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Abstract. Although links between values of finite field hypergeometric functions and
eigenvalues of elliptic modular forms are well known, we establish in this paper that there
are also connections to eigenvalues of Siegel modular forms of higher degree. Specifically,
we relate the eigenvalue of the Hecke operator of index p of a Siegel eigenform of degree 2
and level 8 to a special value of a 4F3-hypergeometric function.

1. Introduction and Statement of Results

One of the more interesting applications of hypergeometric functions over finite fields is
their links to elliptic modular forms and in particular Hecke eigenforms [1, 3, 8, 11, 12, 13,
21, 22, 24, 27, 28]. It is anticipated that these links represent a deeper connection that
also encompasses Siegel modular forms of higher degree, and the purpose of this paper is to
provide new evidence in this direction. Specifically, we relate the eigenvalue of the Hecke
operator of index p of a certain Siegel eigenform of degree 2 and level 8 to a special value
of a 4F3-hypergeometric function over Fp. We believe this is the first result connecting
hypergeometric functions over finite fields to Siegel modular forms of degree > 1.

Hypergeometric functions over finite fields were originally defined by Greene [15], who first
established these functions as analogues of classical hypergeometric functions. Functions of
this type were also introduced by Katz [17] about the same time. In the present article we
use a normalized version of these functions defined by the first author [23], which is more
suitable for our purposes. The reader is directed to [23, §2] for the precise connections among
these three classes of functions.

Let Fp denote the finite field with p elements, p a prime, and let F̂∗p denote the group

of multiplicative characters of F∗p. We extend the domain of χ ∈ F̂∗p to Fp by defining
χ(0) := 0 (including for the trivial character ε) and denote χ as the inverse of χ. Let

θ be a fixed non-trivial additive character of Fp and for χ ∈ F̂∗p we have the Gauss sum

g(χ) :=
∑

x∈Fp χ(x)θ(x). Then for A0, A1, . . . , An, B1, . . . , Bn ∈ F̂∗p and x ∈ Fp define

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣ x)
p

:=
1

p− 1

∑
χ∈F̂∗p

n∏
i=0

g(Aiχ)

g(Ai)

n∏
j=1

g(Bjχ)

g(Bj)
g(χ)χ(−1)n+1χ(x). (1.1)
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One of the first connections between finite field hypergeometric functions and the coeffi-
cients of elliptic modular forms is due to Ahlgren and Ono [3], who proved the following.

Throughout we let φ ∈ F̂∗p denote the Legendre symbol
( ·
p

)
.

Theorem 1.2 (Ahlgren, Ono [3, Thm. 6]). Consider the unique newform g ∈ S4(Γ0(8)) and
the integers d(n) defined by

g(z) =
∞∑
n=1

d(n)qn = q
∞∏
m=1

(1− q2m)4(1− q4m)4, q := e2πiz.

Then for an an odd prime p,

4F3

(
φ, φ, φ, φ

ε, ε, ε

∣∣∣ 1

)
p

= d(p) + p.

Another result relating n+1Fn to the Fourier coefficients of an elliptic modular form is due
to Mortenson [24].

Theorem 1.3 (Mortenson [24, Prop. 4.2]). Consider the unique newform h ∈ S3(Γ0(16), (−4· ))
and the integers c(n) defined by

h(z) =
∞∑
n=1

c(n)qn = q
∞∏
m=1

(1− q4m)6.

Then for p an odd prime,

3F2

(
φ, φ, φ

ε, ε

∣∣∣ 1

)
p

= c(p).

(Note that the original statements of Theorems 1.2 and 1.3 were expressed in terms of
Greene’s hypergeometric function. We have reformulated them in terms of n+1Fn.)

Our main result below (Theorem 1.6) concerns the evaluation 4F3(φ, φ, φ, φ; ε, ε, ε|−1)p,
which we relate to eigenvalues of a Siegel eigenform of degree 2. Before stating this result we
recall some fundamental facts about Siegel modular forms (see [9, 10, 18] for further details).

Let Am×n denote the set of all m× n matrices with entries in the set A. For a matrix M
we let tM denote its transpose, and if M has entries in C, we let Tr(M) denote its trace and
Im(M) its imaginary part. We denote the r× r identity matrix by Ir. If a matrix M ∈ Rn×n

is positive definite, then we write M > 0, and if M is positive semi-definite, we write M ≥ 0.
The Siegel half-plane H2 of degree 2 is defined by

H2 :=
{
Z ∈ C2×2 | tZ = Z, Im(Z) > 0

}
.

Let

Γ2 := Sp4(Z) =
{
M ∈ Z4×4 | tMJM = J

}
, J =

(
0 I2
−I2 0

)
,

be the Siegel modular group of degree 2 and let

Γ2(q) :=
{
M ∈ Γ2 |M ≡ I4 (mod q)

}
be its principal congruence subgroup of level q ∈ Z+. If Γ′ is a subgroup of Γ2 such that
Γ2(q) ⊂ Γ′ for some minimal q, then we say Γ′ is a congruence subgroup of degree 2 and
level q. The modular group Γ2 acts on H2 via the operation

M · Z = (AZ +B) (CZ +D)−1
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where M =
(
A B
C D

)
∈ Γ2, Z ∈ H2. Let Γ′ be a congruence subgroup of degree 2 and level q.

A holomorphic function F : H2 → C is called a Siegel modular form of degree 2, weight
k ∈ Z+ and level q on Γ′ if

F |kM(Z) := det(CZ +D)−k F (M · Z) = F (Z)

for all M =
(
A B
C D

)
∈ Γ′. We note that the desired boundedness of F |kM(Z), for any M ∈ Γ2,

when Im(Z)− cI2 ≥ 0, with fixed c > 0, is automatically satisfied by the Koecher principle.
The set of all such modular forms is a finite dimensional vector space over C, which we
denote M2

k (Γ′). Every F ∈M2
k (Γ′) has a Fourier expansion of the form

F (Z) =
∑
N∈R2

a(N) exp
(

2πi
q

Tr(NZ)
)

where Z ∈ H2 and

R2 =
{
N = (Nij) ∈ Q2×2 | tN = N ≥ 0, Nii, 2Nij ∈ Z

}
.

