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Abstract Hypergeometric functions over finite fields were introduced by Greene
in the 1980s as a finite field analogue of classical hypergeometric series. These
functions, and their generalizations, naturally lend themselves to, and have been
widely used in, character sum evaluations and counting points on algebraic varieties.
More interestingly, perhaps, are their links to Fourier coefficients of modular forms.
In this paper, we outline the main results in this area and also conjecture 13 new
relations.

1 Introduction

Hypergeometric functions over finite fields were introduced by Greene [16] as a
finite field analogue of classical hypergeometric series. Much of Greene’s early work
on these functions focused on developing transformation and summation formulas
which mirror those of the classical series. These functions have a nice character sum
representation and so the transformation and summation formulas can be interpreted
as relations to simplify and evaluate complex character sums. Using character sums
to count points on certain algebraic varieties over finite fields is well-established and,
consequently, hypergeometric functions over finite fields naturally lend themselves
to this endeavor.
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Via modularity results, we then find relations between hypergeometric functions
over finite fields and the Fourier coefficients of modular forms. As we will see,
these relations are striking in their simplicity. While the modularity theorem and
connections between hypergeometric functions over finite fields and elliptic curves
yield infinitely many such relations with weight two newforms, relations in higher
weights are rare. The main source of relations between hypergeometric functions
over finite fields and the Fourier coefficients of modular forms of weight greater than
two is the supercongruence conjectures of Rodriguez Villegas which yields 14 such
relations. In a recent paper studying generalized Paley graphs, the authors discovered
evidence for two new such relations. Since then we have conducted a more extensive
search where we have found a further 13 possible relations. The main purpose of
this paper is to present the details of these conjectural relations. For context, we also
outline the other main results in this area.

This paper is organized as follows. In Section 2, we define hypergeometric func-
tions over finite fields and also a p-adic extension. We then outline the main results
linking hypergeometric functions over finite fields and Fourier coefficients of mod-
ular forms, categorized by weight, with weight two in Section 3 and higher weights
in Section 4. In Section 5, we discuss the Eichler–Selberg trace formula which is one
of the main tools used to prove such results. Finally, in Section 6 we describe our 13
new conjectural relations.

2 Preliminaries

While hypergeometric functions over finite fields were originally defined by Greene
[16], in this paper we will use a normalized version defined by the second author
[27, 29], which allowmany of the results we are interested in to be stated in a slightly
more streamlined fashion. Throughout, let p be a prime, and let q be a prime power.
Let Fq be the finite field with q elements, and let F̂∗q be the group of multiplicative
characters of F∗q . We extend the domain of χ ∈ F̂∗q to Fq by defining χ(0) := 0
(including for the trivial character ε) and denote χ as the inverse of χ. We denote
by ϕ the character of order two in F̂∗q when q is odd. More generally, for k > 2 a
positive integer, we let χk ∈ F̂∗q denote a character of order k when q ≡ 1 (mod k).
Let θ be a fixed non-trivial additive character of Fq , and for χ ∈ F̂∗q define the Gauss
sum g(χ) :=

∑
x∈Fq χ(x)θ(x). We define the finite field hypergeometric function as

follows.

Definition 1 ([27], Def. 1.4; [29], Def 2.4)
For A1, A2, . . . , Am,B1,B2 . . . ,Bm ∈ F̂

∗
q and x ∈ Fq ,

mFm

(
A1, A2, . . . , Am

B1, B2, . . . , Bm

��� x
)
q

:=
−1

q − 1

∑
χ∈F̂∗q

m∏
i=1

g(Ai χ)

g(Ai)

g(Bi χ)

g(Bi)
χ(−1)m χ(x).
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If B1 = ε, as is often the case, then it is usually omitted from the list of parameters
in mFm and the notation is written as mFm−1. See [27, Prop. 2.5] and surrounding
discussion for a precise description of the relationship between mFm and Greene’s
function. In most of the relations connecting mFm to Fourier coefficients of modular
forms, all the Bi’s are trivial. In this case, mFm−1 equals (−q)m−1 times Greene’s
function, with the same parameters. Many of the results concerning hypergeometric
functions over finite fields that we quote in this paper, from other articles, were
originally stated using Greene’s function. If this is the case, note then that we have
reformulated them in terms of mFm, as defined above.

