2(d−1) , . . . , d−1
2(d−1) ,

d+1
2(d−1) , . . . , 2d−3

2(d−1)

0, 1
d , . . . ,

d
2−1
d ,

d
2+1

d , . . . , d−1
d

|α

]
q

,
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where α = d
a

(
bd

a(d−1)

)d−1
.

Theorem 1.8. ([4, Theorem 1.3]) Let d ≥ 3 be odd, and let p be an odd prime
such that p - d(d− 1). Let a, b ∈ F×q . If N(xd + ax+ b = 0) denotes the number of

distinct zeros of the polynomial xd + ax+ b in Fq then

N(xd + ax+ b = 0) = 1 + φ(−a)

× d−1Gd−1

[
0, 1

d−1 , . . . , (d−3)/2
d−1 , (d−1)/2

d−1 , . . . , d−2
d−1

1
2d ,

3
2d , . . . , d−2

2d ,
d+2
2d , . . . , 2d−1

2d

| − α

]
q

,

where α = d
a

(
bd

a(d−1)

)d−1
.

Theorem 1.9. ([4, Theorem 1.4]) Let d ≥ 2 be even, and let p be an odd prime
such that p - d(d− 1). Let a, b ∈ F×q . If N(xd + axd−1 + b = 0) denotes the number

of distinct zeros of the polynomial xd + axd−1 + b in Fq then

N(xd + axd−1 + b = 0) = 1 + φ(−b)

× d−1Gd−1

[
1

2(d−1) ,
3

2(d−1) , . . . , d−1
2(d−1) ,

d+1
2(d−1) , . . . , 2d−3

2(d−1)

0, 1
d , . . . ,

d
2−1
d ,

d
2+1

d , . . . , d−1
d

|β

]
q

,

where β = bd
a

(
d

a(d−1)

)d−1
.

Theorem 1.10. ([4, Theorem 1.5]) Let d ≥ 3 be odd, and let p be an odd prime
such that p - d(d− 1). Let a, b ∈ F×q . If N(xd + axd−1 + b = 0) denotes the number

of distinct zeros of the polynomial xd + axd−1 + b in Fq then

N(xd + axd−1 + b = 0) = 1 + φ(−ab)

× d−1Gd−1

[
0, 1

d−1 , . . . , (d−3)/2
d−1 , (d−1)/2

d−1 , . . . , d−2
d−1

1
2d ,

3
2d , . . . , d−2

2d ,
d+2
2d , . . . , 2d−1

2d

| − β

]
q

,

where β = bd
a

(
d

a(d−1)

)d−1
.

2. Notations and Preliminaries

Throughout this paper p will denote an odd prime, Fq the finite field of q = pr

elements, Zp the ring of p-adic integers, Qp the field of p-adic numbers, Qp the

algebraic closure of Qp, and Cp the completion of Qp. Let Zq be the ring of integers
in the unique unramified extension of Qp with residue field Fq. Let µq−1 be the
group of (q − 1)-th roots of unity in C×.

2.1. Multiplicative characters and Gauss sums. Let F̂×q denote the group of

multiplicative characters χ on F×q with values in µq−1. F̂×q is a cyclic group of order
q − 1. Let ε and φ denote the trivial and quadratic characters, respectively. The

domain of each χ ∈ F̂×q is extended to Fq by setting χ(0) := 0. We now state the
orthogonality relations for multiplicative characters in the following lemma.

Lemma 2.1. ([13, Chapter 8]). We have
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(1)
∑
x∈Fq

χ(x) =

{
q − 1 if χ = ε;
0 if χ 6= ε.

(2)
∑
χ∈F̂×q

χ(x) =

{
q − 1 if x = 1;
0 if x 6= 1.

It is known that Z×q contains all the (q− 1)-th roots of unity. Therefore, we can

consider multiplicative characters on F×q to be maps χ : F×q → Z×q .
We now introduce some properties of Gauss sums. For further details, see [7]

noting that we have adjusted results to take into account ε(0) = 0. Let ζp be a

fixed primitive p-th root of unity in Qp. The trace map tr : Fq → Fp is given by

tr(α) = α+ αp + αp
2

+ · · ·+ αp
r−1

.

Then the additive character θ : Fq → Qp(ζp) is defined by θ(α) := ζ
tr(α)
p . It is easy

to see that θ(a+ b) = θ(a)θ(b) and∑
x∈Fq

θ(x) = 0.(2.1)

For χ ∈ F̂×q , the Gauss sum is defined by

G(χ) :=
∑
x∈Fq

χ(x)θ(x).

If ζq−1 is a primitive (q − 1)-th root of unity in Qp, then G(χ) lies in Qp(ζp, ζq−1).

We let T denote a fixed generator of F̂×q and denote by Gm the Gauss sum G(Tm).
Using (2.1) it is easy to show that G0 = −1. We will use the following results on
Gauss sums in the proof of our main results.

Lemma 2.2. ([7, Theorem 1.1.4 (a)]). If k ∈ Z and T k 6= ε, then

GkG−k = qT k(−1).