We call F ∈ M2
k (Γ′) a cusp form if a(N) = 0 for all N 6> 0 and denote the space of such

forms S2
k(Γ

′).
The Igusa theta constant of degree 2 with characteristic m = (m′,m′′) ∈ C1×4, m′,m′′ ∈

C1×2 is defined by

Θm(Z) =
∑

n∈Z1×2

exp
(
πi
{

(n+m′)Z t(n+m′) + 2(n+m′) tm′′
})
.

If m = 1
2
(a, b, c, d) then we will write Θ

[
a b
c d

]
for Θm.

In [14], van Geemen and van Straten exhibited several Siegel cusp forms of degree 2 and
level 8 which are products of theta constants. The principal form of interest to us is

F7(Z) := Θ
[
0 0
0 0

]
(Z) ·Θ

[
0 0
0 0

]
(Z) ·Θ

[
1 0
0 0

]
(Z) ·Θ

[
0 1
0 0

]
(Z) ·Θ

[
0 0
0 1

]
(Z) ·Θ

[
0 0
1 1

]
(Z), (1.4)

which lies in S2
3(Γ2(4, 8)), where

Γ2(8) ⊂ Γ2(4, 8) :=
{(

A B
C D

)
∈ Γ2(4) | diag(B) ≡ diag(C) ≡ 0 (mod 8)

}
⊂ Γ2(4).

Furthermore, F7(Z) is an eigenform [14] in the sense that it is a simultaneous eigenfunction
for the all Hecke operators acting on M2

3 (Γ2(8)). (See [9] for details on Hecke operators for
Siegel forms of degree 2 with level.) In particular, for p an odd prime we can define the
eigenvalue λ(p) ∈ C of F7 by

T (p)F7 = λ(p)F7,

where T (p) is the Hecke operator of index p.
Our main result (Theorem 1.6) relies on a connection between the Andrianov L-function

La(s, F7) of F7 and the tensor product L-function L(s, f1 ⊗ f2) of two elliptic newforms,
f1 ∈ S2(Γ0(32)) and f2 ∈ S3(Γ0(32), (−4· )), where

f1(z) =
∞∑
n=1

a(n)qn = q

∞∏
m=1

(1− q4n)2(1− q8n)2

and taking i =
√
−1,

f2(z) =
∞∑
n=1

b(n)qn = q + 4iq3 + 2q5 − 8iq7 − 7q9 − 4iq11 − 14q13 + 8iq15 + 18q17 + · · · .
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Van Geemen and van Straten [14, §8.7] conjectured that La(s, F7) and L(s, f1 ⊗ f2) have
essentially the same Euler factors up to a twist of F7 (see the beginning of the proof of
Theorem 1.6 for a precise statement). Our understanding is that this conjecture has been
resolved recently by Okazaki [25] (see also [26, §1] for additional discussion on this problem).
As a consequence, for any odd prime p, we find (see Section 5 for details) that

λ(p) =


a(p)b(p) if p ≡ 1 (mod 8),

−a(p)b(p) if p ≡ 5 (mod 8),

0 if p ≡ 3 (mod 4).

(1.5)

The main result of this paper relates the eigenvalues λ(p) to a special value of a 4F3-
hypergeometric function over Fp, conditional on the conjecture of van Geemen and van
Straten.

Theorem 1.6. Fix the Dirichlet character ξ(·) =
(
2
·

)
modulo 8. Assuming the conjecture of

van Geemen and van Straten for F7 [14, §8.7], for any odd prime p,

4F3

(
φ, φ, φ, φ

ε, ε, ε

∣∣∣ −1

)
p

= ξ(p)λ(p).

Moreover, when p ≡ 3 (mod 4), λ(p) = 0.

Now the Fourier coefficients a(p) and b(p) can themselves be related to hypergeometric
functions over Fp. The first such connection is due to Ono, and the second is established in
the present paper.

Theorem 1.7 (Ono [27, Thm. 2]). For p an odd prime,

2F1

(
φ, φ

ε

∣∣∣ −1

)
p

= a(p).

Theorem 1.8. If p ≡ 1 (mod 4) is prime and χ4 ∈ F̂∗p has order 4, then

3F2

(
χ4, φ, φ

ε, ε

∣∣∣ 1

)
p

= b(p).

The proof of Theorem 1.8 follows lines of inquiry similar to those of Ahlgren and Ono [4],
Ahlgren [2], and Frechette, Ono, and the second author [11]. We use the Eichler-Selberg
trace formula for Hecke operators to isolate the Fourier coefficients of the form and connect
these traces to hypergeometric values by counting isomorphism classes of members of the
Legendre family of elliptic curves with prescribed torsion.

The final step in proving Theorem 1.6 is to appeal to a result of the first author [23,
Thm. 1.5] (see Theorem 5.13), which provides a finite field version of a well-poised 4F3-
hypergeometric identity of Whipple. From this we deduce that 4F3(φ, φ, φ, φ; ε, ε, ε|−1)p = 0
for p ≡ 3 (mod 4) and that for p ≡ 1 (mod 4),

4F3

(
φ, φ, φ, φ

ε, ε, ε

∣∣∣ −1

)
p

= 2F1

(
φ, φ

ε,

∣∣∣ −1

)
p

· 3F2

(
χ4, φ, φ

ε, ε

∣∣∣ 1

)
p

. (1.9)

Combining (1.5), Theorems 1.7 and 1.8, and (1.9) yields the desired result.
The remainder of this paper is organized as follows. In Section 2 we recall some properties

of class numbers of orders of imaginary quadratic fields and outline their relationship to
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isomorphism classes of elliptic curves over Fp. Section 3 outlines our use of the Eichler-
Selberg trace formula. Properties of the trace of Frobenius of the Legendre family of elliptic
curves are developed in Section 4. The proofs of Theorems 1.6 and 1.8 are contained in
Section 5. Finally, we make some closing remarks in Section 6.

