
A p-adic analogue of a formula of Ramanujan
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Abstract. During his lifetime, Ramanujan provided many formulae relating
binomial sums to special values of the Gamma function. Based on numerical
computations, Van Hamme recently conjectured p-adic analogues to such for-
mulae. Using a combination of ordinary and Gaussian hypergeometric series,
we prove one of these conjectures.
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1. Introduction

In Ramanujan’s second letter to Hardy dated February 27, 1913, the following
formula appears:

1− 5
(

1
2

)5

+ 9
(

1 · 3
2 · 4

)5

− 13
(

1 · 3 · 5
2 · 4 · 6

)5

+ · · · = 2

Γ
(

3
4

)4 (1.1)

where Γ(·) is the Gamma function. This result was proved in 1924 by Hardy [14]
and a further proof was given by Watson [29] in 1931. Note that (1.1) can be
expressed as

∞∑
k=0

(4k + 1)
(
− 1

2

k

)5

=
2

Γ
(

3
4

)4 .
Other formulae of this type include

∞∑
k=0

(−1)k
6k + 1

4k

(
− 1

2

k

)3

=
4
π

=
4

Γ
(

1
2

)2 , (1.2)

which is Entry 20, page 352 of [5]. It is interesting to note that a proof of (1.2)
was not found until 1987 [8].
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Recently, Van Hamme [27] studied a p-adic analogue of (1.1). Namely, he
truncated the left-hand side and replaced the Gamma function with the p-adic
Gamma function. Based on numerical computations, he posed the following.

Conjecture 1.1. Let p be an odd prime. Then
p−1
2∑

k=0

(4k + 1)
(
− 1

2

k

)5

≡

{ − p

Γp( 3
4 )4 (mod p3) if p ≡ 1 (mod 4)

0 (mod p3) if p ≡ 3 (mod 4)

where Γp(·) is the p-adic Gamma function.

The purpose of this paper is to prove the following.

Theorem 1.2. Conjecture 1.1 is true.

Theorem 1.2 is one example of a general phemonena called Supercongruences.
This term first appeared in the Ph.D. thesis of Coster [9] and refers to the fact that
a congruence holds modulo pk for some k ≥ 2. Other examples of supercongruences
have been observed in the context of number theory (see [22] and the references
therein), mathematical physics [17], and algebraic geometry [26].

Van Hamme states 12 other conjectures relating truncated hypergeometric
series to values of the p-adic Gamma function. Motivated by Theorem 1.2, one of
these conjectures has been settled in [20]. The remaining 11 include a conjectural
p-adic analogue of (1.2) which states

p−1
2∑

k=0

(−1)k
6k + 1

4k

(
− 1

2

k

)3

≡ − p

Γp
(

1
2

)2 (mod p4).

These conjectures were motivated experimentally and as van Hamme states that
“we have no real explanation for our observations”, it might be worthwhile to
determine whether these congruences arise from considering some appropriate al-
gebraic surfaces (see [7] or [25]). Finally, if p ≡ 1 (mod 4), then the congruence in
Conjecture 1.1 appears to hold modulo p4. This has been numerically verified for
all primes less than 5000.

The paper is organized as follows. In Section 2 we recall some properties of
the Gamma function, ordinary hypergeometric series, the p-adic Gamma function
and Gaussian hypergeometric series. The proof of Theorem 1.2 is then given in
Section 3.

2. Preliminaries

We briefly discuss some preliminaries which we will need in Section 3. For further
details see [3], [6], or [18]. Recall that for all complex numbers x 6= 0,−1,−2, . . . ,
the Gamma function Γ(x) is defined by

Γ(x) := lim
k→∞

k! kx−1

(x)k
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where (a)0 := 1 and (a)n := a(a+ 1)(a+ 2) · · · (a+ n− 1) for positive integers n.
The Gamma function satisfies the reflection formula

Γ(x)Γ(1− x) =
π

sinπx
. (2.1)

We also recall that the hypergeometric series pFq is defined by

pFq

[
a1, a2, a3, . . . , ap

b1, b2, . . . , bq

∣∣∣ z] :=
∞∑
n=0

(a1)n(a2)n(a3)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

zn

n!
(2.2)

where ai, bi and z are complex numbers, with none of the bi being negative integers
or zero, and, p and q are positive integers. Note that the series terminates if some
aj is a negative integer. In [30], Whipple studied properties of well-poised series
where p = q+ 1, z = ±1, and a1 + 1 = a2 + b1 = a3 + b2 = · · · = ap + bq. One such
transformation property of the well-poised series (see (6.3), page 252 in [30]) is

6F5

[
a, 1 + 1

2a, c, d, e, f
1
2a, 1 + a− c, 1 + a− d, 1 + a− e, 1 + a− f

∣∣∣ − 1

]

=
Γ(1 + a− e)Γ(1 + a− f)
Γ(1 + a)Γ(1 + a− e− f) 3F2

[
1 + a− c− d, e, f

1 + a− c, 1 + a− d

∣∣∣ 1

]
.