Lemma 2.3. ([9, Lemma 2.2]). For all α ∈ F×q ,

θ(α) =
1

q − 1

q−2∑
m=0

G−mT
m(α).

Theorem 2.4. ([7, Davenport-Hasse Relation, Thm 11.3.5]). Let k be a positive

integer and let q = pr be a prime power such that q ≡ 1 (mod k). For χ, ψ ∈ F̂×q ,∏
χk=ε

G(χψ) = −G(ψk)ψ(k−k)
∏
χk=ε

G(χ).

2.2. p-adic gamma function and Gross-Koblitz formula. Let ω : F×q → Z×q
be the Teichmüller character. For a ∈ F×q , the value ω(a) is just the (q− 1)-th root
of unity in Zq such that ω(a) ≡ a (mod p). We note that ω|F×p is the Teichmüller

character on F×p with values in Z×p . Also, F̂×q = {ωj : 0 ≤ j ≤ q − 2}.
We now recall the p-adic gamma function. For further details, see [14]. The

p-adic gamma function Γp is defined by setting Γp(0) = 1, and for n ∈ Z+ by

Γp(n) := (−1)n
∏

0<j<n
p-j

j.
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If x, y ∈ Z+ and x ≡ y (mod pkZ), then Γp(x) ≡ Γp(y) (mod pkZ). Therefore, the
function has a unique extension to a continuous function Γp : Zp → Z×p . If x ∈ Zp
and x 6= 0, then Γp(x) is defined as

Γp(x) := lim
xn→x

Γp(xn),

where xn runs through any sequence of positive integers p-adically approaching x.
The following lemma will be used in the proofs of our main results.

Lemma 2.5. ([5, Lemma 3.1]). Let p be a prime and q = pr. For 0 ≤ j ≤ q − 2
and t ∈ Z+ with p - t, we have

ω(ttj)

r−1∏
i=0

Γp

(
〈 tp

ij

q − 1
〉
) t−1∏
h=1

Γp

(
〈hp

i

t
〉
)

=

r−1∏
i=0

t−1∏
h=0

Γp

(
〈p
ih

t
+

pij

q − 1
〉
)

and

ω(t−tj)

r−1∏
i=0

Γp

(
〈−tp

ij

q − 1
〉
) t−1∏
h=1

Γp

(
〈hp

i

t
〉
)

=

r−1∏
i=0

t−1∏
h=0

Γp

(
〈p
i(1 + h)

t
− pij

q − 1
〉
)
.

The Gross-Koblitz formula, which is given below, allows us to relate Gauss sums
and the p-adic gamma function. Let π ∈ Cp be the fixed root of xp−1 +p = 0 which
satisfies π ≡ ζp − 1 (mod (ζp − 1)2). Recall that ω denotes the character inverse of
the Teichmüller character ω.

Theorem 2.6. ([12, Gross-Koblitz]). For a ∈ Z and q = pr,

G(ωa) = −π(p−1)
∑r−1

i=0 〈
api

q−1 〉
r−1∏
i=0

Γp

(
〈 ap

i

q − 1
〉
)
.

3. Proof of the results

Lemma 3.1. Let p be an odd prime and q = pr. Let d ≥ 4 be even and p - d(d−1).
For 1 ≤ m ≤ q − 2 such that m 6= q−1

2 , 0 ≤ i ≤ r − 1 we have

b−2mpi

q − 1
c+ bmdp

i

q − 1
c+ b−m(d− 1)pi

q − 1
c − b−mp

i

q − 1
c+ 1

=

d−2∑
h=1

b〈 hp
i

d− 1
〉 − mpi

q − 1
c+

d−1∑
h=1
h 6= d

2

b〈−hp
i

d
〉+

mpi

q − 1
c.(3.1)

Proof. We express bmd(d−1)p
i

q−1 c as d(d − 1)u + v for some u, v ∈ Z, where 0 ≤ v <

d(d − 1). By considering the cases v = 0, 1, . . . , d(d − 1) − 1 separately, we verify

(3.1). For example, when v = 0 we deduce that b−2mp
i

q−1 c = −2u− 1, bmdp
i

q−1 c = du,

b−m(d−1)pi
q−1 c = −(d − 1)u − 1 and b−mp

i

q−1 c = −u − 1. Substituting all these values

we find that the left hand side of (3.1) is equal to zero. Since p - d we have

d−1∑
h=1
h6= d

2

b〈−hp
i

d
〉+

mpi

q − 1
c =

d−1∑
h=1
h6= d

2

b〈h
d
〉+

mpi

q − 1
c = (d− 2)u.(3.2)
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Also, p - (d− 1) and hence

d−2∑
h=1

b〈 hp
i

d− 1
〉 − mpi

q − 1
c =

d−2∑
h=1

b〈 h

d− 1
〉 − mpi

q − 1
c = −(d− 2)u.(3.3)

Substituting for (3.2) and (3.3), we see that the right hand side of (3.1) is also
equal to zero, when v = 0. Similarly we check (3.1) for the other values of v. This
completes the proof of the lemma. �

Lemma 3.2. Let p be an odd prime and q = pr. Let d ≥ 3 be odd and p - d(d− 1).
For 1 ≤ m ≤ q − 2 and 0 ≤ i ≤ r − 1 we have

b−2mpi

q − 1
c+ bmdp

i

q − 1
c+ b−m(d− 1)pi

q − 1
c − b−mp

i

q − 1
c+ 1

=
d−2∑
h=1

b〈 hp
i

d− 1
〉 − mpi

q − 1
c+ b〈p

i

2
〉 − mpi

q − 1
c+

d−1∑
h=1

b〈−hp
i

d
〉+

mpi

q − 1
c.