Acknowledgements. The authors are extremely grateful to F. Rodriguez Villegas for point-
ing out to them the potential connection between the Siegel eigenforms and hypergeometric
function values and in particular for alerting them to the example in [14] as a source for our
identities. The authors especially thank T. Okazaki for his generosity in sharing his results
and answering questions on his forthcoming paper. The authors also thank R. Osburn for
helpful advice and suggestions.

2. Class Numbers and Isomorphism Classes of Elliptic Curves

In this section we recall some properties of class numbers of orders of imaginary quadratic
fields. In particular we will note their relationship to isomorphism classes of elliptic curves
over Fp. (See [7, 29] for further details.)

We first recall some notation. For D < 0, D ≡ 0, 1 (mod 4), let O(D) denote the unique
imaginary quadratic order of discriminant D. Let h(D) = h(O(D)) denote the class number
of O(D), i.e., the order of the ideal class group of O(D). Let ω(D) = ω(O(D)) := 1

2
|O(D)∗|

where O(D)∗ is the group of units of O(D). For brevity, we let h∗(D) := h(D)/ω(D). We
also define

H(D) :=
∑

O(D)⊆O′⊆Omax

h(O′) and H∗(D) :=
∑

O(D)⊆O′⊆Omax

h∗(O′) (2.1)

where the sums are over all orders O′ between O(D) and the maximal order Omax. We note

that H∗(D) = H(D) unless Omax = Z[
√
−1] or Z

[
−1+

√
−3

2

]
. In these exceptional cases,

H(D) is greater by 1
2

and 2
3

respectively, as only the term corresponding to Omax in each
sum differs.

If O has discriminant D and O′ ⊆ O is an order such that [O : O′] = f , then the
discriminant of O′ is f 2D. We will need the following lemma which relates class numbers of
certain orders.

Lemma 2.2 ([7, Cor. 7.28]). Let O be an order of discriminant D in an imaginary quadratic
field, and let O′ ⊆ O be an order with [O : O′] = f . Then

h∗(O′) = h∗(O) · f
∏
l|f

l prime

(
1−

(
D

l

)
1

l

)
,

where
(
D
l

)
is the Kronecker symbol.

Finally we present a result of Schoof which relates these class numbers to the number of
isomorphism classes of elliptic curves over Fp.

Theorem 2.3 (Schoof [29, (4.5)–(4.9)]). Let p ≥ 5 be prime. Suppose n ∈ Z+, s ∈ Z satisfy
s2 ≤ 4p, p - s, n | (p − 1) and n2 | (p + 1 − s). Then the number of isomorphism class of
elliptic curves over Fp whose group of Fp-rational points has order p + 1 − s and contains

Z/nZ× Z/nZ is H
(
s2−4p
n2

)
.
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3. Eichler-Selberg Trace Formula

Let Trk(Γ0(N), χ, p) denote the trace of the classical Hecke operator T(p) acting on
Sk(Γ0(N), χ). Similarly let Trnewk (Γ0(N), χ, p) denote the trace of T(p) on the new sub-
space Snew

k (Γ0(N), χ). The Eichler-Selberg trace formula gives a precise description of
Trk(Γ0(N), χ, p). In this section we use a version of the trace formula due to Hijikata [16,
Thm. 2.2] to evaluate Tr3(Γ0(16), (−4· ), p) and Tr3(Γ0(32), (−4· ), p).

We can simplify the trace formula as given in [16, Thm. 2.2] using the particulars of our
spaces and [16, Lem. 2.5]. This is a long and tedious process but not particularly difficult
so we omit the details here. However we note that we have used some elementary facts
which we present in the following proposition. For p an odd prime and s an integer such
that s2 < 4p we may write s2 − 4p = t2D, where D is a fundamental discriminant of some
imaginary quadratic field. For a given p and s, let a := ord2(t).

Proposition 3.1. If s ≡ (p+ 1) (mod 8) then

• if p ≡ 1 (mod 8) and D is odd, then a > 2;
• if p ≡ 5 (mod 8) and D is odd, then a = 2;
• if p ≡ 5 (mod 8) and D is even, then a < 2.

We have also used [4, Lem. 4.2]. These simplifications yield the following two Theorems.

Theorem 3.2. If p is an odd prime, then

Tr3(Γ0(16), (−4· ), p) =


0 if p ≡ 3 (mod 4),

−6−
∑

0<|s|<2
√
p

s≡p+1(mod 16)

s
∑
f |t

s2−4p=t2D

h∗
(
s2−4p
f2

)
c1(s, f) if p ≡ 1 (mod 4),

where D is a fundamental discriminant and c1(s, f) is described in the table below with
a := ord2(t) and b := ord2(f).

c1(s, f) D even D ≡ 1 (mod 8) D ≡ 5 (mod 8)
a− b = 0 0 2 0
a− b = 1 0 6 0
a− b = 2 6 8 4
a− b ≥ 3 6 6 6

Theorem 3.3. If p is an odd prime, then

Tr3(Γ0(32), (−4· ), p) =


0 if p ≡ 3 (mod 4),

−8−
∑

0<|s|<2
√
p

s≡p+1(mod 16)

s
∑
f |t

s2−4p=t2D

h∗
(
s2−4p
f2

)
c2(s, f) if p ≡ 1 (mod 4),

where D is a fundamental discriminant and c2(s, f) is described in the table below with
a := ord2(t) and b := ord2(f).

c2(s, f) D even D ≡ 1 (mod 8) D ≡ 5 (mod 8)
a− b = 0 0 2 0
a− b = 1 0 6 0
a− b = 2 4 12 0
a− b ≥ 3 8 8 8
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The dimension of S3(Γ0(16), (−4· )) is one, so we can combine Theorems 3.2 and 3.3 to

evaluate Trnew3 (Γ0(32), (−4· ), p).