All the results we will see relating the p-th Fourier coefficients of modular forms
to mFm(· · · )p will require characters of certain orders. Consequently, this restricts
these results to p in certain congruence classes. In some cases, these results can
be extended to all odd primes using a function which extends mFm(· · · ) to the p-
adic setting. Let Zp denote the ring of p-adic integers, Γp(·) denote Morita’s p-adic
gamma function, and ω denote the Teichmüller character of Fp , with ω denoting its
character inverse. For x ∈ Q we let bxc denote the greatest integer less than or equal
to x and 〈x〉 denote the fractional part of x, i.e. x − bxc.
Definition 2 ([25], Def. 2.1; [28], Def. 1.1)

Let p be an odd prime. For a1,a2, . . . ,am, b1, b2 . . . , bm ∈ Q ∩ Zp and x ∈ Fp ,

mGm

[
a1, a2, . . . , am
b1, b2, . . . , bm

��� x
]
p

:=
−1

p − 1

p−2∑
j=0
(−1)jm ω j

(x)

×

m∏
i=1

Γp
(
〈ai −

j
p−1 〉

)
Γp

(
〈ai〉

) Γp
(
〈−bi +

j
p−1 〉

)
Γp

(
〈−bi〉

) (−p)−b 〈ai 〉−
j

p−1 c−b 〈−bi 〉+
j

p−1 c .

A “q version” of mGm[· · · ] also exists [28, Def. 5.1] but is not needed here. There is
a simple relationship between mFm(· · · )p and mGm[· · · ]p .
Lemma 1 ([28], Lemma 3.3; [29], Lemma 2.5)

For a fixed odd prime p, let Ai,Bj ∈ F̂
∗
p be given by ωai (p−1) and ωb j (p−1)

respectively, where ω is the Teichmüller character . Then

mFm

(
A1, A2, . . . , Am

B1, B2, . . . , Bm

��� t
)
p

= mGm

[
a1, a2, . . . , am
b1, b2, . . . , bm

��� t−1
]
p

.

We recall Dedekind’s eta function, which will be used to describe some of the
modular forms in this paper: η(z) := q

1
24

∏
n≥1(1 − qn),where q := e2πiz .

3 Weight Two Newforms

For each elliptic curve E/Q, with conductor NE , the modularity theorem guar-
antees the existence of a weight two newform of level NE whose Fourier coeffi-
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cients are given by the coefficients of the Hasse–Weil L-function of E , L(E, s) =∑
n≥1 a(E,n) n−s . This function is completely determined by its coefficients at the

primes, a(E, p), which are related to the number of rational points N(E, p) on the
reduction of E modulo p via the formula N(E, p) = p + 1 − a(E, p).

As mentioned in the introduction, finite field hypergeometric functions naturally
lend themselves to counting points on algebraic varieties over finite fields. In partic-
ular, N(E, p), and consequently a(E, p), as we will see below, can be evaluated by
2F1 finite field hypergeometric functions. Passing through the modularity theorem
then results in formulas for the p-th Fourier coefficients of weight two newforms in
terms of these 2F1 evaluations, and we get infinitely many such connections.

The first results relating a(E, p) to 2F1 finite field hypergeometric functions were
due to Koike [20]. He examined various families of curves, including the Legendre
family, which yields the following result.

Theorem 1 (Koike [20])
Let λ ∈ Q \ {0,1}. Consider the elliptic curve Eλ : y2 = x(x − 1)(x − λ) over Q.

If p ≥ 3 is a prime with ordp(λ(λ − 1)) = 0, then

a(Eλ, p) = φ(−1) · 2F1

(
ϕ, ϕ
ε

��� λ)
p

.

Example 1 : We take λ = −1 in the above result. The curve E−1 : y2 = x3 − x [21,
32.a3] is related via the modularity theorem to the modular form η(4z)2η(8z)2 =∑

n≥1 a1(n) qn ∈ Snew
2 (Γ0(32)) [21, 32.2.a.a]. Combining with Theorem 1 we get

that for all odd primes

a1(p) = φ(−1) · 2F1

(
ϕ, ϕ
ε

��� −1
)
p

.

Fuselier [13] examined the family Et : y2 = 4x3 − 27
1−t x − 27

1−t and expressed
a(Et, p) in terms of a 2F1, whose parameters include characters of order 12, when
p ≡ 1 (mod 12). Lennon [23] generalized Fuselier’s result to evaluate a(E, p) for
any elliptic curve E , when the reduction of E modulo p is an elliptic curve over Fp
with j-invariant not equal to 0 or 1728.

Theorem 2 (Lennon [23] §2.2)
Let E/Q be an elliptic curve. Let p ≡ 1 (mod 12) be a prime such that Ep : y2 =

x3 + ax + b is an elliptic curve over Fp and j(Ep) , 0,1728. Then

a(E, p) = χ4

(
−

a3

27

)
2F1

(
χ12, χ

5
12
ε

��� 1728
j(Ep)

)
p

.

Theorem 2 is independent of the model for Ep . The results in [23] are in fact over
Fq , for q ≡ 1 (mod 12) a prime power, and hence allow calculation of a(E, p) up to
sign when p . 1 (mod 12) via the relation a(E, p)2 = a(E, p2) + 2p. Theorem 1.2
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of [28] extends Theorem 2 to the p-adic setting, giving a direct evaluation of a(E, p)
for all primes p > 3 and resolves this sign issue.