Proof. The proof is similar to that of Lemma 3.1. �

Lemma 3.3. Let p be an odd prime and q = pr. Let d ≥ 3 be odd and p - d(d− 1).
For 0 ≤ m ≤ q − 2 such that m 6= q−1

2 , 0 ≤ i ≤ r − 1 we have

b−2mpi

q − 1
c+ b2mdp

i

q − 1
c+ b−2m(d− 1)pi

q − 1
c − b−mp

i

q − 1
c − bmdp

i

q − 1
c − b−m(d− 1)pi

q − 1
c

=

2d−3∑
h=1
h odd

b〈 hpi

2(d− 1)
〉 − mpi

q − 1
c+

2d−1∑
h=1
h odd
h6=d

b〈−hp
i

2d
〉+

mpi

q − 1
c.

Proof. The proof is similar to that of Lemma 3.1. �

Lemma 3.4. For 0 < m ≤ q − 2 we have

r−1∏
i=0

Γp(〈(1−
m

q − 1
)pi〉)Γp(〈

mpi

q − 1
〉) = (−1)rωm(−1).(3.4)

For 0 ≤ m ≤ q − 2 such that m 6= q−1
2 we have

r−1∏
i=0

Γp(〈( 1
2 −

m
q−1 )pi〉)Γp(〈( 1

2 + m
q−1 )pi〉)

Γp(〈p
i

2 〉)Γp(〈
pi

2 〉)
= ωm(−1).(3.5)

Proof. Consider

Im =

r−1∏
i=0

Γp(〈(1−
m

q − 1
)pi〉)Γp(〈

mpi

q − 1
〉) =

r−1∏
i=0

Γp(〈
−mpi

q − 1
〉)Γp(〈

mpi

q − 1
〉)

=
π(p−1)

∑r−1
i=0 〈

−mpi

q−1 〉
∏r−1
i=0 Γp

(
〈−mp

i

q−1 〉
)
π(p−1)

∑r−1
i=0 〈

mpi

q−1 〉
∏r−1
i=0 Γp

(
〈mp

i

q−1 〉
)

π(p−1)
∑r−1

i=0 {〈
−mpi

q−1 〉+〈
mpi

q−1 〉}
.

Now, applying Gross-Koblitz formula (Theorem 2.6), Lemma 2.2 and the fact that

〈−mp
i

q−1 〉+ 〈mp
i

q−1 〉 = 1, we obtain

Im =
G(ω −m)G(ω m)

(−p)r
=
q · ωm(−1)

(−1)r · q
= (−1)rωm(−1).
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This completes the proof of (3.4). If m = 0 then clearly (3.5) is true. For m 6= q−1
2 ,

and using Lemma 2.5, we have

Jm =

r−1∏
i=0

Γp(〈( 1
2 −

m
q−1 )pi〉)Γp(〈( 1

2 + m
q−1 )pi〉)

Γp(〈p
i

2 〉)Γp(〈
pi

2 〉)
=

r−1∏
i=0

Γp(〈−2mp
i

q−1 〉)Γp(〈
2mpi

q−1 〉)

Γp(〈(1− m
q−1 )pi〉)Γp(〈mp

i

q−1 〉)
.

Using (3.4), Gross-Koblitz formula (Theorem 2.6), Lemma 2.2, and the fact that

〈−2mp
i

q−1 〉+ 〈 2mp
i

q−1 〉 = 1, we have

Jm =
π(p−1)

∑r−1
i=0 〈

−2mpi

q−1 〉
∏r−1
i=0 Γp

(
〈−2mp

i

q−1 〉
)
π(p−1)

∑r−1
i=0 〈

2mpi

q−1 〉
∏r−1
i=0 Γp

(
〈 2mp

i

q−1 〉
)

(−1)rωm(−1)π(p−1)
∑r−1

i=0 {〈
−2mpi

q−1 〉+〈
2mpi

q−1 〉}

=
G(ω −2m)G(ω 2m)

qωm(−1)
=
q ω2m(−1)

q ωm(−1)
= ωm(−1).

�

Lemma 3.5. ([7, Lemma 10.4.1]) Let γ ∈ F×q , and let k be a positive integer. Let
χ be a character on Fq of order d = gcd(k, q − 1). Then the number of solutions
x ∈ Fq of xk = γ is

N(xk = γ) =

d−1∑
j=0

χj(γ).