Corollary 3.4. If p is an odd prime, then

Trnew3 (Γ0(32), (−4· ), p) =


0 if p ≡ 3 (mod 4),

4−
∑

0<|s|<2
√
p

s≡p+1(mod 16)

s
∑
f |t

s2−4p=t2D

h∗
(
s2−4p
f2

)
c3(s, f) if p ≡ 1 (mod 4),

where D is a fundamental discriminant and c3(s, f) is described in the table below with
a := ord2(t) and b := ord2(f).

c3(s, f) D even D ≡ 1 (mod 8) D ≡ 5 (mod 8)
a− b = 0 0 −2 0
a− b = 1 0 −6 0
a− b = 2 −8 −4 −8
a− b ≥ 3 −4 −4 −4

4. Legendre Family of Elliptic Curves

In this section we recall some properties of elliptic curves, and in particular properties of
the Legendre family of elliptic curves over finite fields. For further details please refer to
[19, 32]. We will also develop some preliminary results which we will use in Section 5.

Theorem 4.1 ([19, Thm. 4.2]). Suppose E is an elliptic curve over a field K, char(K) 6= 2,
3, given by y2 = (x − a)(x − b)(x − c), with a, b, c ∈ K all distinct. Then, given a point
P = (x, y) ∈ E(K) there exists Q ∈ E(K) with P = [2]Q if and only if x − a, x − b and
x− c are all squares in K.

The Legendre family of elliptic curves Eλ over Fp is given by

Eλ : y2 = x(x− 1)(x− λ), λ ∈ Fp \ {0, 1} . (4.2)

Proposition 4.3. (1) The j-invariant of Eλ is

j(Eλ) = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2
.

(2) j(Eλ) = 1728 if and only if λ ∈ {2,−1, 1
2
}.

(3) j(Eλ) = 0 if and only if λ2 − λ+ 1 = 0, i.e., λ ∈ {1±
√
−3

2
}.

(4) The map λ → j(Eλ) is surjective and six-to-one except above j = 0 and j = 1728.
In particular, {

λ,
1

λ
, 1− λ, 1

1− λ
,

λ

λ− 1
,
λ− 1

λ

}
→ j(Eλ).

If t ∈ Fp \ {0}, then we define the t-quadratic twist of Eλ by Et
λ : y2 = x(x− t)(x− tλ). If

t is a square in Fp then Eλ is isomorphic to Et
λ over Fp. Straightforward calculations yield

the following result.

Proposition 4.4. Let p ≥ 5 be prime. (1) Eλ is the λ quadratic twist of E 1
λ

. (2) Eλ is the

−1 quadratic twist of E1−λ. (3) Eλ is the 1− λ quadratic twist of E λ
λ−1

. (4) Eλ is the λ− 1

quadratic twist of E 1
1−λ

. (5) Eλ is the −λ quadratic twist of Eλ−1
λ

.
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The curve Eλ has 3 points of order 2 namely, (0, 0), (1, 0) and (λ, 0). The following lemma
gives us certain information on the 2-power torsion of Eλ which we will require in Section 5.
Please see [19, V.5], [2, Lemma 3.2] and [4, Prop. 3.3] for similar arguments.

Lemma 4.5. Let p ≥ 5 be prime and let Eλ be defined by (4.2).

(1) Eλ(Fp) contains Z/2Z× Z/8Z but not Z/4Z× Z/4Z if −1 is a square, λ is a fourth
power and λ− 1 is not a square in Fp.

(2) Let E/Fp be an elliptic curve such that E(Fp) contains Z/2Z×Z/8Z but not Z/4Z×
Z/4Z. Then, if p ≡ 1 (mod 4), E is isomorphic to Eλ for some λ ∈ Fp \ {0, 1} with
λ a fourth power and λ− 1 not a square in Fp.

Proof. (1) Using Theorem 4.1 we see that (0, 0) is a double but (1, 0) and (λ, 0) are not.
Therefore Eλ(Fp) cannot contain Z/4Z×Z/4Z. Let t ∈ Fp be fixed such that t2 = λ and let
i ∈ Fp be fixed such that i2 = −1. Using the duplication formula ([32, §III.2]) we see that
if −1 and λ are squares then Q1 = (t, it(t − 1)), Q2 = (t,−it(t − 1)), Q3 = (−t, it(t + 1)),
Q4 = (−t,−it(t + 1)), are four points of order 4 whose double is (0, 0). If λ− 1 = t2 − 1 is
not a square then either t−1 or t+1 is a square but not both. Therefore, using Theorem 4.1
we see that either Q1 and Q2 are doubles or Q3 and Q4 are doubles, but not both pairs.
Therefore Eλ(Fp) contains Z/2Z× Z/8Z.