Theorem 3 (McCarthy [28] Thm 1.2)
Let E/Q be an elliptic curve. Let p > 3 be a prime such that Ep : y2 = x3+ax+b

is an elliptic curve over Fp and j(Ep) , 0,1728. Then

a(E, p) = φ(b) · p · 2G2

[ 1
4 ,

3
4

1
3 ,

2
3

��� 1 −
1728
j(Ep)

]
p

.

Again, Theorem 3 is independent of the model for Ep .

Example 2 : Consider the elliptic curve E : y2 = x3 + 27x − 27 [21, 540.a2]. This is
related via the modularity theorem to the modular form q− q5 − 4q7 + 6q11 − 4q13 −
3q17 − 7q19 − 9q23 + q25 + · · · =

∑
n≥1 a2(n) qn ∈ Snew

2 (Γ0(540)), [21, 540.2.a.a].
Then, by Theorem 3, we get that for all primes p > 3

a2(p) =
(
−3
p

)
· p · 2G2

[ 1
4 ,

3
4

1
3 ,

2
3

��� − 1
4

]
p

.

The theorem covers p > 5. We manually check that the relation also holds for p = 5.
Significant other contributions in this area, where connections between various

families of elliptic curves and finite field hypergeometric functions are established,
can be found in [5, 6, 10, 18, 22, 33]. Between all these results it should be possible
to evaluate the p-th Fourier coefficients of all weight two newforms, with integer
coefficients, using finite field hypergeometric functions (or their p-adic extensions).
For newforms with non-integral coefficients, things are less straightforward and little
is known. However, we have the following conjectural relations due to Evans [11].

Conjecture 1 (Evans [11])
Consider the newforms

∑
n≥1 a3(n)qn ∈ S2 (Γ0(972)), [21, 972.2.a.e], and∑

n≥1 a4(n)qn ∈ S2 (Γ0(768)), [21, 768.2.a.j], with coefficient fields Q
(√

2
)
and

Q
(√

3
)
respectively.

1. If q ≡ 1 (mod 6), then

χ6(12)J (χ6, χ6) − χ6(3) J
(
χ2

6 , χ
2
6

)
· 3F2

(
χ6, ϕ, χ6

ϕχ6, ϕχ6

��� 1
4

)
q

=

{
a3(p), if q = p, p ≡ 1 (mod 6)
a3(p)2 + 2p, if q = p2, p ≡ 5 (mod 6).

2. If q ≡ 1 (mod 8), then
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χ8(−4)J (χ8, χ8) − χ8(−4)J
(
χ2

8 , χ
3
8

)
· 3F2

(
χ8, χ

3
8 , χ8

χ8
2, ϕχ8

��� 1
4

)
q

=

{
a4(p), if q = p, p ≡ 1 (mod 8)
a4(p)2 + 2p2, if q = p2, p . 1 (mod 8).

4 Higher Weight Newforms

The lack of universal modularity results for algebraic varieties of dimension greater
than 1 means that connections to modular forms of weight greater than two are
somewhat ad hoc. In this section we outline the main results linking finite field hy-
pergeometric functions and Fourier coefficients of modular forms of weight greater
than two. We start with the connections coming from Rodriguez Villegas’ supercon-
gruence conjectures.

4.1 The Conjectures of Rodriguez Villegas

In [36], Rodriguez Villegas examined the relationship between the number of points
over Fp on certain Calabi-Yau manifolds and truncated classical hypergeometric
series which correspond to a particular period of the manifold. In doing so, he
identified numerically 22 possible supercongruences, 18 of which relate truncated
classical hypergeometric series to Fourier coefficients of modular forms of weights
three and four. One of these relations had previously been conjectured in [37]. The
14 cases involving weight four modular forms relate to Calabi-Yau threefolds, 13 of
which were studied in [7]. The book of Meyer [31] contains a nice description of
these threefolds.

While the supercongruence relations of Rodriguez Villegas are congruences in-
volving classical hypergeometric series, it became obvious from the work ofMorten-
son [32] and Kilbourn [19] on proving the first few of these conjectures, and also
from known connections between finite field hypergeometric functions and some
of the modular forms in question, due to Ono [33] and Ahlgren and Ono [3], that
corresponding to each of Rodriguez Villegas’s conjectures was a linear relation
between finite field hypergeometric functions and the Fourier coefficients of these
modular forms. In fact, following the work of the second author in [25], which
precisely describes the relationship between the truncated classical hypergeometric
series appearing in Rodriguez Villegas’s conjectures and the p-adic function defined
in Definition 2 above, proving relationships between the relevant mGm[· · · ] and the
Fourier coefficients of the modular forms in question would suffice to prove the con-
jectures of Rodriguez Villegas. A list of all these relations is shown in Table 1. The
Rodriguez Villegas conjectures corresponding to cases 1-5, 7 and 15 were proved
individually [1, 15, 17, 19, 26, 32, 38]. A proof of all 14 weight four conjectures
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(cases 5-18) is offered in [24] (as yet unpublished) and, as a consequence of the
results therein, all the relations in Table 1 should now be known.