(2.3)

This is Entry 31, Chapter 10 in Ramanujan’s second notebook (see page 41 of [4]).
Watson’s proof of (1.1) is a specialization of (2.3) combined with Dixon’s theorem
[10].

Let p be an odd prime. For n ∈ N, we define the p-adic Gamma function as

Γp(n) := (−1)n
∏
j<n
p-j

j

and extend to all x ∈ Zp by setting

Γp(x) := lim
n→x

Γp(n)

where n runs through any sequence of positive integers p-adically approaching
x and Γp(0) := 1. This limit exists, is independent of how n approaches x and
determines a continuous function on Zp.

In [13], Greene introduced the notion of general hypergeometric series over
finite fields or Gaussian hypergeometric series. These series are analogous to clas-
sical hypergeometric series and have played an important role in relation to the
number of points over Fp of Calabi-Yau threefolds [2], traces of Hecke operators
[11], formulas for Ramanujan’s τ -function [24], and the number of points on a
family of elliptic curves [12].

We now introduce two definitions. Let Fp denote the finite field with p ele-
ments. We extend the domain of all characters χ of F∗p to Fp by defining χ(0) := 0.
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The first definition is the finite field analogue of the binomial coefficient. For char-
acters A and B of F∗p, define

(
A
B

)
by(

A

B

)
:=

B(−1)
p

J(A,B)

where J(χ, λ) denotes the Jacobi sum for χ and λ characters of F∗p. The sec-
ond definition is the finite field analogue of ordinary hypergeometric series. For
characters A0, A1, . . . , An and B1, . . . , Bn of F∗p and x ∈ Fp, define the Gaussian
hypergeometric series by

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣ x)
p

:=
p

p− 1

∑
χ

(
A0χ

χ

)(
A1χ

B1χ

)
· · ·
(
Anχ

Bnχ

)
χ(x)

where the summation is over all characters χ on F∗p.
In [23], the case where Ai = φp, the quadratic character, for all i and Bj = εp,

the trivial character mod p, for all j is examined and is denoted n+1Fn(x) for
brevity. By [13], pnn+1Fn(x) ∈ Z. Before stating the main result of [23], we recall
that for i, n ∈ N, generalized harmonic sums, H(i)

n , are defined by

H(i)
n :=

n∑
j=1

1
ji

and H
(i)
0 := 0. For p an odd prime, λ ∈ Fp, n ∈ Z+, we now define the quantities

X(p, λ, n) := φp(λ)

p−1
2∑
j=0

( p−1
2 + j

j

)l( p−1
2

j

)l
(−1)jlλ−j

[
1 + 2(n+ 1)j

(
H

(1)
p−1
2 +j

−H(1)
j

)
+

(n+ 1)2

2
j2
(
H

(1)
p−1
2 +j

−H(1)
j

)2

− (n+ 1)
2

j2
(
H

(2)
p−1
2 +j

−H(2)
j

)]
, (2.4)

Y (p, λ, n) := φp(λ)

p−1
2∑
j=0

( p−1
2 + j

j

)l( p−1
2

j

)l
(−1)jlλ−jp

[
1 + (n+ 1)j

(
H

(1)
p−1
2 +j

−H(1)
j

)
− n+ 1

2
j
(
H

(1)
p−1
2 +j

−H(1)
p−1
2 −j

)]
, (2.5)

and

Z(p, λ, n) := φp(λ)

p−1
2∑
j=0

(
2j
j

)2l

16−jlλ−jp
2
, (2.6)

where l = n+1
2 . The main result in [23] provides an expression for n+1Fn modulo

p3. Precisely, we have
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Theorem 2.1. Let p be an odd prime, λ ∈ Fp, and n ≥ 2 be an integer. Then

−pnn+1Fn(λ) ≡ (−φp(−1))n+1 [
p2X(p, λ, n) + pY (p, λ, n) + Z(p, λ, n)

]
(mod p3).