(2) As E has full 2-torsion we can assume it is of the form y2 = x(x − α)(x − β) for
some α, β ∈ Fp. Also, E contains Z/2Z × Z/4Z but not Z/4Z × Z/4Z so one and only
one of (0, 0), (α, 0) and (β, 0) is a double. We can assume without loss of generality that
(0, 0) is the double point. Therefore, if p ≡ 1 (mod 4), we see from Theorem 4.1 that α
and β are squares but α − β is not. Letting m2 = α and n2 = β then E has the form
y2 = x(x − m2)(x − n2) which is isomorphic to Eλ with λ = n2

m2 . (Make the change of
variables x → m2x and y → m3y .) Therefore λ is a square but λ − 1 is not. We see from
part (1) that as −1 and λ are both squares there are four points of order 4 whose double is
(0, 0). Two of of these points have x coordinate of t and the other two have x coordinate of
−t, where t2 = λ. As E contains Z/2Z × Z/8Z exactly two of these points of order 4 are
doubles. Therefore, by Theorem 4.1, t must be a square and either t− 1 or t+ 1 is a square
but not both. As t2 = λ and (t− 1)(t+ 1) = λ− 1 we see that λ is a fourth power and λ− 1
is not a square. �

For an elliptic curve E/Fp we define the integer ap(E) by ap(E) := p+1−|E(Fp)|. A curve
E/Fp is supersingular if and only if p | ap(E), which if p ≥ 5, is equivalent to ap(E) = 0 by
the Hasse bound. As usual if E is given by y2 = f(x) then

ap(E) = −
∑
x∈Fp

φp(f(x)), (4.6)

where φp(·) is the Legendre symbol modulo p (and the character of order 2 of F∗p). We will
often omit the subscript p when it is clear from the context. Consequently,

ap(Eλ) = φ(t) ap(E
t
λ). (4.7)

We now prove some identities for ap(λ) := ap(Eλ).

Lemma 4.8. For p an odd prime,

p−1∑
λ=2

φ(λ)=1

ap(λ) = −(1 + φ(−1)).
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Proof. Using (4.6) we see that

p−1∑
λ=2

φ(λ)=1

ap(λ) =
1

2

p−2∑
t=2

ap(t
2) = −φ(−1)

2

∑
x∈Fp\{0,1}

φ(x)φ(x− 1)

p−2∑
t=2

φ(t2 − x).

Using properties of Jacobsthal sums (see [6, §6.1]) we note that, for a ∈ Fp \ {0}, we have∑p−1
t=1 φ(t2+a) = −(1+φ(a)) and

∑p−1
x=1 φ(x2−x) = −1. Therefore, we have

∑p−2
t=2 φ(t2−x) =

−(1 + φ(−x) + 2φ(1− x)), and

p−1∑
λ=2

φ(λ)=1

ap(λ) =
φ(−1)

2

∑
x∈Fp\{0,1}

φ(x2 − x) +
1

2

∑
x∈Fp\{0,1}

φ(x− 1) +
∑

x∈Fp\{0,1}

φ(x).

We then apply the second Jacobsthal identity, noting that
∑

x∈Fp φ(x) = 0. �

Lemma 4.9. If p ≡ 1 (mod 4), let χ4 ∈ F̂∗p denote a character of order 4. Then

(1)

p−1∑
λ=2

φ(λ(λ−1))=−1

ap(λ)χ4(λ(λ− 1))φ(λ− 1) = 0;

(2)

p−1∑
λ=2

φ(λ(λ−1))=1

ap(λ)χ4(λ(λ− 1))φ(λ− 1) =

p−1∑
λ=2

φ(λ)=1

ap(λ)χ4(λ)φ(λ− 1).

Proof. The proofs of (1) and (2) are relatively routine applications of Proposition 4.4 together
with (4.7), using the fact that −1 is a square in Fp if p ≡ 1 (mod 4). We omit the details
for reasons of brevity. �

Lemma 4.10. If p ≡ 1 (mod 4), let χ4 ∈ F̂∗p denote a character of order 4. Then

p−1∑
λ=2

χ4(λ)=1
φ(λ−1)=−1

ap(λ) =

p−1∑
λ=2

φ(λ)=1,χ4(λ)=−1
φ(λ−1)=1

ap(λ).

Proof. The curve Eλ is 2-isogenous to the elliptic curve Wλ : y2 = x3 +2(1+λ)x2 +(1−λ)2x,

λ ∈ Fp \ {0, 1}, via the maps fλ : Wλ → Eλ and its dual f̃λ : Eλ → Wλ given by

fλ(x, y) =
(
y2

4x2
, y((1−λ)

2−x2)
8x2

)
, f̃λ(x, y) =

(
y2

x2
, y(λ−x

2)
x2

)
,

(see [32, Ex. III.4.5]). In turn, when φ(λ) = 1 and t ∈ Fp is fixed such that t2 = λ, Wλ

is isomorphic over Fp to Eψ, where ψ =
(
1−t
1+t

)2
. This follows from the change of variables

(x, y) → (u2x, u3y) where u2 = −(1 + t)2. Noting that isogenous curves over Fp have the
same number of Fp-rational points, we see that ap(λ) = ap(ψ). Also, as p ≡ 1 (mod 4),
it is easy to check that if χ4(λ) = 1 and φ(λ − 1) = −1 then φ(ψ) = 1, χ4(ψ) = −1 and
φ(ψ − 1) = 1. We now consider the sets

Sλ = {2 ≤ λ ≤ p− 1 | χ4(λ) = 1, φ(λ− 1) = −1} ,
Sψ = {2 ≤ ψ ≤ p− 1 | φ(ψ) = 1, χ4(ψ) = −1, φ(ψ − 1) = 1} .
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If λ ∈ Sλ then 1
λ
∈ Sλ also, and, as p ≡ 1 (mod 4), λ and 1

λ
are distinct. Similarly if ψ ∈ Sψ

then 1
ψ
∈ Sψ with ψ and 1

ψ
distinct. We define the equivalence relation ∼ on Fp \ {0, 1} by

x ∼ y ⇐⇒ y ≡ x or 1
x

(mod p).

We can then consider the bijective map g : Sλ/∼ → Sψ/∼ given by g([λ]) =
[(

1−t
1+t

)2]
, with

inverse map given by g−1([ψ]) =
[(

1−s
1+s

)2]
, where s ∈ Fp is fixed such that s2 = ψ. It is easy

to check that these maps are well-defined and independent of choice of square roots, t and s.
There are exactly two elements in each equivalence class of Sλ/∼, namely λ and 1

λ
. Also by

Proposition 4.4(1), (4.7) and the fact that φ(λ) = 1 we see that ap(λ) = ap
(
1
λ

)
. Similarly

there are exactly two elements in each equivalence class of Sψ/∼ with ap(·) the same for
both. Thus

p−1∑
λ=2

χ4(λ)=1
φ(λ−1)=−1

ap(λ) = 2
∑

[λ]∈Sλ/∼

ap(λ) = 2
∑

[ψ]∈Sψ/∼

ap(ψ) =

p−1∑
ψ=2

φ(ψ)=1,χ4(ψ)=−1
φ(ψ−1)=1

ap(ψ).