To prove Theorem 1.2 and Theorem 1.3, we will first express the number of
points on certain families of hyperelliptic curves over Fq in terms of the G-function.
For d ≥ 2 and a, b 6= 0, we consider the hyperelliptic curves Ed and E′d over Fq
given by

Ed : y2 = xd + ax+ b

and

E′d : y2 = xd + axd−1 + b,

respectively. Let Nd and N ′d denote the number of Fq-points on the curves Ed and
E′d, respectively. We now give explicit expressions for Nd and N ′d in terms of the
G-function in the following theorems.

Theorem 3.6. Let d ≥ 4 be even, and let p be an odd prime such that p - d(d− 1).
Then

Nd = q − 1− q

× d−2Gd−2

[ 1
d−1 ,

2
d−1 , . . . , d−2

2(d−1) ,
d

2(d−1) , . . . , d−2
d−1

1
d ,

2
d , . . . , d−2

2d ,
d+2
2d , . . . , d−1

d

|f(0)

]
q

,

where f is defined as in Theorem 1.2.

Proof. Let Ed(x, y) = xd + ax+ b− y2. Using the identity∑
z∈Fq

θ(zEd(x, y)) =

{
q, if Ed(x, y) = 0;
0, if Ed(x, y) 6= 0,
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we obtain

q ·Nd =
∑

x,y,z∈Fq

θ(zEd(x, y))

= q2 +
∑
z∈F×q

θ(zb) +
∑

y,z∈F×q

θ(bz)θ(−zy2) +
∑

x,z∈F×q

θ(zxd)θ(zax)θ(zb)

+
∑

x,y,z∈F×q

θ(xdz)θ(axz)θ(bz)θ(−zy2)

= q2 +A+B + C +D.(3.6)

From (2.1), we find that A = −1. Applying Lemma 2.3 we have

B =
∑

y,z∈F×q

θ(bz)θ(−zy2)

=
1

(q − 1)2

q−2∑
l,m=0

G−mG−lT
m(b)T l(−1)

∑
y∈F×q

T 2l(y)
∑
z∈F×q

T l+m(z).

We now apply Lemma 2.1 to the inner sums on the right, which gives non zero sums
only if 2l ≡ 0 (mod q− 1) and l+m ≡ 0 (mod q− 1). Hence l = 0 or l = q−1

2 ; and

m = 0 or m = q−1
2 , respectively. Finally, using Lemma 2.2, we get B = 1 + qφ(b).

Similarly,

D =
∑

x,y,z∈F×q

θ(xdz)θ(axz)θ(bz)θ(−zy2)

=
1

(q − 1)4

q−2∑
l,m,n,k=0

G−mG−lG−nG−kT
l(a)Tn(b)T k(−1)

×
∑
x∈F×q

T l+md(x)
∑
y∈F×q

T 2k(y)
∑
z∈F×q

T l+m+n+k(z).(3.7)

The inner sums are non zero only if l +md ≡ 0 (mod q − 1), 2k ≡ 0 (mod q − 1),
and l+m+n+ k ≡ 0 (mod q− 1). This implies that l ≡ −md (mod q− 1), k = 0
or k = q−1

2 ; and n ≡ m(d − 1) (mod q − 1) or n ≡ m(d − 1) + q−1
2 (mod q − 1),

respectively. Accounting for these values in (3.7), noting that T q−1 = ε, we obtain

D =
1

q − 1

q−2∑
m=0

G−mGmdG−m(d−1)G0T
−md(a)Tm(d−1)(b)

+
1

q − 1

q−2∑
m=0

G−mGmdG−m(d−1)+ q−1
2
G q−1

2
T−md(a)Tm(d−1)+ q−1

2 (b)T
q−1
2 (−1)

=
−1

q − 1

q−2∑
m=0

G−mGmdG−m(d−1)T
−md(a)Tm(d−1)(b)

+
φ(−b)
q − 1

q−2∑
m=0

G−mGmdG−m(d−1)+ q−1
2
G q−1

2
T−md(a)Tm(d−1)(b).

Expanding C in a similar fashion, using Lemma 2.3, it follows that the first term
of the last expression for D will be equal to −C. Now substituting the expressions
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for A, B, C, and D in (3.6) we have

q ·Nd = q2 + qφ(b) +
φ(−b)
q − 1

q−2∑
m=0

G−mGmdG−m(d−1)+ q−1
2
G q−1

2
Tm

(
bd−1

ad

)
.

= q2 + qφ(b) +
φ(−1)

q − 1

q−2∑
m=0

G−m+ q−1
2
GmdG−m(d−1)G q−1

2
Tm

(
bd−1

ad

)
,(3.8)

where we have replaced m by m − q−1
2 in the last sum. Using Davenport-Hasse

relation (Theorem 2.4) for k = 2 and ψ = T−m we deduce that

G−m+ q−1
2

=
G q−1

2
G−2mT

m(4)

G−m
.(3.9)

Substituting (3.9) into (3.8) and using Lemma 2.2 yields

q ·Nd = q2 + qφ(b) +
q

q − 1
+
qφ(b)

q − 1

+
q

q − 1

q−2∑
m=1

m6= q−1
2

G−2mGmdG−m(d−1)

G−m
Tm

(
4bd−1

ad

)
.