Table 1 Relations arising from the conjectures of Rodriguez Villegas
Hyp Series Newform f (z) =

∑
a(n)qn Connection

Parameters Space LMFDB Relationship When
1.

[ 1
2 ,

1
2 ,

1
2 ; 1, 1, 1 |1

]
S3(Γ0(16), ( −4

·
)) 16.3.c.a a(p) = G[· · · ]p p > 2

2.
[ 1

2 ,
1
3 ,

2
3 ; 1, 1, 1 |1

]
S3(Γ0(12), ( −3

·
)) 12.3.c.a a(p) = G[· · · ]p p > 3

3.
[ 1

2 ,
1
4 ,

3
4 ; 1, 1, 1 |1

]
S3(Γ0(8), ( −2

·
)) 8.3.d.a a(p) = G[· · · ]p p > 2

4.
[ 1

2 ,
1
6 ,

5
6 ; 1, 1, 1 |1

]
S3(Γ0(144), ( −4

·
)) 144.3.g.a a(p) = G[· · · ]p p > 3

5.
[ 1

2 ,
1
2 ,

1
2 ,

1
2 ; 1, 1, 1, 1 |1

]
S4(Γ0(8)) 8.4.a.a a(p) = G[· · · ]p − p p > 2

6.
[ 1

2 ,
1
2 ,

1
3 ,

2
3 ; 1, 1, 1, 1 |1

]
S4(Γ0(36)) 36.4.a.a a(p) = G[· · · ]p − (

12
p )p p > 3

7.
[ 1

2 ,
1
2 ,

1
4 ,

3
4 ; 1, 1, 1, 1 |1

]
S4(Γ0(16)) 16.4.a.a a(p) = G[· · · ]p − (

8
p )p p > 2

8.
[ 1

2 ,
1
2 ,

1
6 ,

5
6 ; 1, 1, 1, 1 |1

]
S4(Γ0(72)) 72.4.a.b a(p) = G[· · · ]p − p p > 3

9.
[ 1

3 ,
2
3 ,

1
3 ,

2
3 ; 1, 1, 1, 1 |1

]
S4(Γ0(27)) 27.4.a.a a(p) = G[· · · ]p − p p , 3

10.
[ 1

3 ,
2
3 ,

1
4 ,

3
4 ; 1, 1, 1, 1 |1

]
S4(Γ0(9)) 9.4.a.a a(p) = G[· · · ]p − (

24
p )p p > 3

11.
[ 1

3 ,
2
3 ,

1
6 ,

5
6 ; 1, 1, 1, 1 |1

]
S4(Γ0(108)) 108.4.a.a a(p) = G[· · · ]p − (

12
p )p p > 3

12.
[ 1

4 ,
3
4 ,

1
4 ,

3
4 ; 1, 1, 1, 1 |1

]
S4(Γ0(32)) 32.4.a.a a(p) = G[· · · ]p − p p > 2

13.
[ 1

4 ,
3
4 ,

1
6 ,

5
6 ; 1, 1, 1, 1 |1

]
S4(Γ0(144)) 144.4.a.f a(p) = G[· · · ]p . − (

8
p )p p > 3

14.
[ 1

6 ,
5
6 ,

1
6 ,

5
6 ; 1, 1, 1, 1 |1

]
S4(Γ0(216)) 216.4.a.c a(p) = G[· · · ]p − p p > 3

15.
[ 1

5 ,
2
5 ,

3
5 ,

4
5 ; 1, 1, 1, 1 |1

]
S4(Γ0(25)) 25.4.a.b a(p) = G[· · · ]p − (

5
p )p p , 5

16 .
[ 1

8 ,
3
8 ,

5
8 ,

7
8 ; 1, 1, 1, 1 |1

]
S4(Γ0(128)) 128.4.a.b a(p) = G[· · · ]p − (

8
p )p p > 2

17 .
[ 1

10 ,
3
10 ,

7
10 ,

9
10 ; 1, 1, 1, 1 |1

]
S4(Γ0(200)) 200.4.a.f a(p) = G[· · · ]p − p p , 2, 5

18.
[ 1

12 ,
5
12 ,

7
12 ,

11
12 ; 1, 1, 1, 1 |1

]
S4(Γ0(864)) 864.4.a.a a(p) = G[· · · ]p − p p > 3

As noted above, a couple of the relationships described in Table 1 were known
independently of the conjectures of Rodriguez Villegas [3, 33]. For example, case 5
was first proved by Ahlgren and Ono [3].