�

5. Proofs

Lemma 5.1. The space Snew
3 (Γ0(32), (−4· )) is 2-dimensional over C with basis {f2, f̃2}, where

f2 =
∑∞

n=1 b(n)qn = q + 4iq3 + 2q5 − 8iq7 + · · · , i =
√
−1, and f̃2 is obtained by applying

complex conjugation to the Fourier coefficients of f2. Furthermore, for an odd prime p, b(p)
is real if p ≡ 1 (mod 4) and purely imaginary if p ≡ 3 (mod 4).

Proof. Using Sage Mathematics Software [33], one computes easily the dimension of the

space as well as the first several Fourier coefficients of f2 and f̃2. To see the second part of
the lemma, we consider the twist f2,ψ =

∑∞
n=1 ψ(n)b(n)qn of f2 by the character ψ(·) = (−4· ),

which by [30, Lem. 3.6] is a form in S3(Γ0(32), ψ). Likewise, the twist f̃2,ψ of f̃2 is also in

S3(Γ0(32), ψ). One checks via Sage that f2,ψ and f̃2,ψ are both new at level 32. Therefore,
we can express the twists in terms of our basis for Snew

3 (Γ0(32), ψ), and it must be that

f2,ψ = f̃2, f̃2,ψ = f2.

We then have f2 + f̃2 =
∑∞

n=1 2 Re(b(n))qn =
∑

n≡1 (mod 4) 2b(n)qn, providing the result. �

Proof of Theorem 1.8. Assume that p ≡ 1 (mod 4) throughout, and choose a character χ4 ∈
F̂∗p of order 4. By Lemma 5.1,

b(p) = 1
2
Trnew3 (Γ0(32), (−4· ), p),

and so by Corollary 3.4, it suffices to prove

3F2

(
χ4, φ, φ

ε, ε

∣∣∣ 1

)
p

= 2−
∑

0<|s|<2
√
p

s≡p+1(mod 16)

s
∑
f |t

s2−4p=t2D

h∗
(
s2−4p
f2

)
c3(s, f)/2, (5.2)
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where D is a fundamental discriminant and c3(s, f) is as described in the Corollary 3.4. By
Greene [15, Thm. 3.13] (with [23, Prop. 2.5]) we have

3F2

(
χ4, φ, φ

ε, ε

∣∣∣ 1

)
p

= −χ4(−1)

p−1∑
λ=2

2F1

(
φ, φ

ε

∣∣∣ λ)
p

χ4(λ)χ4(1− λ).

Using a result of Koike [20, Sec. 4] (again with [23, Prop. 2.5]), we express the 2F1 in the
sum above in terms of the quantity ap(λ) = ap(Eλ), which we defined in Section 4. This
yields

3F2

(
χ4, φ, φ

ε, ε

∣∣∣ 1

)
p

= −
p−1∑
λ=2

ap(λ)χ4(λ(λ− 1))φ(λ− 1). (5.3)

Using Lemmas 4.8 to 4.10 we see that

−
p−1∑
λ=2

ap(λ)χ4(λ(λ− 1))φ(λ− 1) = −
p−1∑
λ=2

φ(λ)=1

ap(λ)χ4(λ)φ(λ− 1)

= −
p−1∑
λ=2

φ(λ)=1

ap(λ) +

p−1∑
λ=2

φ(λ)=1

ap(λ)[1− χ4(λ)φ(λ− 1)]

= 2 + 2

p−1∑
λ=2

φ(λ)=1
χ4(λ)φ(λ−1)=−1

ap(λ)

= 2 + 4

p−1∑
λ=2

χ4(λ)=1
φ(λ−1)=−1

ap(λ). (5.4)

We now use Theorem 2.3 to show that
p−1∑
λ=2

χ4(λ)=1
φ(λ−1)=−1

ap(λ) = 2
∑

0<|s|<2
√
p

s≡p+1(mod 16)

s
(
H∗
(
s2−4p

4

)
−H∗

(
s2−4p
16

))
. (5.5)

Define the set

L(s, p) := {λ | 2 ≤ λ ≤ p− 1, χ4(λ) = 1, φ(λ− 1) = −1, ap(λ) = s}.
Then, by the Hasse bound and Lemma 4.5(1), we obtain

p−1∑
λ=2

χ4(λ)=1
φ(λ−1)=−1

ap(λ) =
∑

0<|s|<2
√
p

∑
λ∈L(s,p)

s =
∑

0<|s|<2
√
p

s≡p+1(mod 16)

s |L(s, p)|. (5.6)

Let Ip denote the set of all isomorphism classes of elliptic curves over Fp. Define

I(s, p) :=

{
C ∈ Ip

∣∣∣∣ ∀E ∈ C, ap(E) = s, E(Fp) contains
Z/2Z× Z/8Z but not Z/4Z× Z/4Z

}
.
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We now consider the map F : L(s, p) → I(s, p) given by λ 7→ [Eλ], where [Eλ] ∈ Ip is the
isomorphism class containing Eλ. Lemma 4.5 ensures F is well-defined and surjective. For
λ ∈ L(s, p) we see by Proposition 4.4 and (4.7) that Eλ is isomorphic to E 1

λ
, E1−λ and Eλ−1

λ

but not to E λ
λ−1

nor E 1
1−λ

. However, if λ ∈ L(s, p) then 1
λ
∈ L(s, p) but 1−λ, λ−1

λ
6∈ L(s, p),

as they do not meet the conditions.
By Proposition 4.3 we then see that, for a given λ ∈ L(s, p), if j([E(λ)]) 6= 0, 1728 then

F is two-to-one. We note that there are no classes of curves in I(s, p) with j = 0 or 1728.