Now we take T to be the inverse of the Teichmüller character, that is, T = ω, and
then using Gross-Koblitz formula (Theorem 2.6) we deduce that

q ·Nd = q2 + qφ(b) +
q

q − 1
+
qφ(b)

q − 1
+

q

q − 1

q−2∑
m=1

m 6= q−1
2

π(p−1)s ωm
(

4bd−1

ad

)

×
r−1∏
i=0

Γp(〈−2mp
i

q−1 〉)Γp(〈
mdpi

q−1 〉)Γp(〈
−m(d−1)pi

q−1 〉)

Γp(〈−mp
i

q−1 〉)
,

where s =
∑r−1
i=0

{
〈−2mp

i

q−1 〉+ 〈mdp
i

q−1 〉+ 〈−m(d−1)pi
q−1 〉 − 〈−mp

i

q−1 〉
}
. Using Lemma 2.5,

canceling q from both the sides, and rearranging the terms, we have

Nd = q + φ(b) +
1

q − 1
+

φ(b)

q − 1
+

1

q − 1

q−2∑
m=1

m 6= q−1
2

π(p−1)s ωm
(

bd−1dd

ad(d− 1)d−1

)

×
r−1∏
i=0

Γp(〈
mpi

q − 1
〉)Γp(〈(1−

m

q − 1
)pi〉)

Γp(〈( 1
2 −

m
q−1 )pi〉)Γp(〈( 1

2 + m
q−1 )pi〉)

Γp(〈p
i

2 〉)Γp(〈
pi

2 〉)

×
r−1∏
i=0

∏d−3
h=0 Γp(〈( 1+h

d−1 −
m
q−1 )pi〉)∏d−2

h=1 Γp(〈 hp
i

d−1 〉)

d−1∏
h=1
h6= d

2

Γp(〈(hd + m
q−1 )pi〉)

Γp(〈hp
i

d 〉)
.
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Applying Lemma 3.4 we then get

Nd = q + φ(b)+
1

q − 1
+

φ(b)

q − 1
+

1

q − 1

q−2∑
m=1

m6= q−1
2

(−1)rπ(p−1)sωm
(

bd−1dd

ad(d− 1)d−1

)

×
r−1∏
i=0

d−2∏
h=1

Γp(〈( h
d−1 −

m
q−1 )pi〉)

Γp(〈 hp
i

d−1 〉)

d−1∏
h=1
h6= d

2

Γp(〈(hd + m
q−1 )pi〉)

Γp(〈hp
i

d 〉)
.(3.10)

Simplifying the term s we obtain s =
∑r−1
i=0

{
b−mp

i

q−1 c − b
−2mpi
q−1 c − b

mdpi

q−1 c − b
−m(d−1)pi

q−1 c
}
,

which is an integer. Plugging this expression in (3.10) we have

Nd = q + φ(b) +
1

q − 1
+

φ(b)

q − 1
+

q

q − 1

q−2∑
m=1

m6= q−1
2

ωm
(

bd−1dd

ad(d− 1)d−1

)

× (−p)
∑r−1

i=0

{
b−mpi

q−1 c−b
−2mpi

q−1 c−b
mdpi

q−1 c−b
−m(d−1)pi

q−1 c−1
}

×
r−1∏
i=0

d−2∏
h=1

Γp(〈( h
d−1 −

m
q−1 )pi〉)

Γp(〈 hp
i

d−1 〉)

d−1∏
h=1
h6= d

2

Γp(〈(hd + m
q−1 )pi〉)

Γp(〈hp
i

d 〉)
.

Now using Lemma 3.1 we obtain

Nd = q + φ(b) +
1

q − 1
+

φ(b)

q − 1
+

q

q − 1

q−2∑
m=1

m6= q−1
2

ωm
(

bd−1dd

ad(d− 1)d−1

)

×
r−1∏
i=0

(−p)
−
{∑d−2

h=1b〈
hpi

d−1 〉−
mpi

q−1 c+
∑d−1

h=1, h6= d
2

b〈−hpi

d 〉+mpi

q−1 c
}

×
r−1∏
i=0

d−2∏
h=1

Γp(〈( h
d−1 −

m
q−1 )pi〉)

Γp(〈 hp
i

d−1 〉)

d−1∏
h=1
h6= d

2

Γp(〈(hd + m
q−1 )pi〉)

Γp(〈hp
i

d 〉)
.(3.11)

Now for m = 0 we have the following identities:

d−2∑
h=1

b〈 hp
i

d− 1
〉 − mpi

q − 1
c+

d−1∑
h=1, h 6= d

2

b〈−hp
i

d
〉+

mpi

q − 1
c = 0

and

ωm
(

bd−1dd

ad(d− 1)d−1

) r−1∏
i=0

d−2∏
h=1

Γp(〈( h
d−1 −

m
q−1 )pi〉)

Γp(〈 hp
i

d−1 〉)

d−1∏
h=1
h6= d

2

Γp(〈(hd + m
q−1 )pi〉)

Γp(〈hp
i

d 〉)
= 1.