Theorem 4 (Ahlgren & Ono [3], Thm. 6)
Consider the weight four newform η4(2z) η4(4z) =

∑
n≥1 a5(n)qn in S4 (Γ0(8)) . If

p is an odd prime, then

a5(p) = 4F3

(
ϕ, ϕ, ϕ, ϕ
ε, ε, ε

��� 1
)
p

− p

Theorem 4 is equivalent to case 5 in Table 1 via Lemma 1.
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4.2 Conjectures of Evans

In addition to Conjecture 1, Evans also provides three conjectural relations to weight
three newforms. The following is one example.

Conjecture 2 (Evans [11])

Consider the newform
∑

n≥1 a6(n)qn ∈ S3

(
Γ0(12),

(
−1
·

))
, [21, 12.3.d.a], with

coefficient field Q
(√
−3

)
. If q ≡ 1 (mod 4), then

−q − J (χ4, χ4) · 3F2

(
χ4, χ4, χ4

ε, χ4

��� 1
4

)
q

=

{
a6(p), if q = p, p ≡ 1 (mod 4),
a6(p)2 + 2p2, if q = p2, p ≡ 3 (mod 4).

The other two conjectures are similar and relate to the newforms in S3

(
Γ0(12),

(
−1
·

))
,

[21, 12.3.d.a], and S3
(
Γ0(972),

(
·
3
) )

[21, 972.3.c.f], both with coefficient field
Q

(√
−1

)
.

4.3 Relations with Ramanujan’s τ-function

Ramanujan’s τ-function, τ(n), can defined as the coefficients of the unique normal-
ized cusp form of weight 12 on the full modular group. i.e., η(z)24 =:

∑
n≥1 τ(n) qn.

The first result linking the τ-function to finite field hypergeometric functions was
given by Papanikolas.

Theorem 5 (Papanikolas [35], Theorem 1.1)
Let p be an odd prime. Choose a, b ≥ 0 satisfying p = a2 + b2, if p ≡ 1 (mod 4),

or a = b = 0, if p ≡ 3 (mod 4). Then

τ(p) = −1 −
(
1 + 3

2φ(−1)
)

p5 + 40p3a2b2 − 128pa4b4

− 1
2

p−1∑
λ=2

R

(
p, φ(1 − λ) · 3F2

(
ϕ, ϕ, ϕ
ε, ε

��� λ)
p

)
,

where R(p, x) = x5 − 4px4 + 2p2x3 + 5p3x2 − 2p4x − p5.

A similar result by Fuselier [13], involving powers of 2F1(· · · )p with characters of
order 12, followed. Both of these results were established using the Eichler–Selberg
trace formula, which we will discuss in Section 5.
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4.4 Other Relations

In this section we mention some other noteworthy relations. Frechette, Ono and
Papanikolas [12] provide the following relation between the Fourier coefficients of
a weight 6 newform and a linear combination of a 6F5 and a 4F3.

Theorem 6 (Frechette, Ono & Papanikolas [12], Corollary 1.2)
Let η(z)8η(4z)4 + 8η(4z)12 =

∑
n≥1 b(n)qn be the unique newform in S6 (Γ0(8))

[21, 6.8.a.a]. If p is an odd prime, then

b(p) = 6F5

(
φ, φ, φ, φ, φ, φ
ε, ε, ε, ε, ε

��� 1)
p

− p · 4F3

(
φ, φ, φ, φ
ε, ε, ε

��� 1)
p

+ (1 − φ(−1)) p2.

This is the only result, that we’re aware of, involving a modular form of weight
greater than four which can expressed via a simple linear relation of finite field
hypergeometric functions.

In [30], Papanikolas and the second author provide evidence that the eigenval-
ues, of index p, of a certain Siegel eigenform can be evaluated by the function
4F3 (φ, φ, φ, φ; ε, ε, ε | −1)p . In the course of their work they prove the following.

Theorem 7 (McCarthy & Papanikolas [30], Theorem 1.8)
Consider the newform

∑
n≥1 c(n) qn = q+4iq3+2q5−8iq7+· · · in S3

(
Γ0(32),

(
−4
·

))
[21, 32.3.c.a]. If p ≡ 1 (mod 4) is prime, then

c(p) = 3F2

(
χ4, φ, φ

ε, ε

��� 1)
p

.

Both Theorems 6 and 7 were proved using the Eichler–Selberg trace formula, which
we will discuss in Section 5.

In [34], Ono provides relations for the Fourier coefficients of the only four weight
three newforms which can be expressed as eta-products, all of which have complex
multiplication. One such relation is as follows.

Theorem 8 (Ono [34], Corollary 11.20)
Consider the newform η(z)3η(7z)3 =

∑
n≥1 d(n) qn ∈ S3

(
Γ0(7),

(
−7
·

) )
, [21,

7.3.b.a]. If p < {2,3,7} is prime, then

d(p) = φp(−7) · 3F2

(
φ, φ, φ
ε, ε

��� 64
)
p

− φp(−7) p.