Otherwise, in the case j = 0, L(s, p) would have to contain λ = 1±
√
−3

2
which satisfies

λ2 − λ + 1 = 0, i.e, λ − 1 is a square. In the case j = 1728, L(s, p) would have to contain
λ ∈ {2,−1, 1

2
}, none of which satisfy the conditions. Also, as s 6= 0 we note that there are

no classes of supersingular curves in I(s, p). Hence, O
(
s2−4p

4

)
⊂ O

(
s2−4p
16

)
6⊆ Z

[
−1+

√
−3

2

]
or Z

[√
−1
]
. (See [29, §3] for details.)

By Theorem 2.3 we know that |I(s, p)| =
(
H
(
s2−4p

4

)
−H

(
s2−4p
16

))
, as s ≡ p + 1

(mod 16). Therefore

|L(s, p)| = 2
(
H
(
s2−4p

4

)
−H

(
s2−4p
16

))
= 2

(
H∗
(
s2−4p

4

)
−H∗

(
s2−4p
16

))
,

and (5.5) holds via (5.6). So, combining (5.3), (5.4) and (5.5) we obtain

3F2

(
χ4, φ, φ

ε, ε

∣∣∣ 1

)
p

= 2 + 8
∑

0<|s|<2
√
p

s≡p+1(mod 16)

s
(
H∗
(
s2−4p

4

)
−H∗

(
s2−4p
16

))
. (5.7)

Comparing (5.2) and (5.7) it now suffices to show

8
∑

0<|s|<2
√
p

s≡p+1(mod 16)

s
(
H∗
(
s2−4p

4

)
−H∗

(
s2−4p
16

))

= −
∑

0<|s|<2
√
p

s≡p+1(mod 16)

s
∑
f |t

s2−4p=t2D

h∗
(
s2−4p
f2

)
c3(s, f)/2, (5.8)

where D is a fundamental discriminant and c3(s, f) is as described in the Corollary 3.4.
We now use (2.1) and Lemma 2.2 to show that (5.8) holds. We proceed on a case by

case basis depending on the congruence class of both p and D. Recall a := ord2(t) and
b := ord2(f). Let p ≡ 1 (mod 8) and D ≡ 1 (mod 8). Then by Proposition 3.1 we have
a > 2. We first examine the left-hand side of (5.8). By Lemma 2.2

h∗
(
s2−4p
f2

)
= h∗

(
s2−4p
(2f)2

)
×

{
2 if a− b ≥ 2,

1 if a− b = 1,

and

h∗
(
s2−4p
f2

)
= h∗

(
s2−4p
(4f)2

)
×

{
4 if a− b ≥ 3,

2 if a− b = 2.
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Therefore using (2.1) we see that

8
(
H∗
(
s2−4p

4

)
−H∗

(
s2−4p
16

))
= 8

∑
f |t

a−b≥1

h∗
(
s2−4p
(2f)2

)
− 8

∑
f |t

a−b≥2

h∗
(
s2−4p
(4f)2

)

= 2
∑
f |t

a−b≥3

h∗
(
s2−4p
f2

)
+ 8

∑
f |t

a−b=1

h∗
(
s2−4p
f2

)
. (5.9)

Now the coefficient of s in the expression on the right-hand side of (5.8) in this case equals

2
∑
f |t

a−b≥3

h∗
(
s2−4p
f2

)
+ 2

∑
f |t

a−b=2

h∗
(
s2−4p
f2

)
+ 3

∑
f |t

a−b=1

h∗
(
s2−4p
f2

)
+ 1

∑
f |t

a−b=0

h∗
(
s2−4p
f2

)
. (5.10)

As a > 2, ∑
f |t

a−b=0

h∗
(
s2−4p
f2

)
=
∑
f |t

a−b=1

h∗
(
s2−4p
(2f)2

)
=
∑
f |t

a−b=1

h∗
(
s2−4p
f2

)
,

and

2
∑
f |t

a−b=2

h∗
(
s2−4p
f2

)
= 4

∑
f |t

a−b=2

h∗
(
s2−4p
(2f)2

)
= 4

∑
f |t

a−b=1

h∗
(
s2−4p
f2

)
.

Thus (5.10) equals

2
∑
f |t

a−b≥3

h∗
(
s2−4p
f2

)
+ 8

∑
f |t

a−b=1

h∗
(
s2−4p
f2

)
. (5.11)

Expressions (5.11) and (5.9) are equal and so (5.8) holds in the case p ≡ 1 (mod 8) and
D ≡ 1 (mod 8). The other cases proceed in a similar manner. We omit the details for
reasons of brevity. We conclude, therefore, that Theorem 1.8 is true. �

Remark 5.12. Using the same methods as in the proof of Theorem 1.8, together with
Theorem 3.2, we obtain a new proof of Theorem 1.3, but we do not present the details here.

We now recall a theorem of the first author that is a finite field version of Whipple’s

4F3-hypergeometric transformation for well-poised series. If A ∈ F̂∗p is a square we will write
A = �.

Theorem 5.13 (McCarthy [23, Thm. 1.5]). For A, B, C, D ∈ F̂∗p,

4F3

(
A, B, C, D

AB, AC, AD

∣∣∣ −1

)
p

=


0 if A 6= �,

g(A) g(ACD)

g(AC) g(AD)

∑
R2=A

3F2

(
RB, C, D

R, AB

∣∣∣ 1

)
p

if A = �, A 6= ε, B 6= ε,

B2 6= A and CD 6= A.