3. Proof of Theorem 1.2

Proof of Theorem 1.2. By Theorem 4 in [21] (or Proposition 4.2 in [19]) and
Corollary 5 in [27], we have that

p3
3F2(1) =

{ − p

Γp( 3
4 )4 (mod p3) if p ≡ 1 (mod 4)

0 (mod p3) if p ≡ 3 (mod 4) .

Thus, by Theorem 2.1 it suffices to prove

p−1
2∑

k=0

(4k+1)
(
− 1

2

k

)5

≡ φp(−1)
[
p3X(p, 1, 2) + p2Y (p, 1, 2) + pZ(p, 1, 2)

]
(mod p3)

(3.1)
where the quantities X(p, λ, n), Y (p, λ, n) and Z(p, λ, n) are defined by (2.4), (2.5)
and (2.6) respectively. We first show, via the following lemmas, that the terms
involving Y (p, 1, 2) and X(p, 1, 2) in (3.1) vanish modulo p3.

Lemma 3.1. Let p be an odd prime. Then

Y (p, 1, 2) ≡ 0 (mod p) .

Proof. Substituting λ = 1 and n = 2 in equation (2.5), we get

Y (p, 1, 2) =

p−1
2∑
j=0

( p−1
2 + j

j

) 3
2
( p−1

2

j

) 3
2

(−1)
3
2 j
[
1 + 3j

(
H

(1)
p−1
2 +j

−H(1)
j

)
−3

2
j
(
H

(1)
p−1
2 +j

−H(1)
p−1
2 −j

)]
.

Noting that
(
u+k
k

)
= (−1)k

(−1−u
k

)
, we get

( p−1
2 + j

j

)( p−1
2

j

)
= (−1)j

(
− 1

2 −
p
2

j

)(
− 1

2 + p
2

j

)
≡ (−1)j

(
− 1

2

j

)2

(mod p2) .

(3.2)
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Also,

H
(1)
p−1
2 +j

−H(1)
p−1
2 −j

=
1

p−1
2 − j + 1

+
1

p−1
2 − j + 2

+ · · ·+ 1
p−1

2

+
1
p+1

2

+ · · ·+ 1
p−1

2 + j

=
j−1∑
r=0

1
p−1

2 − r
+

1
p+1

2 + r

=
j−1∑
r=0

4p
p2 − (2r + 1)2

≡ 0 (mod p) .

So we need only show
p−1
2∑
j=0

(
− 1

2

j

)3

(−1)3j
[
1 + 3j

(
H

(1)
p−1
2 +j

−H(1)
j

)]
≡ 0 (mod p) . (3.3)

For j ≥ 1, note that (
− 1

2

j

)
(−1)j ≡

(j + 1) p−1
2(

p−1
2

)
!

(mod p) . (3.4)

As gcd
((

p−1
2

)
!
3
, p
)

= 1, it now suffices to show

(
p− 1

2

)
!
3

+

p−1
2∑
j=1

(j + 1)3
p−1
2

[
1 + 3j

(
H

(1)
p−1
2 +j

−H(1)
j

)]
≡ 0 (mod p) . (3.5)

We now use an argument similar to that in Section 4 of [16] (see also [19]). Let

P (z) :=
d

dz

[
z(z + 1)3

p−1
2

]
=

3p−3
2∑

k=0

akz
k (3.6)

for some integers ak. By a computation, we have

P (z) = (z + 1)3
p−1
2

[
1 + 3z

(
H

(1)
p−1
2 +z

−H(1)
z

)]
.

Combining this with (3.5), it is enough to show that(
p− 1

2

)
!
3

+

p−1
2∑
j=1

P (j) ≡ 0 (mod p) . (3.7)

Note that, for p−1
2 < j < p, (j + 1) p−1

2
is divisible by p and H(i)

p−1
2 +j

−H(i)
j ∈ 1

pi Zp,
so that P (j) ≡ 0 (mod p) for such j. Hence (3.7) will hold if we can show(

p− 1
2

)
!
3

+
p−1∑
j=1

P (j) ≡ 0 (mod p) . (3.8)
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We now recall the following elementary fact about exponential sums. For a positive
integer k, we have

p−1∑
j=1

jk ≡

{
−1 (mod p) if (p− 1)|k ,

0 (mod p) otherwise .
(3.9)

By (3.6), (3.9) and the fact that 3p−3
2 < 2p− 2, we see that

p−1∑
j=1

P (j) =
p−1∑
j=1

3p−3
2∑

k=0

akj
k

=

3p−3
2∑

k=0

ak

p−1∑
j=1

jk

≡ −a0 − ap−1 (mod p) .