The results for the other three newforms are similar. The eta-products for these new-
forms are η(4z)6, η(2z)3η(6z)3 and η(z)2η(2z)η(4z)η(8z)2 and these are the newforms
in cases 1-3 of Table 1 respectively.
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5 Trace Formulas for Hecke Operators

There have been two main ways in which relations between finite field hypergeo-
metric functions and Fourier coefficients of modular forms have been established.
The first is via the (known or independently established) modularity of some va-
riety, as we saw in the case of elliptic curves in Section 3. The second is via the
Eichler–Selberg trace formula for Hecke operators. These traces are connected to
hypergeometric values by counting isomorphism classes of members of certain fam-
ilies of elliptic curves with prescribed torsion. This is a long and tedious process
and works best when the dimension of the space in question is small, allowing
the Fourier coefficients of specific forms to be isolated. The trace formula has also
been used to establish modularity of certain varieties [2, 4], with the connection to
hypergeometric functions following later, as was the case in Theorem 4.

For a positive integer n, let Trk (Γ0(N),n) denote the trace of the n-th Hecke
operator acting on Sk (Γ0(N)). A typical result relating Trk (Γ0(N),n) to finite field
hypergeometric functions is as follows.

Theorem 9 (Papanikolas [35], Theorem 3.2)
Let p be an odd prime. Choose a, b ≥ 0 satisfying p = a2 + b2, if p ≡ 1 (mod 4),

or a = b = 0, if p ≡ 3 (mod 4). Define the polynomial

Gk(s, p) =

k
2 −1∑
j=0
(−1)j

(
k − 2 − j

j

)
pj sk−2j−2.

Let

δk(p) :=

{
1
2 Gk(p,2a) + 1

2 Gk(p,2b), if p ≡ 1 (mod 4),
(−p)

k
2 −1, if p ≡ 3 (mod 4)

and

Rk(p, x) :=

k
2 −1∑
k=0

cd
(
k
2 − 1

)
p

k
2 −1−dxd,

where cd(r) is defined by the generating function x+1
(x2+x+1)

d+1 =
∑∞

j=−d cd(d + j)x j .

For k ≥ 4 even,

Trk (Γ0(2), p) = −2 − δk(p) −
p−1∑
λ=2

Rk

(
p, φ(1 − λ) · 3F2

(
ϕ, ϕ, ϕ
ε, ε

��� λ)
p

)
.

Taking k = 12 in Theorem 9, and using the fact that η(z)24 and η(2z)24 form a
basis for S12 (Γ0(2)), yields Theorem 5. By taking k = 8 and k = 10 in Theorem 9,
Papanikolas also provides formulas, similar to that in Theorem 5, for the coefficients
of the unique newforms in S8 (Γ0(2)) and S10 (Γ0(2)) respectively.

Similar evaluations of the traces of the p-th Hecke operators acting on the follow-
ing spaces have also been produced.
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• Sk (Γ0(4)), for k ≥ 4 even [2, 12];

• Sk (Γ0(8)), for k ≥ 4 even [4, 12];

• Sk (Γ), for k ≥ 4 even [13, 14];

• Sk (Γ0(3)), Sk (Γ0(9)), for k ≥ 4 even [22]; and

• S3

(
Γ0(16),

(
−4
·

))
, S3

(
Γ0(32),

(
−4
·

))
[30].

Lennon [22] uses the evaluation for Trk (Γ0(9), p), when k = 4, to give another
formula for the p-th Fourier coefficients of the newform in case 10 of Table 1.

Theorem 10 (Lennon [22], Corollary 1.8)
Let η(3z)8 =

∑
n≥1 h(n) qn ∈ Snew

4 (Γ0(9)), [21, 9.4.a.a]. For p ≡ 1 (mod 3),

h(p) = 2F1

(
χ3, χ3

ε

��� 9 · 8−1
)
p3
.

6 New Relations

In recent work [9], we examined the number of complete subgraphs of order four
contained in generalized Paley graphs. Let k ≥ 2 be an integer. Let q be a prime
power such that q ≡ 1 (mod k) if q is even, or, q ≡ 1 (mod 2k) if q is odd. The
generalized Paley graph of order q, Gk(q), is the graph with vertex set Fq where ab is
an edge if and only if a − b is a k-th power residue. We provided a formula, in terms
of 3F2 finite field hypergeometric functions, for the number of complete subgraphs
of order four contained in Gk(q), which holds for all k. This formula includes all