Also for m = q−1
2 we have

d−2∑
h=1

b〈 hp
i

d− 1
〉 − mpi

q − 1
c+

d−1∑
h=1, h 6= d

2

b〈−hp
i

d
〉+

mpi

q − 1
c = 0,
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and by Lemma 2.5 we have

ωm
(

bd−1dd

ad(d− 1)d−1

) r−1∏
i=0

d−2∏
h=1

Γp(〈( h
d−1 −

m
q−1 )pi〉)

Γp(〈 hp
i

d−1 〉)

d−1∏
h=1
h6= d

2

Γp(〈(hd + m
q−1 )pi〉)

Γp(〈hp
i

d 〉)
= φ(b).

Using all these four identities in (3.11) we deduce that

Nd = q − 1 +
q

q − 1

q−2∑
m=0

ωm
(

bd−1dd

ad(d− 1)d−1

)

×
r−1∏
i=0

(−p)
−
{∑d−2

h=1b〈
hpi

d−1 〉−
mpi

q−1 c+
∑d−1

h=1, h6= d
2

b〈−hpi

d 〉+mpi

q−1 c
}

×
r−1∏
i=0

d−2∏
h=1

Γp(〈( h
d−1 −

m
q−1 )pi〉)

Γp(〈 hp
i

d−1 〉)

d−1∏
h=1
h6= d

2

Γp(〈(hd + m
q−1 )pi〉)

Γp(〈hp
i

d 〉)

= q − 1− q

× d−2Gd−2

[ 1
d−1 ,

2
d−1 , . . . , d−2

2(d−1) ,
d

2(d−1) , . . . , d−2
d−1

1
d ,

2
d , . . . , d−2

2d ,
d+2
2d , . . . , d−1

d

|f(0)

]
q

,

where we have used the fact that
d−1∏
h=1
h6= d

2

Γp(〈(hd + m
q−1 )pi〉)

Γp(〈hp
i

d 〉)
=

d−1∏
h=1
h6= d

2

Γp(〈(−hd + m
q−1 )pi〉)

Γp(〈−hp
i

d 〉)
.

�

Theorem 3.7. Let d ≥ 3 be odd, and let p be an odd prime such that p - d(d− 1).
Then

Nd = q − qφ(−ab)

× d−1Gd−1

[ 1
2(d−1) ,

3
2(d−1) , . . . , d−2

2(d−1) ,
d

2(d−1) , . . . , 2d−3
2(d−1)

1
2d ,

3
2d , . . . , d−2

2d ,
d+2
2d , . . . , 2d−1

2d

| − f(0)

]
q

,

where f is defined as in Theorem 1.2.

Proof. Following the proof of Theorem 3.6 we have

q ·Nd = q2 + qφ(b) +
φ(−ab)
q − 1

q−2∑
m=0

G−m+ q−1
2
Gmd+ q−1

2
G−m(d−1)+ q−1

2

×G q−1
2
Tm

(
bd−1

ad

)
.(3.12)

Using Davenport-Hasse relation (Theorem 2.4) for k = 2 and ψ = T−m, Tmd, and
T−m(d−1), and Lemma 2.2, in (3.12) we obtain

Nd = q + φ(b) +
φ(b)

q − 1
+
qφ(−ab)
q − 1

q−2∑
m=0

m 6= q−1
2

G−2mG2mdG−2m(d−1)

G−mGmdG−m(d−1)
Tm

(
bd−1

ad

)
.
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Letting T = ω, and using the Gross-Koblitz formula (Theorem 2.6) we get that

Nd = q + φ(b) +
φ(b)

q − 1
+
qφ(−ab)
q − 1

q−2∑
m=0

m6= q−1
2

π(p−1)s ωm
(
bd−1

ad

)

×
r−1∏
i=0

Γp(〈−2mp
i

q−1 〉)Γp(〈
2mdpi

q−1 〉)Γp(〈
−2m(d−1)pi

q−1 〉)

Γp(〈−mp
i

q−1 〉)Γp(〈
mdpi

q−1 〉)Γp(〈
−m(d−1)pi

q−1 〉)
,

where

s =

r−1∑
i=0

{
b−mp

i

q − 1
c+ bmdp

i

q − 1
c+ b−m(d− 1)pi

q − 1
c
}

−
r−1∑
i=0

{
b−2mpi

q − 1
c+ b2mdp

i

q − 1
c+ b−2m(d− 1)pi

q − 1
c
}
,

which is an integer. Using Lemma 2.5 and Lemma 3.4 we deduce that

Nd = q + φ(b) +
φ(b)

q − 1
+
qφ(−ab)
q − 1

q−2∑
m=0

m 6= q−1
2

π(p−1)sωm
(
−bd−1dd

ad(d− 1)d−1

)

×
r−1∏
i=0

2d−3∏
h=1
h odd

Γp(〈( h
2(d−1) −

m
q−1 )pi〉)

Γp(〈 hpi

2(d−1) 〉)
×

2d−1∏
h=1
h odd
h6=d

Γp(〈(−h2d + m
q−1 )pi〉

Γp(〈−hp
i

2d 〉)
.