Additionally, by (3.6)

(z + 1)3
p−1
2

= · · ·+ ap−1

p
zp−1 + · · · .

As (z + 1)3
p−1
2

has integer coefficients, p divides ap−1. Hence ap−1 ≡ 0 (mod p).
One can also check that

a0 =
(
p− 1

2

)
!
3

.

Thus
p−1∑
j=1

P (j) ≡ −
(
p− 1

2

)
!
3

(mod p)

and (3.8) holds. This proves the result. �

Now we would like to show that ordp(X(p, 1, 2)) ≥ 0 which ensures that
the term involving X(p, 1, 2) in equation (3.1) vanishes modulo p3. In fact, in the
following lemma, we show that ordp(X(p, 1, 2)) ≥ 1.

Lemma 3.2. Let p be an odd prime. Then

X(p, 1, 2) ≡ 0 (mod p) .

Proof. Substituting λ = 1 and n = 2 in equation (2.4) and applying (3.2) and
(3.3) yields

X(p, 1, 2) ≡

p−1
2∑
j=0

(
− 1

2

j

)3

(−1)3j
[
3j
(
H

(1)
p−1
2 +j

−H(1)
j

)
+

9
2
j2
(
H

(1)
p−1
2 +j

−H(1)
j

)2

− 3
2
j2
(
H

(2)
p−1
2 +j

−H(2)
j

)]
(mod p) .
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By (3.4) and as gcd
((

p−1
2

)
!
3
, p
)

= 1, it suffices to prove that

p−1
2∑
j=1

(j + 1)3
p−1
2

[
3j
(
H

(1)
p−1
2 +j

−H(1)
j

)
+

9
2
j2
(
H

(1)
p−1
2 +j

−H(1)
j

)2

−3
2
j2
(
H

(2)
p−1
2 +j

−H(2)
j

)]
≡ 0 (mod p) . (3.10)

Similar to the proof of Lemma 3.1, we now let

Q(z) :=
z

2
d2

dz2

[
z(z + 1)3

p−1
2

]
=

3p−3
2∑

k=0

akz
k (3.11)

for some integers ak. One can check that it now suffices to show
p−1∑
j=1

Q(j) ≡ 0 (mod p) . (3.12)

By (3.9), (3.11) and the fact that 3p−3
2 < 2p− 2, we have

p−1∑
j=1

Q(j) =
p−1∑
j=1

3p−3
2∑

k=0

akj
k

=

3p−3
2∑

k=0

ak

p−1∑
j=1

jk

≡ −ap−1 (mod p) .

Here we have used that a0 = 0 as z|Q(z). One can check that

(z + 1)3
p−1
2

= · · ·+ 2ap−1

p(p− 1)
zp−1 + · · · .

As (z + 1)3
p−1
2

has integer coefficients, p divides ap−1. Hence ap−1 ≡ 0 (mod p).
Thus (3.12) holds and the result is proven �

Via (3.1), Lemmas 3.1 and 3.2, the proof of Theorem 1.2 is complete upon
proving the following Proposition.

Proposition 3.3. Let p be an odd prime. Then
p−1
2∑

k=0

(4k + 1)
(
− 1

2

k

)5

≡ φp(−1) p Z(p, 1, 2) (mod p3) .

Proof. Substituting λ = 1 and n = 2 in equation (2.6), we get

Z(p, 1, 2) =

p−1
2∑
j=0

(
2j
j

)3

16−
3
2 j . (3.13)
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Noting that (
2j
j

)
= 22j(−1)j

(
− 1

2

j

)
,

it suffices to prove

p−1
2∑

k=0

(4k + 1)
(
− 1

2

k

)5

≡ φp(−1) p

 p−1
2∑
j=0

(−1)j
(
− 1

2

j

)3
 (mod p3) . (3.14)

Letting a = 1
2 , c = 1

2 + ip2 , d = 1
2 − i

p
2 , e = 1

2 + p
2 and f = 1

2 −
p
2 in (2.3), we get

6F5

[
1
2 ,

5
4 ,

1
2 + ip2

1
2 − i

p
2 ,

1
2 + p

2 ,
1
2 −

p
2

1
4 , 1− ip2 , 1 + ip2 , 1− p

2 , 1 + p
2

∣∣∣ − 1

]

=
Γ
(
1− p

2

)
Γ
(
1 + p

2

)
Γ
(

3
2

)
Γ
(

1
2

) 3F2

[
1
2

1
2 + p

2 ,
1
2 −

p
2

1− ip2 , 1 + ip2

∣∣∣ 1

]
. (3.15)