3F2

(
χt1
k
, χt2

k
, χt3

k

χt4
k
, χt5

k

��� 1
)
q

,

as (t1, t2, t3, t4, t5) ranges over all tuples in (Z/kZ)5. We also showed that many of
these terms can be simplified and many are equal to each other. We gave explicit
determinations for k ≤ 4 and noticed that many of the 3F2’s that remained were
known to be related to Fourier coefficients of weight three modular forms. We also
found numerically two new possible relations. Specifically, consider the newform
g1(z) = q + 3iq2 − 5q4 − 3iq5 + 5q7 − 3iq8 + · · · =

∑∞
n=1 β1(n)qn ∈ S3(Γ0(27), (−3

·
))

[21, 27.3.b.b]. Then numerical evidence suggests that, for p ≡ 1 (mod 6),

3F2

(
χ3, χ3, χ3

ε, ε

��� 1
)
p

= β1(p). (1)

Also, consider the newform g2(z) = q + (2ζ8 − 2ζ3
8 )q

3 + 4ζ2
8 q5 + (8ζ8 + 8ζ3

8 )q
7 −

q9 + · · · =
∑∞

n=1 β2(n)qn ∈ S3(Γ0(128), (−8
·
)) [21, 128.3.d.c] , for a primitive eighth
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root of unity ζ8. Then, for p ≡ 1 (mod 4), we observed

3F2

(
χ4, χ4 χ4

ε, ε

��� 1
)
p

= ±β2(p). (2)

Since then we have carried out a more extensive search. We examined the 3F2’s
coming from the results in [9] for all k ≤ 12. We focused our search based on what
appeared to be desirable characteristics that we observed in the small k cases. The
3F2’s can be sorted into orbits (see [9] for precise details) and all the new relations
we found were where the 3F2 and its conjugate were in the same orbit. All the new
conjectural relations we have found are summarized in Table 2. To simplify the
table we have listed the parameters of the 3F2’s using rational numbers according
to the convention that the fraction t

k represents the character χt
k
. Interestingly, our

search yielded the relations in cases 1-4 of Table 1 and the relation in Theorem 7,
but as they are already known, we have not included them in Table 2. However, for
completeness, we have included the relations from (1) and (2). They appear as cases
4 and 8 respectively. Similar to the relation in (2), many of the new relations involve
a sign which doesn’t seem to be resolvable by a simple twist by a Dirichlet character.
So we first define some functions to explain these signs.

For p ≡ 1 (mod 4), write p = x2 + y2 for integers x and y, such that x is odd and
y is even. For p ≡ 1 (mod 12), note that either 3 | x or 3 | y and define

Sx(p) =

{
+1 if 3 | y;
−1 if 3 | x.

Note that Sx(p) equals c2
12, where c12 is the quantity described in [8, Ch. 3.5]. If

p ≡ 1 (mod 20), then either 5 | x or 5 | y and so we define

S20(p) =

{
+1 if 5 | y,
−1 if 5 | x.

Now, for p ≡ 1 (mod 6), define

S6(p) =

{
Sx(p) if p ≡ 1 (mod 12),
±1 if p ≡ 7 (mod 12).

For p ≡ 1 (mod 8), write p = u2 + 2v2 for integers u and v, such that u ≡ 3
(mod 4) and v is even. For p ≡ 1 (mod 4), define

S4(p) =

{
+1 if p ≡ 1 (mod 8) and v ≡ 0 (mod 4), or, p ≡ 13 (mod 16),
−1 if p ≡ 1 (mod 8) and v ≡ 2 (mod 4), or, p ≡ 5 (mod 16).

When p ≡ 1 (mod 12), define
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Su(p) =

{
+1 if u ≡ 2 (mod 3),
−1 if u ≡ 1 (mod 3),

and, S12(p) =

{
Su(p) if p ≡ 1 (mod 24),
±1 if p ≡ 13 (mod 24).

For p ≡ 1 (mod 10), write p = a2 + 5b2 + 5c2 + 5d2 for integers a, b, c, d such
that a ≡ 4 (mod 5) and ab = d2 − c2 − cd. We note that a is unique up to sign [8,
Thm. 3.7.2]. Define

S10(p) =

{
+1 if 4 - a;
−1 if 4 | a.

S10(p) relates to case 14 inTable 2. Themodular form in that case hasCMbyQ
(√
−5

)
and so its Fourier coefficients a(p) vanish when p ≡ 11 (mod 20). Thus we only
need the sign at p ≡ 1 (mod 20). When p ≡ 1 (mod 20) it appears S10(p) = S20(p).

Table 2 New Conjectural Relations
Hyp Series Newform f (z) =

∑
a(n)qn Connection

Parameters Space LMFDB Relationship Conditions
1.