Proof of Theorem 1.6. Van Geemen and van Straten [14, §8.7] conjectured that there exists
a relationship between the Andrianov L-function of the form F7 and the tensor product L-
function of the forms f1 and f2. As mentioned previously we understand that this conjecture
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has been resolved by Okazaki [25] and is the subject of a forthcoming paper (see also [26,
§1] for additional discussion on this problem). Specifically, the conjecture implies that there
exists an eigenform F ∈ S2

3(Γ2(4, 8)) such that F = F7|γ for some γ ∈ Sp4(Z) and

La(s, F ) = L(s, f1 ⊗ f2).
The Andrianov L-Function for forms of degree 2 with level is described in [9]. We see that
La(s, F7) has an Euler product over odd primes with local factor

La(s, F7)p =
[
1− λ(p)p−s + (λ(p)2 − λ(p2)− p2)p−2s − λ(p)p3−3s + p6−4s

]−1
, (5.14)

where λ(p2) is the eigenvalue associated to the Hecke operator of index p2. From [26,
Prop. 2.2] we then obtain

La(s, F )p =
[
1− ζ(p)λ(p)p−s + (λ(p)2 − λ(p2)− p2)p−2s − ζ(p)λ(p)p3−3s + p6−4s

]−1
for a certain function ζ(t) which is defined on odd t modulo 8 (see also [5, Thm. 2.2]).

We now examine L(s, f1 ⊗ f2). Let ψ(·) = (−4· ) be the character associated to f2. Given
that f1 and f2 are both Hecke eigenforms we know by the work of Shimura [31] that L(s, f1⊗
f2) has an Euler product with local factors at odd primes of

L(s, f1 ⊗ f2)p =
[
1− a(p)b(p)p−s + (p b(p)2 + ψ(p) p2 a(p)2 − 2ψ(p) p3)p−2s

−ψ(p)a(p)b(p)p3−3s + p6−4s
]−1

.

We note also that L(s, f1 ⊗ f2)2 = [1− a(2)b(2)2−s]
−1

= 1.
Comparing the coefficients of p−s and p−3s in La(s, F )p and L(s, f1⊗f2)p we conclude that

a(p)b(p) = ζ(p)λ(p) =
(−4
p

)
a(p)b(p).

Therefore, we conclude that λ(p) = 0 when p ≡ 3 (mod 4). This is also apparent from the
fact that f1 is a CM-form and a(p) = 0 for primes p ≡ 3 (mod 4) (e.g., see [27, Prop. 1]).
For p ≡ 1 (mod 4) we determine ζ(p) by examining the values of a(p), b(p) and λ(p) when
p = 5, 17, which are listed in [14, §§7–8]. We determine therefore that ζ(p) = 1, if p ≡ 1
(mod 8), and ζ(p) = −1, if p ≡ 5 (mod 8), which coincides with ξ(p). Overall then, we find

λ(p) =

{
ξ(p) a(p) b(p) if p ≡ 1 (mod 4),

0 if p ≡ 3 (mod 4).

By Theorem 5.13 we have that, when p ≡ 3 (mod 4),

4F3

(
φ, φ, φ, φ

ε, ε, ε

∣∣∣ −1

)
p

= 0.

Thus the theorem is proved in the case p ≡ 3 (mod 4).
We now concentrate on the case when p ≡ 1 (mod 4) and assume this throughout the

remainder of the proof. Combining Theorems 1.7 and 1.8 it suffices to show that

4F3

(
φ, φ, φ, φ

ε, ε, ε

∣∣∣ −1

)
p

= 2F1

(
φ, φ

ε,

∣∣∣ −1

)
p

· 3F2

(
χ4, φ, φ

ε, ε

∣∣∣ 1

)
p

. (5.15)

Now Theorem 5.13 yields

4F3

(
φ, φ, φ, φ

ε, ε, ε

∣∣∣ −1

)
p

= p

[
3F2

(
χ4, φ, φ

χ4, ε

∣∣∣ 1

)
p

+ 3F2

(
χ4, φ, φ

χ4, ε

∣∣∣ 1

)
p

]
.
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We use transformations of Greene [15, (4.23), (4.25)] (with [23, Prop. 2.5]) to relate both

3F2’s in this equation to the 3F2 in (5.15). This gives us

4F3

(
φ, φ, φ, φ

ε, ε, ε

∣∣∣ −1

)
p

= −3F2

(
χ4, φ, φ

ε, ε

∣∣∣ 1

)
p

×
[
g(φ) g(χ4)

g(χ4)
+
g(φ) g(χ4)

g(χ4)

]
.

By [23, Thm. 1.10],

2F1

(
φ, φ

ε,

∣∣∣ −1

)
p

= −g(φ) g(χ4)

g(χ4)
− g(φ) g(χ4)

g(χ4)
.

Therefore (5.15) holds and the theorem is proved. �

6. Closing Remarks

We first note that the definition of n+1Fn as described in (1.1) can be easily extended to
finite fields with a prime power number of elements [23]. We also note that the representation
of the Hecke algebra in M2

k (Γ2(q)) is generated by T (p) and T (p2), the Hecke operators of
index p and p2 respectively [9]. Therefore, for a given eigenform F of degree 2 we are also
interested in λ(p2), the eigenvalue associated to the action of T (p2) on F . Based on (limited)
numerical evidence it appears that the eigenvalue λ(p2) associated to the eigenform F7 is
also related to a hypergeometric function but over Fp2 , as follows. Let ap := λ(p) and
ap2 := λ(p)2 − λ(p2) − p2 corresponding (up to sign) to the coefficients of p−s and p−2s in
(5.14) respectively. Then we have observed for primes p < 20 that

a2p − 2 ap2 = 4F3

(
φ, φ, φ, φ

ε, ε, ε

∣∣∣ −1

)
p2
.

It is conceivable that this identity holds for all odd primes p, and we believe similar methods
to those employed in the main body of this paper could be applied to proving it.
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