We now calculate the term under summation for m = q−1
2 separately using Lemma

2.5 and Lemma 3.3, and deduce the required expression. �

Theorem 3.8. Let d ≥ 4 be even, and let p be an odd prime such that p - d(d− 1).
Then

N ′d = q − 1− qφ(b)

× d−2Gd−2

[ 1
d−1 ,

2
d−1 , . . . , d−2

2(d−1) ,
d

2(d−1) , . . . , d−2
(d−1)

1
d ,

2
d , . . . , d−2

2d ,
d+2
2d , . . . , d−1

d

|g(0)

]
q

,

where g is defined as in Theorem 1.2.

Proof. The proof proceeds along similar lines to the proofs of Theorems 3.6 and 3.7
so we omit the details for reasons of brevity.

�

Theorem 3.9. Let d ≥ 3 be odd, and let p be an odd prime such that p - d(d− 1).
Then

N ′d = q − qφ(b)

× d−1Gd−1

[ 1
d−1 ,

2
d−1 , . . . , d−1

2(d−1) ,
d+1

2(d−1) , . . . , d−2
d−1 ,

1
2

1
d ,

2
d , . . . , d−1

2d ,
d+1
2d , . . . , d−2

d , d−1
d

| − g(0)

]
q

,

where g is defined as in Theorem 1.2.
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Proof. The proof proceeds along similar lines to the proofs of Theorems 3.6 and
3.7 so we omit the details for reasons of brevity. However, we apply Lemma 3.2 to
deduce the final expression.

�

Remark 3.10. Putting d = 3 in Theorem 3.9 we can derive [5, Theorem 3.4].

Proof of Theorem 1.2: Consider the hyperelliptic curves Ed : y2 = xd + ax + b
and E′d : y2 = xd + axd−1 + b, where a, b 6= 0. We have

Nd = #{(x, y) ∈ F2
q : xd + ax+ b− y2 = 0} =

∑
y∈Fq

N(xd + ax+ b− y2 = 0),

(3.13)

where, for a given y, N(xd+ax+b−y2 = 0) denotes the number of distinct zeros of
the polynomial xd + ax+ b− y2. If b is not a square in Fq then the term b− y2 6= 0
for all y ∈ Fq. Applying Theorem 1.7 we have

N(xd + ax+ b− y2 = 0) = 1 + φ(y2 − b)

× d−1Gd−1

[
1

2(d−1) ,
3

2(d−1) , . . . , d−1
2(d−1) ,

d+1
2(d−1) , . . . , 2d−3

2(d−1)

0, 1
d , . . . ,

d
2−1
d ,

d
2+1

d , . . . , d−1
d

|f(y)

]
q

,

where f(y) = d
a

(
(b−y2)d
a(d−1)

)d−1
. Now putting the value of N(xd +ax+ b− y2 = 0) in

(3.13), and then applying Theorem 3.6 we easily derive the first summation identity.
To derive the second summation identity we consider the hyperelliptic curve E′d and
the proof is similar to that of the first summation identity. If b is not a square in
Fq, using Theorem 1.9 and Theorem 3.8 we derive the second summation identity.

If b is a square in Fq, then for y = ±
√
b the term b− y2 = 0. Hence

Nd = #{(x, y) ∈ F2
q : xd + ax+ b− y2 = 0}

=
∑
y∈Fq

y 6=±
√
b

N(xd + ax+ b− y2 = 0) + 2 ·N(x(xd−1 + a) = 0).

Using Lemma 3.5 we have N(x(xd−1 + a) = 0) = 1 +
∑l−1
j=0 χ

j(−a), where l =

gcd(d− 1, q − 1) and χ is a character of order l. Thus,

Nd = 2 + 2 ·
l−1∑
j=0

χj(−a) +
∑
y∈Fq

y 6=±
√
b

N(xd + ax+ b− y2 = 0).(3.14)

Now applying Theorem 1.7 and Theorem 3.6 in (3.14), we deduce the third sum-
mation identity. Again, if b is a square then

N ′d = #{(x, y) ∈ F2
q : xd + axd−1 + b− y2 = 0}

=
∑
y∈Fq

y 6=±
√
b

N(xd + axd−1 + b− y2 = 0) + 2 ·N(xd−1(x+ a) = 0)

=
∑
y∈Fq

y 6=±
√
b

N(xd + axd−1 + b− y2 = 0) + 4.(3.15)
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Now applying Theorem 1.9 and Theorem 3.8 in (3.15) we derive the fourth sum-
mation identity of the theorem. This completes the proof of the theorem.

Proof of Theorem 1.3: Here d is odd. Following the proof of Theorem 1.2
and applying Theorem 3.7, Theorem 3.9, Theorem 1.8, and Theorem 1.10, we can
derive all the four summation identities. This completes the proof of the theorem.