[ 1
3 ,

1
2 ,

1
2 ; 1, 1, 1 |1

]
S3(Γ0(48), ( −4

·
)) 48.3.g.a a(p) = S6(p) · F(· · · )p p ≡ 1 (mod 6)

2.
[ 1

6 ,
1
2 ,

1
2 ; 1, 1, 1 |1

]
S3(Γ0(12), ( −4

·
)) 12.3.d.a a(p) = S6(p) · F(· · · )p p ≡ 1 (mod 6)

3.
[ 1

8 ,
1
2 ,

1
2 ; 1, 1, 1 |1

]
S3(Γ0(64), ( −8

·
)) 64.3.d.a a(p) = F(· · · )p p ≡ 1 (mod 8)

4.
[ 1

3 ,
1
3 ,

2
3 ; 1, 1, 1 |1

]
S3(Γ0(27), ( −3

·
)) 27.3.b.b a(p) = F(· · · )p p ≡ 1 (mod 6)

5.
[ 1

4 ,
1
3 ,

2
3 ; 1, 1, 1 |1

]
S3(Γ0(36), ( −4

·
)) 36.3.d.a a(p) = F(· · · )p p ≡ 1 (mod 12)

6.
[ 1

6 ,
1
3 ,

2
3 ; 1, 1, 1 |1

]
S3(Γ0(108), ( −3

·
)) 108.3.c.b a(p) = F(· · · )p p ≡ 1 (mod 6)

7.
[ 1

3 ,
1
4 ,

3
4 ; 1, 1, 1 |1

]
S3(Γ0(576), ( −24

·
)) 576.3.h.b a(p) = S12(p) · F(· · · )p p ≡ 1 (mod 12)

8.
[ 1

4 ,
1
4 ,

3
4 ; 1, 1, 1 |1

]
S3(Γ0(128), ( −8

·
)) 128.3.d.c a(p) = S4(p) · F(· · · )p p ≡ 1 (mod 4)

9.
[ 1

6 ,
1
4 ,

3
4 ; 1, 1, 1 |1

]
S3(Γ0(576), ( −24

·
)) 576.3.h.a a(p) = S12(p) · F(· · · )p p ≡ 1 (mod 12)

10.
[ 1

3 ,
1
6 ,

5
6 ; 1, 1, 1 |1

]
S3(Γ0(432), ( −4

·
)) 432.3.g.a a(p) = S6(p) · F(· · · )p p ≡ 1 (mod 6)

11.
[ 1

4 ,
1
6 ,

5
6 ; 1, 1, 1 |1

]
S3(Γ0(288), ( −4

·
)) 288.3.g.a a(p) = F(· · · )p p ≡ 1 (mod 12)

12.
[ 1

6 ,
1
6 ,

5
6 ; 1, 1, 1 |1

]
S3(Γ0(108), ( −4

·
)) 108.3.d.a a(p) = S6(p) · F(· · · )p p ≡ 1 (mod 6)

13.
[ 1

5 ,
1
5 ,

4
5 ; 1, 1, 1 |1

]
S3(Γ0(25), χ) 25.3.c.a a(p) = F(· · · )p p ≡ 1 (mod 5)

14.
[ 1

2 ,
1
10 ,

9
10 ; 1, 1, 1 |1

]
S3(Γ0(20), ( −20

·
)) 20.3.d.a a(p) = S10(p) · F(· · · )p p ≡ 1 (mod 10)

15.
[ 1

2 ,
1
12 ,

11
12 ; 1, 1, 1 |1

]
S3(Γ0(24), ( −24

·
)) 24.3.h.a a(p) = F(· · · )p p ≡ 1 (mod 12)

Note: χ on row 13 is the Dirichlet character of conductor 5, with 2 7→ i.

As we have seen, the functions S6 and S12, which affect cases 1, 2, 7, 9, 10 and
12 in Table 2, are not fully described when p ≡ 7 (mod 12) and p ≡ 13 (mod 24)
respectively. Unfortunately, we were unable to ascribe a simple formula to the sign
in those classes for those cases. Also, the choice of character is important in those
cases. This is best explained using case 1 as an example. Combining [16, (4.25)]
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with [27, Prop. 2.5] we see that, for p ≡ 1 (mod 6),

3F2

(
χ3, ϕ, ϕ

ε, ε

��� 1
)
p

= 3F2

(
χ3, ϕ, ϕ

ε, ε

��� 1
)
p

×

{
+1 if p ≡ 1 (mod 4),
−1 if p ≡ 3 (mod 4).

There are two characters of order three when p ≡ 1 (mod 6) and they are conjugates
of each other. So, when p ≡ 1 (mod 12), the 3F2 in case 1 is independent of the
choice of χ3. However, when p ≡ 7 (mod 12), the choice of character will determine
the sign. Similar behavior is observed in cases 2, 7, 9, 10 and 12.

It doesn’t appear that the relations in Table 2 can be extended to all primes in a
simple way using mGm[· · · ]p . It may be possible, however, with the introduction of
extra factors which equal ±1 when p is in the equivalence class outlined in the table.
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