By (2.2) and the fact that 1
2 −

p
2 is a negative integer,

6F5

[
1
2 ,

5
4 ,

1
2 + ip2

1
2 − i

p
2 ,

1
2 + p

2 ,
1
2 −

p
2

1
4 , 1− ip2 , 1 + ip2 , 1− p

2 , 1 + p
2

∣∣∣ − 1

]

=

p−1
2∑

k=0

(
1
2

)
k

(
5
4

)
k

(
1
2 + ip2

)
k

(
1
2 − i

p
2

)
k

(
1
2 + p

2

)
k

(
1
2 −

p
2

)
k(

1
4

)
k

(
1− ip2

)
k

(
1 + ip2

)
k

(
1− p

2

)
k

(
1 + p

2

)
k

(−1)k

k!
. (3.16)

Now, (
1
2

)
k

(−1)k

k!
=
(
− 1

2

k

)
, (3.17)

(
5
4

)
k(

1
4

)
k

= 4k + 1 , (3.18)

and (
1
2 + ip2

)
k

(
1
2 − i

p
2

)
k

(
1
2 + p

2

)
k

(
1
2 −

p
2

)
k(

1− ip2
)
k

(
1 + ip2

)
k

(
1− p

2

)
k

(
1 + p

2

)
k

≡
(
− 1

2

k

)4

(mod p4) . (3.19)
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Therefore, substituting (3.17), (3.18) and (3.19) into equation (3.16), we get

6F5

[
1
2 ,

5
4 ,

1
2 + ip2 ,

1
2 − i

p
2 ,

1
2 + p

2 ,
1
2 −

p
2

1
4 , 1− ip2 , 1 + ip2 , 1− p

2 , 1 + p
2

∣∣∣ − 1

]

≡

p−1
2∑

k=0

(4k + 1)
(
− 1

2

k

)5

(mod p4) . (3.20)

Next we examine the right hand side of (3.15). By (2.2),

Γ
(
1− p

2

)
Γ
(
1 + p

2

)
Γ
(

3
2

)
Γ
(

1
2

) 3F2

[
1
2

1
2 + p

2 ,
1
2 −

p
2

1− ip2 , 1 + ip2

∣∣∣ 1

]

=
Γ
(
1− p

2

)
Γ
(
1 + p

2

)
Γ
(

3
2

)
Γ
(

1
2

) p−1
2∑

k=0

(
1
2

)
k

(
1
2 + p

2

)
k

(
1
2 −

p
2

)
k(

1− ip2
)
k

(
1 + ip2

)
k

1
k!
. (3.21)

Now, via (2.1) and the fact that Γ(x+ 1) = xΓ(x) and Γ
(

1
2

)
=
√
π, we have

Γ
(
1− p

2

)
Γ
(
1 + p

2

)
Γ
(

3
2

)
Γ
(

1
2

) =
Γ
(
1− p

2

)(
p
2

)
Γ
(
p
2

)
Γ
(

3
2

)
Γ
(

1
2

) (3.22)

=
p

sin
(
p
2π
)

= φp(−1) p .

Also, we have (
1
2 + p

2

)
k

(
1
2 −

p
2

)
k(

1− ip2
)
k

(
1 + ip2

)
k

≡
(
− 1

2

k

)2

(mod p2) . (3.23)

Using (3.17) and substituting (3.22), (3.23) into (3.21), we get

Γ
(

1− p
2

)
Γ
(

1 + p
2

)
Γ
(

3
2

)
Γ
(

1
2

) 3F2

[
1
2

1
2 + p

2 ,
1
2 −

p
2

1− ip2 , 1 + ip2

∣∣∣ 1

]

≡ φp(−1) p

 p−1
2∑
j=0

(−1)j
(
− 1

2

j

)3
 (mod p3) . (3.24)

Finally, combining (3.15), (3.20) and (3.24) yields (3.14) and hence the result
follows. �

Remark 3.4. We would like to mention another approach, kindly pointed out to
us by Eric Mortenson, which confirms Theorem 1.2. By [27], the right hand side
in Conjecture 1.1 is equal to p · a(p) where a(p) is the p-th Fourier coefficient of
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η6(4z). Here η(z) is the Dedekind eta-function. Thus, in conjunction with (3.14),
Conjecture 1.1 follows from

φp(−1)

 p−1
2∑
j=0

(−1)j
(
− 1

2

j

)3
 ≡ a(p) (mod p2).

This congruence has been proven in [1], [15], [19], and [28].
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