Proof of Theorem 1.5: In [19, Theorem 1.2], the third author gave a formula
for the number of points on the elliptic curve y2 = x3 + ax+ b as a special value of

2G2[· · · ]p when the j-invariant of the curve is different from 0 and 1728. We have
verified that the result is also true for Fq. Thus, from [19, Theorem 1.2] we have

#{(x, y) ∈ F2
q : y2 = x3 + ax+ b} = q − φ(b) · q · 2G2

[
1
4 ,

3
4

1
3 ,

2
3

|−27b2

4a3

]
q

,

where a, b 6= 0 and
−27b2

4a3
6= 1. Now taking d = 3 in Theorem 3.7, we have

#{(x, y) ∈ F2
q : y2 = x3 + ax+ b} = q − q · φ(−ab) · 2G2

[
1
4 ,

3
4

1
6 ,

5
6

|−27b2

4a3

]
q

,

where a, b 6= 0. Comparing both the identities completes the proof.

4. special values of nGn[· · · ] for n = 2, 3, 4

Finding special values of hypergeometric function is an important and interesting
problem. Many special values of hypergeometric functions over finite fields are
obtained (see for example [1, 3, 8, 20]). These results can be re-written in terms
of 2G2[· · · ] and 3G3[· · · ]. However, no special value of nGn[· · · ] is obtained in full
generality to date. In [4], the first and second author expressed the number of
distinct zeros of the polynomials xd +ax+ b and xd +axd−1 + b over Fq in terms of
values of the function d−1Gd−1[· · · ]. We now look at those expressions more closely
and derive certain special values of the function nGn[· · · ] when n = 2, 3, 4.

Theorem 4.1. Let a, b, c ∈ F×q be such that a + b + c = 0 and ab + bc + ca 6= 0.
Then, for p ≥ 5, we have

2G2

[
0, 1

2
1
6 ,

5
6 ,
| − 27a2b2c2

4(ab+ bc+ ca)3

]
q

= A · φ(−(ab+ bc+ ca)),(4.1)

where A = 2 if all of a, b, c are distinct and A = 1 if exactly two of a, b, c are equal.
If a, b, c ∈ F×q are such that ab+ bc+ ca = 0 and a+ b+ c 6= 0. Then, for p ≥ 5,

we have

2G2

[
0, 1

2
1
6 ,

5
6 ,
| − 27abc

4(a+ b+ c)3

]
q

= A · φ(−abc(a+ b+ c)).(4.2)

Proof. We have (x− a)(x− b)(x− c) = x3 − (a+ b+ c)x2 + (ab+ bc+ ca)x− abc.
Now if a+ b+ c = 0 and ab+ bc+ ca 6= 0, then putting d = 3 in Theorem 1.8, we
can easily deduce (4.1). Similarly, (4.2) follows from Theorem 1.10. �

Example 4.2. Put a = b = 1 and c = −2 in (4.1), then for all p ≥ 5, we have

2G2

[
0, 1

2
1
6 ,

5
6 ,
|1
]
q

= φ(3).
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Theorem 4.3. If p ≥ 5 then we have

3G3

[
1
6 ,

1
2 ,

5
6

0, 1
4 ,

3
4

|1
]
q

= φ(−3) + φ(6).

Proof. We have

x4 − a3

2
x+

3a4

16
= (x− a

2
)2(x2 + ax+

3a2

4
).

Hence

N(x4 − a3

2
x+

3a4

16
= 0) = 1 +N(x2 + ax+

3a2

4
= 0) = 2 + φ(−2).(4.3)

Now applying Theorem 1.7 on the left side of (4.3) we obtain the result. �

Theorem 4.4. If p > 7 and p 6= 23, then

4G4

[
0, 1

4 ,
1
2 ,

3
4

1
10 ,

3
10 ,

7
10 ,

9
10

| − 55

44

]
q

= φ(−1) + φ(3) + φ(−1) · 2G2

[
0, 1

2
1
6 ,

5
6 ,
|27

4

]
q

.

Proof. We have x5+ax4+a5 = (x3−a2x+a3)(x2+ax+a2). Let f(x) = x5+ax4+a5.
Then f ′(x) = 5x4 + 4ax3. If f(x) has a repeated zero, say c, then f(c) = 0 and
f ′(c) = 0. Solving these two equations, we have 3381 = 3.72.23 = 0 in Fq. Hence,
if p 6= 3, 7, 23, we have

N(x5 + ax4 + a5 = 0) = N(x3 − a2x+ a3 = 0) +N(x2 + ax+ a2 = 0).

Now the result easily follows from Theorem 1.10 and Theorem 1.8. �

5. concluding remarks

The technique used to derive the summation identities for nGn[· · · ]q in this paper
and for 2G2[· · · ]q in [5, 6] is based on counting points on families of certain algebraic
varieties and counting zeros on certain families of polynomials. This technique is
quite involved. Also, in finding the special values of the function nGn[· · · ] when
n = 2, 3, 4, we factored the polynomials xd + ax + b and xd + axd−1 + b into
polynomials of the same form of lower degree when d = 5, 4, 3. However, such
factorizations do not exist when d > 5. Hence, our method can’t be applied to
deduce special values of nGn[· · · ] when n ≥ 5. Therefore, it would be very beneficial
if we could derive these summation identities for nGn[· · · ] and special values more
directly using properties of p-adic gamma function.
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